1051
|
Fischer UR, Wieltschnig C, Kirschner AKT, Velimirov B. Does virus-induced lysis contribute significantly to bacterial mortality in the oxygenated sediment layer of shallow oxbow lakes? Appl Environ Microbiol 2003; 69:5281-9. [PMID: 12957915 PMCID: PMC194932 DOI: 10.1128/aem.69.9.5281-5289.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the recognition that viruses are ubiquitous components of aquatic ecosystems, the number of studies on viral abundance and the ecological role of viruses in sediments is scarce. In this investigation, the interactions between viruses and bacteria were studied in the oxygenated silty sediment layer of a mesotrophic oxbow lake. A long-term study (13 months) and a diel study revealed that viruses are a numerically important and dynamic component of the microbial community. The abundance and decay rates ranged from 4.3 x 10(9) to 7.2 x 10(9) particles ml of wet sediment(-1) and from undetectable to 22.2 x 10(7) particles ml(-1) h(-1), respectively, and on average the values were 2 orders of magnitude higher than the values for the overlying water. In contrast to our expectations, viruses did not contribute significantly to the bacterial mortality in the sediment, since on average only 6% (range, 0 to 25%) of the bacterial secondary production was controlled by viruses. The low impact of viruses on the bacterial community may be associated with the quantitatively low viral burden that benthic bacteria have to cope with compared to the viral burden with which bacterial assemblages in the water column are confronted. The virus-to-bacterium ratio of the sediment varied between 0.9 and 3.2, compared to a range of 5.0 to 12.4 obtained for the water column. We speculate that despite high numbers of potential hosts, the possibility of encountering a host cell is limited by the physical conditions in the sediment, which is therefore not a favorable environment for viral proliferation. Our data suggest that viruses do not play an important role in the processing and transfer of bacterial carbon in the oxygenated sediment layer of the environment investigated.
Collapse
Affiliation(s)
- Ulrike R Fischer
- Institute of Medical Biology, Research Group General Microbiology, University of Vienna, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
1052
|
Goodridge L, Gallaccio A, Griffiths MW. Morphological, host range, and genetic characterization of two coliphages. Appl Environ Microbiol 2003; 69:5364-71. [PMID: 12957924 PMCID: PMC194992 DOI: 10.1128/aem.69.9.5364-5371.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 07/03/2003] [Indexed: 11/20/2022] Open
Abstract
Two coliphages, AR1 and LG1, were characterized based on their morphological, host range, and genetic properties. Transmission electron microscopy showed that both phages belonged to the Myoviridae; phage particles of LG1 were smaller than those of AR1 and had an isometric head 68 nm in diameter and a complex contractile tail 111 nm in length. Transmission electron micrographs of AR1 showed phage particles consisting of an elongated isometric head of 103 by 74 nm and a complex contractile tail 116 nm in length. Both phages were extensively tested on many strains of Escherichia coli and other enterobacteria. The results showed that both phages could infect many serotypes of E. coli. Among the enterobacteria, Proteus mirabilis, Shigella dysenteriae, and two Salmonella strains were lysed by the phages. The genetic material of AR1 and LG1 was characterized. Phage LG1 had a genome size of 49.5 kb compared to 150 kb for AR1. Restriction endonuclease analysis showed that several restriction enzymes could degrade DNA from both phages. The morphological, genome size, and restriction endonuclease similarities between AR1 and phage T4 were striking. Southern hybridizations showed that AR1 and T4 are genetically related. The wide host ranges of phages AR1 and LG1 suggest that they may be useful as biocontrol, therapeutic, or diagnostic agents to control and detect the prevalence of E. coli in animals and food.
Collapse
Affiliation(s)
- Lawrence Goodridge
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
1053
|
Culley AI, Lang AS, Suttle CA. High diversity of unknown picorna-like viruses in the sea. Nature 2003; 424:1054-7. [PMID: 12944967 DOI: 10.1038/nature01886] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 07/07/2003] [Indexed: 11/08/2022]
Abstract
Picorna-like viruses are a loosely defined group of positive-sense single-stranded RNA viruses that are major pathogens of animals, plants and insects. They include viruses that are of enormous economic and public-health concern and are responsible for animal diseases (such as poliomyelitis), plant diseases (such as sharka) and insect diseases (such as sacbrood). Viruses from the six divergent families (the Picornaviridae, Caliciviridae, Comoviridae, Sequiviridae, Dicistroviridae and Potyviridae) that comprise the picorna-like virus superfamily have the following features in common: a genome with a protein attached to the 5' end and no overlapping open reading frames, all the RNAs are translated into a polyprotein before processing, and a conserved RNA-dependent RNA polymerase (RdRp) protein. Analyses of RdRp sequences from these viruses produce phylogenies that are congruent with established picorna-like virus family assignments; hence, this gene is an excellent molecular marker for examining the diversity of picorna-like viruses in nature. Here we report, on the basis of analysis of RdRp sequences amplified from marine virus communities, that a diverse array of picorna-like viruses exists in the ocean. All of the sequences amplified were divergent from known picorna-like viruses, and fell within four monophyletic groups that probably belong to at least two new families. Moreover, we show that an isolate belonging to one of these groups is a lytic pathogen of Heterosigma akashiwo, a toxic-bloom-forming alga responsible for severe economic losses to the finfish aquaculture industry, suggesting that picorna-like viruses are important pathogens of marine phytoplankton.
Collapse
Affiliation(s)
- Alexander I Culley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | |
Collapse
|
1054
|
Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003; 6:417-24. [PMID: 12941415 DOI: 10.1016/s1369-5274(03)00086-9] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Centre, CH-1000 Lausanne 26, Vers-chez-les-Blanc, Switzerland
| | | | | | | | | |
Collapse
|
1055
|
Seurinck S, Verstraete W, Siciliano SD. Use of 16S-23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources. Appl Environ Microbiol 2003; 69:4942-50. [PMID: 12902290 PMCID: PMC169150 DOI: 10.1128/aem.69.8.4942-4950.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite efforts to minimize fecal input into waterways, this kind of pollution continues to be a problem due to an inability to reliably identify nonpoint sources. Our objective was to find candidate source-specific Escherichia coli fingerprints as potential genotypic markers for raw sewage, horses, dogs, gulls, and cows. We evaluated 16S-23S rRNA intergenic spacer region (ISR)-PCR and repetitive extragenic palindromic (rep)-PCR analyses of E. coli isolates as tools to identify nonpoint fecal sources. The BOXA1R primer was used for rep-PCR analysis. A total of 267 E. coli isolates from different fecal sources were typed with both techniques. E. coli was found to be highly diverse. Only two candidate source-specific E. coli fingerprints, one for cow and one for raw sewage, were identified out of 87 ISR fingerprints. Similarly, there was only one candidate source-specific E. coli fingerprint for horse out of 59 BOX fingerprints. Jackknife analysis resulted in an average rate of correct classification (ARCC) of 83% for BOX-PCR analysis and 67% for ISR-PCR analysis for the five source categories of this study. When nonhuman sources were pooled so that each isolate was classified as animal or human derived (raw sewage), ARCCs of 82% for BOX-PCR analysis and 72% for ISR-PCR analysis were obtained. Critical factors affecting the utility of these methods, namely sample size and fingerprint stability, were also assessed. Chao1 estimation showed that generally 32 isolates per fecal source individual were sufficient to characterize the richness of the E. coli population of that source. The results of a fingerprint stability experiment indicated that BOX and ISR fingerprints were stable in natural waters at 4, 12, and 28 degrees C for 150 days. In conclusion, 16S-23S rRNA ISR-PCR and rep-PCR analyses of E. coli isolates have the potential to identify nonpoint fecal sources. A fairly small number of isolates was needed to find candidate source-specific E. coli fingerprints that were stable under the simulated environmental conditions.
