101
|
Awad H, Bratasz A, Nuovo G, Burry R, Meng X, Kelani H, Brown M, Ramadan ME, Williams J, Bouhliqah L, Popovich PG, Guan Z, Mcallister C, Corcoran SE, Kaspar B, Michele Basso D, Otero JJ, Kirsch C, Davis IC, Croce CM, Michaille JJ, Tili E. MiR-155 deletion reduces ischemia-induced paralysis in an aortic aneurysm repair mouse model: Utility of immunohistochemistry and histopathology in understanding etiology of spinal cord paralysis. Ann Diagn Pathol 2018; 36:12-20. [PMID: 29966831 PMCID: PMC6208131 DOI: 10.1016/j.anndiagpath.2018.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.
Collapse
Affiliation(s)
- Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Small Animal Imaging Center Shared Resource, Wexner Medical Center, OSU, USA
| | - Gerard Nuovo
- Present address: Phylogeny, Inc., Powell, OH 43065-7295, USA.
| | - Richard Burry
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaomei Meng
- Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hesham Kelani
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Melissa Brown
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed E Ramadan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jim Williams
- Present address: Phylogeny, Inc., Powell, OH 43065-7295, USA
| | - Lamia Bouhliqah
- Department of ENT, Wexner Medical Center, OSU, Columbus, OH 43210, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Zhen Guan
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Cynthia Mcallister
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sarah E Corcoran
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - D Michele Basso
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - José J Otero
- Department of Pathology, Wexner Medical Center, OSU, Columbus, OH 43210, USA
| | - Claudia Kirsch
- Department of Radiology, NSUH, 300 Community Drive, Manhasset, NY 11030, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, College of Veterinary Medicine, 1925 Coffey Road, Columbus, OH 43210, USA
| | - Carlo Maria Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jean-Jacques Michaille
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA; BioPerox-IL, UB-INSERM IFR #100, Université de Bourgogne-Franche Comté, Faculté Gabriel, 6 Bd. Gabriel, 21000 Dijon, France
| | - Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
102
|
Juźwik CA, Drake S, Lécuyer MA, Johnson RM, Morquette B, Zhang Y, Charabati M, Sagan SM, Bar-Or A, Prat A, Fournier AE. Neuronal microRNA regulation in Experimental Autoimmune Encephalomyelitis. Sci Rep 2018; 8:13437. [PMID: 30194392 PMCID: PMC6128870 DOI: 10.1038/s41598-018-31542-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease but the molecular mechanisms underlying neurodegenerative aspects of the disease are poorly understood. microRNAs (miRNAs) are powerful regulators of gene expression that regulate numerous mRNAs simultaneously and can thus regulate programs of gene expression. Here, we describe miRNA expression in neurons captured from mice subjected to experimental autoimmune encephalomyelitis (EAE), a model of central nervous system (CNS) inflammation. Lumbar motor neurons and retinal neurons were laser captured from EAE mice and miRNA expression was assessed by next-generation sequencing and validated by qPCR. We describe 14 miRNAs that are differentially regulated in both neuronal subtypes and determine putative mRNA targets though in silico analysis. Several upregulated neuronal miRNAs are predicted to target pathways that could mediate repair and regeneration during EAE. This work identifies miRNAs that are affected by inflammation and suggests novel candidates that may be targeted to improve neuroprotection in the context of pathological inflammation.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Sienna Drake
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Marc-André Lécuyer
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Radia Marie Johnson
- McGill University, Goodman Cancer Research Centre, Montréal, H3A 1A3, Canada
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
| | - Marc Charabati
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Selena M Sagan
- McGill University, Departments