Collapse
Affiliation(s)
- Sylvie Seurinck
- Laboratory of Microbial Ecology and Technology, Ghent University, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
1056
|
Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 2003; 69:4639-47. [PMID: 12902252 PMCID: PMC169111 DOI: 10.1128/aem.69.8.4639-4647.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.
Collapse
Affiliation(s)
- Marcia F Marston
- Department of Biology, Roger Williams University, Bristol, Rhode Island 02809, USA.
| | | |
Collapse
|
1057
|
Stopar D, Cerne A, Zigman M, Poljsak-Prijatelj M, Turk V. Viral abundance and a high proportion of lysogens suggest that viruses are important members of the microbial community in the Gulf of Trieste. MICROBIAL ECOLOGY 2003; 46:249-56. [PMID: 14708749 DOI: 10.1007/bf03036884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epifluorescence microscopy and transmission electron microscopy were applied to study virioplankton community in the Gulf of Trieste (northern Adriatic Sea). The total viral abundance was in a range between 2.5 x 10(9)/L and 2.9 x 10(10)/L and was positively correlated with trophic status of the environment. Viruslike particles were significantly correlated with bacterial abundance in all samples studied. Correlations with other physicochemical or biological parameters were not significant. The data suggest that, because of the substantial fraction of tailed viruses present (26%), bacteriophages are an important component of the virioplankton community in the Gulf of Trieste. The abundance of viruslike particles in the seawater changed at hour intervals in a range from 1.3 x 10(9)/L to 5.1 x 10(9)/L. A significant fraction (71%) of the bacterial isolates was inducible in vitro by mitomycin C, and a high occurrence (51%) of lysogenic isolates with more than one phage morphotype present in the lysate was detected. The presence of lysogenic bacteria in the seawater was confirmed in situ with a mitomycin C induction experiment on the natural bacterial population. Results suggest that virioplankton is an abundant component of the microbial community in the Gulf of Trieste.
Collapse
Affiliation(s)
- D Stopar
- Biotechnical Faculty, Department of Food Technology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
1058
|
Abstract
We propose a system for continuing surveillance of viral pathogens circulating in large human populations. We base this system on the physical isolation of viruses from large pooled samples of human serum and plasma (e.g., discarded specimens from diagnostic laboratories), followed by shotgun sequencing of the resulting genomes. The technology for concentrating virions from 100-L volumes was developed previously at Oak Ridge National Laboratory, and the means for purifying and concentrating virions from volumes in microliters have been developed recently. At the same time, marine virologists have developed efficient methods for concentrating, amplifying, and sequencing complex viral mixtures obtained from the ocean. Given this existing technology base, we believe an integrated, automated, and contained system for surveillance of the human "virome" can be implemented within 1 to 2 years. Such a system could monitor the levels of known viruses in human populations, rapidly detect outbreaks, and systematically discover novel or variant human viruses.
Collapse
|
1059
|
Noble PA, Tymowski RG, Fletcher M, Morris JT, Lewitus AJ. Contrasting patterns of phytoplankton community pigment composition in two salt marsh estuaries in southeastern United States. Appl Environ Microbiol 2003; 69:4129-43. [PMID: 12839791 PMCID: PMC165213 DOI: 10.1128/aem.69.7.4129-4143.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.
Collapse
Affiliation(s)
- Peter A Noble
- Civil and Environmental Engineering, 201 More Hall, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
1060
|
Hardies SC, Comeau AM, Serwer P, Suttle CA. The complete sequence of marine bacteriophage VpV262 infecting vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment. Virology 2003; 310:359-71. [PMID: 12781722 DOI: 10.1016/s0042-6822(03)00172-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The 46,012-bp sequence of the marine bacteriophage VpV262 infecting the bacterium Vibrio parahaemolyticus is reported. The VpV262 sequence reveals that it is a distant relative of marine Roseophage SIO1, and an even more distant relative of coliphage T7. VpV262 and SIO1 appear to represent a widespread marine phage group that lacks an RNA polymerase gene and is ancestral to the T7-like phages. We propose that this group together with the T7-like phages be designated as the T7 supergroup. The ancestral head structure gene module for the T7 supergroup was reconstructed by using sensitive biased Psi-blast searches supplemented by statistical support derived from gene order. In the early and replicative segments, these phages have participated in extensive interchange with the viral gene pool. VpV262 carries a different replicative module than SIO1 and the T7-like phages.
Collapse
Affiliation(s)
- Stephen C Hardies
- Department of Biochemistry, MSC 7760, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | |
Collapse
|
1061
|
Jacquet S, Bratbak G. Effects of ultraviolet radiation on marine virusâphytoplankton interactions. FEMS Microbiol Ecol 2003; 44:279-89. [DOI: 10.1016/s0168-6496(03)00075-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
1062
|
Abstract
Comparative genomic analysis of the tailed bacteriophages shows that they are genetically mosaic with respect to each other, implying that horizontal exchange of sequences is an important component of their evolution. Horizontal exchange occurs intensively among closely related phages but also at reduced frequency across the entire population of tailed phages. It results in exchange of homologous functions, exchange of analogous but non-homologous functions as with the prophage integrases, and introduction of novel functions into the genome as with the morons. Extrapolation of these processes back in evolutionary time leads to a speculative model for the origins and early evolution of phages.
Collapse
Affiliation(s)
- Roger W Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
1063
|
Schroeder DC, Oke J, Hall M, Malin G, Wilson WH. Virus succession observed during an Emiliania huxleyi bloom. Appl Environ Microbiol 2003; 69:2484-90. [PMID: 12732512 PMCID: PMC154549 DOI: 10.1128/aem.69.5.2484-2490.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Denaturing gradient gel electrophoresis was used as a molecular tool to determine the diversity and to monitor population dynamics of viruses that infect the globally important coccolithophorid Emiliania huxleyi. We exploited variations in the major capsid protein gene from E. huxleyi-specific viruses to monitor their genetic diversity during an E. huxleyi bloom in a mesocosm experiment off western Norway. We reveal that, despite the presence of several virus genotypes at the start of an E. huxleyi bloom, only a few virus genotypes eventually go on to kill the bloom.
Collapse
|
1064
|
Segovia M, Haramaty L, Berges JA, Falkowski PG. Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. PLANT PHYSIOLOGY 2003; 132:99-105. [PMID: 12746516 PMCID: PMC166956 DOI: 10.1104/pp.102.017129] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2002] [Revised: 12/06/2002] [Accepted: 01/17/2003] [Indexed: 05/22/2023]
Abstract
Apoptosis is essential for normal growth and development of multicellular organisms, including metazoans and higher plants. Although cell death processes have been reported in unicellular organisms, key elements of apoptotic pathways have not been identified. Here, we show that when placed in darkness, the unicellular chlorophyte alga Dunaliella tertiolecta undergoes a form of cell death reminiscent of apoptosis in metazoans. Many morphological criteria of apoptotic cell death were met, including an increase in chromatin margination, degradation of the nucleus, and DNA fragmentation. Biochemical assays of the activities of cell death-associated proteases, caspases, measured using highly specific fluorogenic substrates, increased with time in darkness and paralleled the morphological changes. The caspase-like activities were inhibited by caspase-specific inhibitors. Antibodies raised against mammalian caspases cross-reacted with specific proteins in the alga. The pattern of expression of these immunologically reactive proteins was correlated with the onset of cell death. The occurrence of key components of apoptosis, and particularly a caspase-mediated cell death cascade in a relatively ancient linage of eukaryotic photoautotrophs, argues against current theories that cell death evolved in multicellular organisms. We hypothesize that key elements of cell death pathways were transferred to the nuclear genome of early eukaryotes through ancient viral infections in the Precambrian Ocean before the evolution of multicellular organisms and were subsequently appropriated in both metazoan and higher plant lineages.
Collapse
Affiliation(s)
- María Segovia
- School of Biology and Biochemistry, Queen's University of Belfast, United Kingdom.
| | | | | | | |
Collapse
|
1065
|
Geslin C, Le Romancer M, Gaillard M, Erauso G, Prieur D. Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents. Res Microbiol 2003; 154:303-7. [PMID: 12798236 DOI: 10.1016/s0923-2508(03)00075-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systematic search was carried out on samples collected in various geographically distant hydrothermal sites located on the East Pacific Rise (EPR 9 degrees N and 13 degrees N) and Mid-Atlantic Ridge (MAR 36 degrees N and 37 degrees N) to investigate the diversity of virus-like particles (VLPs) from deep-sea vents. Eighty-nine positive enrichment cultures were obtained from one hundred and one crude samples at 85 degrees C. VLPs were detected by electron microscopy in fifteen different enrichments. Among the different morphotypes observed, the lemon-shaped type prevailed but rods and novel pleomorphic morphologies were also observed. Several observations strongly suggested that host strains of the novel VLPs belong to the hyperthermophilic euryarchaeal order Thermococcales.
Collapse
Affiliation(s)
- Claire Geslin
- Université de Bretagne Occidentale, CNRS UMR 6539, Institut Universitaire Européen de la Mer, 29280 Plouzané, France.
| | | | | | | | | |
Collapse
|
1066
|
Abstract
The scarce characterisation of the viral world has hampered our efforts to appreciate the magnitude and diversity of the viral domain. It appears that almost every species can be infected by a number of viruses. As our knowledge of viruses increases, it appears that this myriad of viruses may be organised into a reasonably low number of viral lineages including members infecting hosts belonging to different domains of life. Viruses belonging to a lineage share a common innate "self" that refers to structural and assembly principles of the virion. This hypothesis has a few consequences. All viruses are old, maybe preceding cellular life, and virus origins are polyphyletic, as opposed to the idea of a monophyletic origin of cellular life.
Collapse
Affiliation(s)
- Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, P.O. Box 56 (Viikinkaari 5), 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
1067
|
Talledo M, Rivera ING, Lipp EK, Neale A, Karaolis D, Huq A, Colwell RR. Characterization of a Vibrio cholerae phage isolated from the coastal water of Peru. Environ Microbiol 2003; 5:350-4. [PMID: 12713461 DOI: 10.1046/j.1462-2920.2003.00411.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Vibrio cholerae bacteriophage, family Myoviridae, was isolated from seawater collected from the coastal water of Lima, Peru. Genome size was estimated to be 29 kbp. The temperate phage was specific to V. cholerae and infected 12/13 V. cholerae O1 strains and half of the four non-O1/non-O139 strains tested in this study. Vibrio cholerae O139 strains were resistant to infection and highest infection rates were obtained in low nutrient media amended with NaCl or prepared using seawater as diluent.
Collapse
Affiliation(s)
- Miguel Talledo
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E Pratt St, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | |
Collapse
|
1068
|
Abstract
The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.
Collapse
Affiliation(s)
- David Prangishvili
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
1069
|
Corinaldesi C, Crevatin E, Del Negro P, Marini M, Russo A, Fonda-Umani S, Danovaro R. Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis. Appl Environ Microbiol 2003; 69:2664-73. [PMID: 12732535 PMCID: PMC154510 DOI: 10.1128/aem.69.5.2664-2673.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known concerning environmental factors that may control the distribution of virioplankton on large spatial scales. In previous studies workers reported high viral levels in eutrophic systems and suggested that the trophic state is a possible driving force controlling the spatial distribution of viruses. In order to test this hypothesis, we determined the distribution of viral abundance and bacterial abundance and the virus-to-bacterium ratio in a wide area covering the entire Adriatic basin (Mediterranean Sea). To gather additional information on factors controlling viral distribution on a large scale, functional microbial parameters (exoenzymatic activities, bacterial production and turnover) were related to trophic gradients. At large spatial scales, viral distribution was independent of autotrophic biomass and all other environmental parameters. We concluded that in contrast to what was previously hypothesized, changing trophic conditions do not directly affect virioplankton distribution. Since virus distribution was coupled with bacterial turnover times, our results suggest that viral abundance depends on bacterial activity and on host cell abundance.
Collapse
Affiliation(s)
- C Corinaldesi
- Department of Marine Science, University of Ancona, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
1070
|
Nagasaki K, Tomaru Y, Tarutani K, Katanozaka N, Yamanaka S, Tanabe H, Yamaguchi M. Growth characteristics and intraspecies host specificity of a large virus infecting the dinoflagellate Heterocapsa circularisquama. Appl Environ Microbiol 2003; 69:2580-6. [PMID: 12732524 PMCID: PMC154496 DOI: 10.1128/aem.69.5.2580-2586.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth characteristics and intraspecies host specificity of Heterocapsa circularisquama virus (HcV), a large icosahedral virus specifically infecting the bivalve-killing dinoflagellate H. circularisquama, were examined. Exponentially growing host cells were more sensitive to HcV than those in the stationary phase, and host cells were more susceptible to HcV infection in the culture when a higher percent of the culture was replaced with fresh medium each day, suggesting an intimate relationship between virus sensitivity and the physiological condition of the host cells. HcV was infective over a wide range of temperatures, 15 to 30 degrees C, and the latent period and burst size were estimated at 40 to 56 h and 1,800 to 2,440 infective particles, respectively. Transmission electron microscopy revealed that capsid formation began within 16 h postinfection, and mature virus particles appeared within 24 h postinfection at 20 degrees C. Compared to Heterosigma akashiwo virus, HcV was more widely infectious to H. circularisquama strains that had been independently isolated in the western part of Japan, and only 5.3% of the host-virus combinations (53 host and 10 viral strains) showed resistance to viral infection. The present results are helpful in understanding the ecology of algal host-virus systems in nature.
Collapse
Affiliation(s)
- Keizo Nagasaki
- National Research Institute of Fisheries and Environment of Inland Sea, 2-17-5 Maruishi, Ohno, Saeki, Hiroshima 739-0452, Japan.
| | | | | | | | | | | | | |
Collapse
|
1071
|
Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR, Hendrix RW, Hatfull GF. Origins of highly mosaic mycobacteriophage genomes. Cell 2003; 113:171-82. [PMID: 12705866 DOI: 10.1016/s0092-8674(03)00233-2] [Citation(s) in RCA: 489] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacteriophages are the most abundant organisms in the biosphere and play major roles in the ecological balance of microbial life. The genomic sequences of ten newly isolated mycobacteriophages suggest that the bacteriophage population as a whole is amazingly diverse and may represent the largest unexplored reservoir of sequence information in the biosphere. Genomic comparison of these mycobacteriophages contributes to our understanding of the mechanisms of viral evolution and provides compelling evidence for the role of illegitimate recombination in horizontal genetic exchange. The promiscuity of these recombination events results in the inclusion of many unexpected genes including those implicated in mycobacterial latency, the cellular and immune responses to mycobacterial infections, and autoimmune diseases such as human lupus. While the role of phages as vehicles of toxin genes is well established, these observations suggest a much broader involvement of phages in bacterial virulence and the host response to bacterial infections.
Collapse
Affiliation(s)
- Marisa L Pedulla
- Department of Biological Sciences and Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1072
|
Fuhrman JA, Schwalbach M. Viral influence on aquatic bacterial communities. THE BIOLOGICAL BULLETIN 2003; 204:192-195. [PMID: 12700152 DOI: 10.2307/1543557] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial viruses, or bacteriophages, have numerous roles in marine systems. Although they are now considered important agents of mortality of bacteria, a second possible role of regulating bacterial community composition is less well known. The effect on community composition derives from the presumed species-specificity and density-dependence of infection. Although models have described the "kill the winner" hypothesis of such control, there are few observational or experimental demonstrations of this effect in complex natural communities. We report here on some experiments that demonstrate that viruses can influence community composition in natural marine communities. Although the effect is subtle over the time frame suitable for field experiments (days), the cumulative effect over months or years would be substantial. Other virus roles, such as in genetic exchange or microbial evolution, have the potential to be extremely important, but we know very little about them.
Collapse
Affiliation(s)
- J A Fuhrman
- University of Southern California, Los Angeles, California 90089-0371, USA.
| | | |
Collapse
|
1073
|
Wolf A, Wiese J, Jost G, Witzel KP. Wide geographic distribution of bacteriophages that lyse the same indigenous freshwater isolate (Sphingomonas sp. strain B18). Appl Environ Microbiol 2003; 69:2395-8. [PMID: 12676728 PMCID: PMC154766 DOI: 10.1128/aem.69.4.2395-2398.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An indigenous freshwater bacterium (Sphingomonas sp. strain B18) from Lake Plubetasee (Schleswig-Holstein, Germany) was used to isolate 44 phages from 13 very different freshwater and brackish habitats in distant geographic areas. This bacterial strain was very sensitive to a broad spectrum of phages from different aquatic environments. Phages isolated from geographically distant aquatic habitats, but also those from the same sample, were diverse with respect to morphology and restriction pattern. Some phages were widely distributed, while different types coexisted in the same sample. It was concluded that phages could be a major factor in shaping the structure of bacterial communities and maintaining a high bacterial diversity.
Collapse
Affiliation(s)
- Arite Wolf
- Max Planck Institute for Limnology, 24302 Plön, Germany
| | | | | | | |
Collapse
|
1074
|
Abstract
Cyanobacteria of the genera Synechococcus and Prochlorococcus dominate the prokaryotic component of the picophytoplankton in the oceans. It is still less than 10 years since the discovery of phages that infect marine Synechococcus and the beginning of the characterisation of these phages and assessment of their ecological impact. Estimations of the contribution of phages to Synechococcus mortality are highly variable, but there is clear evidence that phages exert a significant selection pressure on Synechococcus community structure. In turn, there are strong selection pressures on the phage community, in terms of both abundance and composition. This review focuses on the factors affecting the diversity of cyanophages in the marine environment, cyanophage interactions with their hosts, and the selective pressures in the marine environment that affect cyanophage evolutionary biology.
Collapse
Affiliation(s)
- Nicholas H Mann
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
1075
|
Danovaro R, Armeni M, Corinaldesi C, Mei ML. Viruses and marine pollution. MARINE POLLUTION BULLETIN 2003; 46:301-304. [PMID: 12604062 DOI: 10.1016/s0025-326x(02)00461-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This short review summarises the present knowledge on pollutant impacts on marine viruses, virus-host systems and their potential ecological implications. Excess nutrients from sewage and river effluents are a primary cause of marine eutrophication and mucilage formation, often related to the development of large viral assemblages. At the same time, hydrocarbons, polychlorinated biphenyl and pesticides alter ecosystem functioning and can determinate changes in the virus-host interactions, thus increasing the potential of viral infection. All these pollutants might have synergistic effects on the virus-host system and are able to induce prophage, thus increasing the impact of viruses on marine ecosystems.
Collapse
Affiliation(s)
- R Danovaro
- Faculty of Sciences, Institute of Marine Science, MMFFNN, University of Ancona, Via Brecce Bianche Monte D'Ago, Italy.
| | | | | | | |
Collapse
|
1076
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 588] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
1077
|
Abstract
Viruses occur throughout the biosphere. Cells of Eukarya, Bacteria, and Archaea are infected by a variety of viruses that considerably outnumber the host cells. Although viruses have adapted to different host systems during evolution and many different viral strategies have developed, certain similarities can be found. Viruses encounter common problems during their entry process into the host cells, and similar strategies seem to ensure, for example, that the movement toward the site of replication and the translocation through the host membrane occur. The penetration of the host cell's external envelope involves, across the viral world, either fusion between two membranes, channel formation through the host envelope, disruption of the membrane vesicle, or a combination of these events. Endocytic-type events may occur during the entry of a bacterial virus as well as during the entry of an animal virus; the same applies for membrane fusion.
Collapse
Affiliation(s)
- Minna M Poranen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland.
| | | | | |
Collapse
|
1078
|
Ashelford KE, Day MJ, Fry JC. Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 2003; 69:285-9. [PMID: 12514006 PMCID: PMC152412 DOI: 10.1128/aem.69.1.285-289.2003] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the first direct counts of soil bacteriophage and show that substantial populations of these viruses exist in soil (grand mean = 1.5 x 10(7) g(-1)), at least 350-fold more than the highest numbers estimated from traditional viable plaque counts. Adding pure cultures of a Serratia phage to soil showed that the direct counting methods with electron microscopy developed here underestimated the added phage populations by at least eightfold. So, assuming natural phages were similarly underestimated, virus numbers in soil averaged 1.5 x 10(8) g(-1), which is equivalent to 4% of the total population of bacteria. This high abundance was to some extent confirmed by hybridizing colonies grown on Serratia and Pseudomonas selective media with cocktails of phage infecting these bacteria. This showed that 8.9 and 3.9%, respectively, hybridized with colonies from the two media and confirmed the presence of phage DNA sequences in the cultivable fraction of the natural population. Thus, soil phage, like their aquatic counterparts, are likely to be important in controlling bacterial populations and mediating gene transfer in soil.
Collapse
Affiliation(s)
- Kevin E Ashelford
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3TL, United Kingdom
| | | | | |
Collapse
|
1079
|
Abstract
After an illustrious history as one of the primary tools that established the foundations of molecular biology, bacteriophage research is now undergoing a renaissance in which the primary focus is on the phages themselves rather than the molecular mechanisms that they explain. Studies of the evolution of phages and their role in natural ecosystems are flourishing. Practical questions, such as how to use phages to combat human diseases that are caused by bacteria, how to eradicate phage pests in the food industry and what role they have in the causation of human diseases, are receiving increased attention. Phages are also useful in the deeper exploration of basic molecular and biophysical questions.
Collapse
Affiliation(s)
- Allan Campbell
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
1080
|
Chattopadhyay J, Sarkar RR, Pal S. Dynamics of nutrient-phytoplankton interaction in the presence of viral infection. Biosystems 2003; 68:5-17. [PMID: 12543518 DOI: 10.1016/s0303-2647(02)00055-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper deals with the problem of a nutrient-phytoplankton (N-P) populations where phytoplankton population is divided into two groups, namely susceptible phytoplankton and infected phytoplankton. Conditions for coexistence or extinction of populations are derived taking into account general nutrient uptake functions and Holling type-II functional response as an example. It is observed that the three component systems persist when the infected phytoplankton population is not able to consume nutrient.
Collapse
Affiliation(s)
- J Chattopadhyay
- Embryology Research Unit, Indian Statistical Institute, 203, B.T. Road, Calcutta 700 035, India.
| | | | | |
Collapse
|
1081
|
Abstract
Here we report the first direct counts of soil bacteriophage and show that substantial populations of these viruses exist in soil (grand mean = 1.5 x 10(7) g(-1)), at least 350-fold more than the highest numbers estimated from traditional viable plaque counts. Adding pure cultures of a Serratia phage to soil showed that the direct counting methods with electron microscopy developed here underestimated the added phage populations by at least eightfold. So, assuming natural phages were similarly underestimated, virus numbers in soil averaged 1.5 x 10(8) g(-1), which is equivalent to 4% of the total population of bacteria. This high abundance was to some extent confirmed by hybridizing colonies grown on Serratia and Pseudomonas selective media with cocktails of phage infecting these bacteria. This showed that 8.9 and 3.9%, respectively, hybridized with colonies from the two media and confirmed the presence of phage DNA sequences in the cultivable fraction of the natural population. Thus, soil phage, like their aquatic counterparts, are likely to be important in controlling bacterial populations and mediating gene transfer in soil.
Collapse
|
1082
|
Abstract
Marine phages are the most abundant biological entities in the oceans. They play important roles in carbon cycling through marine food webs, gene transfer by transduction and conversion of hosts by lysogeny. The handful of marine phage genomes that have been sequenced to date, along with prophages in marine bacterial genomes, and partial sequencing of uncultivated phages are yielding glimpses of the tremendous diversity and physiological potential of the marine phage community. Common gene modules in diverse phages are providing the information necessary to make evolutionary comparisons. Finally, deciphering phage genomes is providing clues about the adaptive response of phages and their hosts to environmental cues.
Collapse
Affiliation(s)
- John H Paul
- College of Marine Sciences, University of South Florida, 140 Seventh Ave S, St Petersburg, FL 33701, USA.
| | | | | | | |
Collapse
|
1083
|
Heidelberg JF, Heidelberg KB, Colwell RR. Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol 2002; 68:5488-97. [PMID: 12406742 PMCID: PMC129892 DOI: 10.1128/aem.68.11.5488-5497.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria, gamma-subclass of Proteobacteria, Vibrio-Photobacterium, Vibrio vulnificus, Vibrio cholerae-Vibrio mimicus, and Vibrio cincinnatiensis in water samples collected from the Choptank River in Chesapeake Bay from 15 April to 16 December 1996 were enumerated using a fluorescent oligonucleotide direct-counting (FODC) procedure. FODC results obtained using a Bacteria taxon-specific probe ranged from one-third the number of to the same number as that obtained by the acridine orange direct count (AODC) procedure. The abundance of individual taxa (per liter) ranged from 0.25 x 10(10) to 2.6 x 10(10) Bacteria, 0.32 x 10(8) to 3.1 x 10(8) gamma-Proteobacteria, 0.2 x 10(8) to 2.1 x 10(8) Vibrio-Photobacterium, 0.5 x 10(7) to 10 x 10(7) V. vulnificus, 0.2 x 10(6) to 6 x 10(6) V. cholerae-V. mimicus, and 0.5 x 10(5) to 8 x 10(5) V. cincinnatiensis. The occurrence of all taxa monitored in this study was higher in summer; however, these taxa made up a larger proportion of the Bacteria when the water temperature was low. Large fluctuations in species abundance as well as in percent composition of Vibrio-Photobacterium occurred from week to week, indicating that localized blooms of these taxa occur. The cross-Choptank River transect sample profile of V. vulnificus and V. cholerae-V. mimicus varied significantly in abundance, and trans-Choptank River transect samples revealed a patchy distribution.
Collapse
Affiliation(s)
- J F Heidelberg
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
1084
|
Abstract
To better understand prokaryotic gene flux in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of plasmid populations in marine bacterial communities, information on the distribution, diversity, and ecological traits of marine plasmids is necessary. This mini-review highlights recent insights gained into the molecular diversity and ecology of plasmids occurring in marine microbial communities.
Collapse
Affiliation(s)
- Patricia A Sobecky
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
1085
|
Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 2002; 99:14250-5. [PMID: 12384570 PMCID: PMC137870 DOI: 10.1073/pnas.202488399] [Citation(s) in RCA: 625] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses are the most common biological entities in the oceans by an order of magnitude. However, very little is known about their diversity. Here we report a genomic analysis of two uncultured marine viral communities. Over 65% of the sequences were not significantly similar to previously reported sequences, suggesting that much of the diversity is previously uncharacterized. The most common significant hits among the known sequences were to viruses. The viral hits included sequences from all of the major families of dsDNA tailed phages, as well as some algal viruses. Several independent mathematical models based on the observed number of contigs predicted that the most abundant viral genome comprised 2-3% of the total population in both communities, which was estimated to contain between 374 and 7,114 viral types. Overall, diversity of the viral communities was extremely high. The results also showed that it would be possible to sequence the entire genome of an uncultured marine viral community.
Collapse
Affiliation(s)
- Mya Breitbart
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | | | | | | | | | | | |
Collapse
|
1086
|
Abstract
Recently, the role of the environment and climate in disease dynamics has become a subject of increasing interest to microbiologists, clinicians, epidemiologists, and ecologists. Much of the interest has been stimulated by the growing problems of antibiotic resistance among pathogens, emergence and/or reemergence of infectious diseases worldwide, the potential of bioterrorism, and the debate concerning climate change. Cholera, caused by Vibrio cholerae, lends itself to analyses of the role of climate in infectious disease, coupled to population dynamics of pathogenic microorganisms, for several reasons. First, the disease has a historical context linking it to specific seasons and biogeographical zones. In addition, the population dynamics of V. cholerae in the environment are strongly controlled by environmental factors, such as water temperature, salinity, and the presence of copepods, which are, in turn, controlled by larger-scale climate variability. In this review, the association between plankton and V. cholerae that has been documented over the last 20 years is discussed in support of the hypothesis that cholera shares properties of a vector-borne disease. In addition, a model for environmental transmission of cholera to humans in the context of climate variability is presented. The cholera model provides a template for future research on climate-sensitive diseases, allowing definition of critical parameters and offering a means of developing more sophisticated methods for prediction of disease outbreaks.
Collapse
Affiliation(s)
- Erin K Lipp
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
1087
|
Gastrich MD, Anderson OR, Cosper EM. Viral-like particles (VLPS) in the alga,Aureococcus anophagefferens (pelagophyceae), during 1999–2000 brown tide blooms in Little Egg Harbor, New Jersey. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/bf02691342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
1088
|
Williamson SJ, Houchin LA, McDaniel L, Paul JH. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida. Appl Environ Microbiol 2002; 68:4307-14. [PMID: 12200280 PMCID: PMC124089 DOI: 10.1128/aem.68.9.4307-4314.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A seasonal study of the distribution of lysogenic bacteria in Tampa Bay, Florida, was conducted over a 13-month period. Biweekly water samples were collected and either were left unaltered or had the viral population reduced by filtration (pore size, 0.2 micro m) and resuspension in filtered (pore size, 0.2 micro m) water. Virus-reduced and unaltered samples were then treated by adding mitomycin C (0.5 micro g ml(-1)) to induce prophage or were left untreated. In order to test the hypothesis that prophage induction was phosphate limited, additional induction experiments were performed in the presence and absence of phosphate. Induction was assessed as an increase in viral direct counts, relative to those obtained in controls, as detected by epifluorescence microscopy. Induction of prophage was observed in 5 of 25 (20%) unaltered samples which were obtained during or after the month of February, paralleling the results from a previous seasonal study. Induction of prophage was observed in 9 of 25 (36%) of the virus-reduced samples, primarily those obtained in the winter months, which was not observed in a prior seasonal study (P. K. Cochran and J. H. Paul, Appl. Environ. Microbiol. 64:2308-2312, 1998). Induction was noted in the months of lowest bacterial and primary production, suggesting that lysogeny was favored under conditions of poor host growth. Phosphate addition enabled prophage induction in two of nine (22%) experiments. These results indicate that prophage induction may occasionally be phosphate limited or respond to increases in phosphate concentration, suggesting that phosphate concentration may modulate the lysogenic response of natural populations.
Collapse
Affiliation(s)
- S J Williamson
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA
| | | | | | | |
Collapse
|
1089
|
Banning N, Toze S, Mee BJ. Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein. J Appl Microbiol 2002; 93:69-76. [PMID: 12067376 DOI: 10.1046/j.1365-2672.2002.01670.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to deterimine the survival of an enteric bacterium in anaerobic groundwater and effluent microcosms using the green fluorescent protein (GFP) marker gene in combination with the viability indicator propidium iodide (PI). METHODS AND RESULTS The pEGFP vector (Clontech) was transformed into Escherichia coli DH5alpha and was stable for at least 100 generations of growth in nonselective medium at 28 degrees C and 37 degrees C. Using an epifluorescent microscope, GFP cells could be detected under blue light (450-490 nm) and the numbers of PI-positive GFPs could be detected under green light (530-560 nm). GFP-tagged E. coli could be detected for at least 132 d in sterilized water microcosms. GFP fluorescence was not lost from the culturable cell population for the duration of the experiment. However, a slow decline in the number of GFP-fluorescent cells in sterilized groundwater was observed. Escherichia coli die-off and loss of green fluorescence was more rapid in nonsterilized waters than in sterilized. Viable numbers of the GFP-tagged E. coli determined by PI counterstaining were compatible with numbers of colony-forming units. CONCLUSIONS The long-term survival of E. coli and maintainance of GFP-conferred fluorescence in these cells was demonstrated in both groundwater and effluent, under sterilized conditions. However, severe starvation and/or the presence of indigenous microorganisms were found to be factors affecting the maintenance of fluorescence in dead or dying cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the successful application of PI with GFP-tagging to monitor long-term bacterial survival in nutrient-limited conditions and mixed microbial populations.
Collapse
Affiliation(s)
- N Banning
- CSIRO Land and Water, Floreat, Western Australia, Nedlands, Western Australia.
| | | | | |
Collapse
|
1090
|
Rohwer F, Edwards R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol 2002; 184:4529-35. [PMID: 12142423 PMCID: PMC135240 DOI: 10.1128/jb.184.16.4529-4535.2002] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
There are approximately 10(31) phage in the biosphere, making them the most abundant biological entities on the planet. Despite their great numbers and ubiquitous presence, very little is known about phage biodiversity, biogeography, or phylogeny. Information is limited, in part, because the current ICTV taxonomical system is based on culturing phage and measuring physical parameters of the free virion. No sequence-based taxonomic systems have previously been established for phage. We present here the "Phage Proteomic Tree," which is based on the overall similarity of 105 completely sequenced phage genomes. The Phage Proteomic Tree places phage relative to both their near neighbors and all other phage included in the analysis. This method groups phage into taxa that predicts several aspects of phage biology and highlights genetic markers that can be used for monitoring phage biodiversity. We propose that the Phage Proteomic Tree be used as the basis of a genome-based taxonomical system for phage.
Collapse
Affiliation(s)
- Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
| | | |
Collapse
|
1091
|
Khan MA, Satoh H, Katayama H, Kurisu F, Mino T. Bacteriophages isolated from activated sludge processes and their polyvalency. WATER RESEARCH 2002; 36:3364-3370. [PMID: 12188136 DOI: 10.1016/s0043-1354(02)00029-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, bacteriophages were isolated from activated sludge and their host range was studied. Bacterial isolates were obtained from an activated sludge process treating urban sewage, and bacteriophages were obtained by plaque assay using the bacterial isolates obtained in this study as the host. Out of 15 bacteria isolated, 9 supported plaque formation. The host range test was conducted with a combination of 8 bacteriophage isolates and 9 bacterial isolates. All of the 8 bacteriophages tested were found to form plaques on more than 1 host, and 4 of them formed plaques on both gram-positive and gram-negative bacterial isolates. Three of the 8 bacteriophages failed to form plaques on their original bacterial host. The experimental result indicates that bacteriophages are an active part of the activated sludge microbial ecosystem, having a very close ecological relationship with their host bacteria.
Collapse
|
1092
|
Manage PM, Kawabata Z, Nakano SI, Nishibe Y. Effect of heterotrophic nanoflagellates on the loss of virus-like particles in pond water. Ecol Res 2002. [DOI: 10.1046/j.1440-1703.2002.00504.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
1093
|
Abstract
Viruses vastly outnumber their host cells and must present a huge selective pressure. It is also becoming evident that only a small percent of the eukaryotic genome codes for molecules involved in cellular structures and functions, and that much of the remainder may have a viral origin. Viruses clearly play a central role in the biosphere, but how is this viral world organized? Classification was originally based on virus morphology and the particular host infected, but now there is an increasing trend to rely on sequence information. The type of genome (e.g., RNA or DNA, single- or double-stranded) provides fundamental classification criteria, while sequence comparisons can provide fine mapping for closely related viruses. However, it is currently very difficult to identify long-range evolutionary relationships. We present here a different approach, based on the idea that each virus has an innate "self." When the structures and functions characteristic of this "self" are identified, then they uncover relationships beyond those accessible from sequence information alone. The new approach is illustrated by sketching some possible viral lineages. We propose that urviruses were present before the division of cellular life into its current domains, and that the viral world has lineages that can be traced back to the root of the universal tree of life.
Collapse
Affiliation(s)
- Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, PO Box 56 (Viikinkaari 5), Helsinki FIN-00014, Finland.
| | | | | |
Collapse
|
1094
|
Abstract
The dsDNA-tailed bacteriophages are probably the largest evolving group in the Biosphere and they are arguably very ancient. Comparative examination of genomes indicates that the hallmark of phage evolution is horizontal exchange of sequences. This is accomplished, first, by rampant non-homologous recombination between different genomes and, second, by reassortment of the variant sequences so created through homologous recombination. The comparative analysis suggests mechanisms by which new genes can be added to phage genomes and by which genes with novel functions may be assembled from parts. Horizontal exchange of sequences occurs most frequently among closely related phages, but it also extends across the entire global population at lower frequency. Bacteriophages also have probable ancestral connections with viruses of eukaryotes and archaea.
Collapse
Affiliation(s)
- Roger W Hendrix
- Pittsburgh Bacteriophage Institute & Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
1095
|
Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol 2002; 68:2589-94. [PMID: 11976141 PMCID: PMC127578 DOI: 10.1128/aem.68.5.2589-2594.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of cyanophage P60, a lytic virus which infects marine Synechococcus WH7803, was completely sequenced. The P60 genome contained 47,872 bp with 80 potential open reading frames that were mostly similar to the genes found in lytic phages like T7, phi-YeO3-12, and SIO1. The DNA replication system, consisting of primase-helicase and DNA polymerase, appeared to be more conserved in podoviruses than in siphoviruses and myoviruses, suggesting that DNA replication genes could be the critical elements for lytic phages. Strikingly high sequence similarities in the regions coding for nucleotide metabolism were found between cyanophage P60 and marine unicellular cyanobacteria.
Collapse
Affiliation(s)
- Feng Chen
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA.
| | | |
Collapse
|
1096
|
Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1233-1239. [PMID: 11932467 DOI: 10.1099/00221287-148-4-1233] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analysis of the 16S rDNAs obtained from cultures of single colonies of either type collection strains or environmental strains of the genus Vibrio revealed the presence of polymorphism in every one of the strains examined. Polymorphism was detected by visualization of heteroduplexes produced after 16S rDNA PCR amplification, a procedure that allows for the screening of a large number of isolates. Amplified 16S rDNAs obtained from both Vibrio parahaemolyticus and an environmental strain were cloned. Their nucleotide sequences revealed differences of up to 2% among 16S rDNAs from the same strain. Polymorphic sites were concentrated in a recognized variable stem-loop of bacterial 16S rRNA that contained in some cases up to 83% of the total mismatches observed. Most of the substitutions present in the stem-loop region showed compensating base covariation. The accumulation of so many compensating changes in the stem-loop region implies that the divergence of the different versions of this stem-loop is relatively ancient. This divergence could be the result of either a selection process or a lateral transfer of independently evolved genes.
Collapse
Affiliation(s)
- Claudia Moreno
- Laboratorio de Bioingenierı́a, Instituto de Nutrición y Tecnologı́a de los Alimentos, Universidad de Chile, Macul 5540, Santiago, Chile1
| | - Jaime Romero
- Laboratorio de Bioingenierı́a, Instituto de Nutrición y Tecnologı́a de los Alimentos, Universidad de Chile, Macul 5540, Santiago, Chile1
| | - Romilio T Espejo
- Laboratorio de Bioingenierı́a, Instituto de Nutrición y Tecnologı́a de los Alimentos, Universidad de Chile, Macul 5540, Santiago, Chile1
| |
Collapse
|
1097
|
Tang SL, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M. HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 2002; 44:283-96. [PMID: 11967086 DOI: 10.1046/j.1365-2958.2002.02890.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HF2 is a haloarchaeal virus infecting two Halorubrum species (Family Halobacteriaceae). It is lytic, has a head-and-tail morphology and belongs to the Myoviridae (contractile tails). The linear double-stranded DNA genome was sequenced and found to be 77 670 bp in length, with a mol% G+C of 55.8. A total of 121 likely open reading frames (ORFs) were identified, of which 37 overlapped at start and stop codons. The predicted proteins were usually acidic (average pI of 4.8), and less than about 12% of them had homologues in the sequence databases. Four complete tRNA-like sequences (tRNA-Arg, -Asx, -Pro and -Tyr) and an incomplete tRNA-Thr were detected. A transcription map showed that most of the genome was transcribed and that the synthesis of transcripts occurred in a highly organized and reproducible pattern over a 5 h infection cycle. Transcripts often spanned multiple ORFs, suggesting that viral genes were organized into operons. The predicted ORF and observed transcript directions matched well and showed that transcription is mainly directed inwards from the genome termini, meeting at about 45-48 kb, and this was also a turning point in a cumulative GC-skew plot. The low point in cumulative GC-skew, near the left end, was a region rich in short repeats and lacking ORFs, which is likely to be an origin of replication. The HF2 genome is a mosaic of components from widely different sources, demonstrating clearly that viruses of haloarchaea, like their bacteriophage counterparts, are vectors for the exchange and transmission of genetic material between wide taxonomic distances, even across domains.
Collapse
Affiliation(s)
- Sen-Lin Tang
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
1098
|
Zhong Y, Chen F, Wilhelm SW, Poorvin L, Hodson RE. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol 2002; 68:1576-84. [PMID: 11916671 PMCID: PMC123904 DOI: 10.1128/aem.68.4.1576-1584.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
1099
|
Mesyanzhinov VV, Robben J, Grymonprez B, Kostyuchenko VA, Bourkaltseva MV, Sykilinda NN, Krylov VN, Volckaert G. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J Mol Biol 2002; 317:1-19. [PMID: 11916376 DOI: 10.1006/jmbi.2001.5396] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage phiKZ is a giant virus that efficiently infects Pseudomonas aeruginosa strains pathogenic to human and, therefore, it is attractive for phage therapy. We present here the complete phiKZ genome sequence and a preliminary analysis of its genome structure. The 280,334 bp genome is a linear, circularly permutated and terminally redundant, A+T-rich double-stranded DNA molecule. The phiKZ DNA has no detectable sequence homology to other viruses and microorganisms, and it does not contain NotI, PstI, SacI, SmaI, XhoI, and XmaIII endonuclease restriction sites. The genome has 306 open reading frames (ORFs) varying in size from 50 to 2237 amino acid residues. According to the orientation of transcription, ORFs are apparently organized into clusters and most have a clockwise direction. The phiKZ genome also encodes six tRNAs specific for Met (AUG), Asn (AAC), Asp (GAC), Leu (TTA), Thr (ACA), and Pro (CCA). A putative promoter sequence containing a TATATTAC block was identified. Most potential stem-loop transcription terminators contain the tetranucleotide UUCG loops. Some genes may be assigned as phage-encoded RNA polymerase subunits. Only 59 phiKZ gene products exhibit similarity to proteins of known function from a diversity of organisms. Most of these conserved gene products, such as dihydrofolate reductase, ribonucleoside diphosphate reductase, thymidylate synthase, thymidylate kinase, and deoxycytidine triphosphate deaminase are involved in nucleotide metabolism. However, no virus-encoded DNA polymerase, DNA replication-associated proteins, or single-stranded DNA-binding protein were found based on amino acid homology, and they may therefore be strongly divergent from known homologous proteins. Fifteen phiKZ gene products show homology to proteins of pathogenic organisms, including Mycobacterium tuberculosis, Haemophilus influenzae, Listeria sp., Rickettsia prowazakeri, and Vibrio cholerae that must be considered before using this phage as a therapeutic agent. The phiKZ coat contains at least 40 polypeptides, and several proteins are cleaved during virus assembly in a way similar to phage T4. Eleven phiKZ-encoded polypeptides are related to proteins of other bacteriphages that infect a variety of hosts. Among these are four gene products that contain a putative intron-encoded endonuclease harboring the H-N-H motif common to many double-stranded DNA phages. These observations provide evidence that phages infecting diverse hosts have had access to a common genetic pool. However, limited homology on the DNA and protein levels indicates that bacteriophage phiKZ represents an evolutionary distinctive branch of the Myoviridae family.
Collapse
Affiliation(s)
- Vadim V Mesyanzhinov
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
1100
|
Danovaro R, Manini E, Dell'Anno A. Higher abundance of bacteria than of viruses in deep Mediterranean sediments. Appl Environ Microbiol 2002; 68:1468-72. [PMID: 11872504 PMCID: PMC123732 DOI: 10.1128/aem.68.3.1468-1472.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions between viral abundance and bacterial density, biomass, and production were investigated along a longitudinal transect consisting of nine deep-sea stations encompassing the entire Mediterranean basin. The numbers of viruses were very low (range, 3.6 x 10(7) to 12.0 x 10(7) viruses g(-1)) and decreased eastward. The virus-to-bacterium ratio was always < 1.0, indicating that the deep-sea sediments of the Mediterranean Sea are the first example of a marine ecosystem not numerically dominated by viruses. The lowest virus numbers were found where the lowest bacterial metabolism and turnover rates and the largest cell size were observed, suggesting that bacterial doubling time might play an important role in benthic virus development.
Collapse
Affiliation(s)
- Roberto Danovaro
- Institute of Marine Sciences, Marine Biology Section, Faculty of Science, University of Ancona, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | |
Collapse
|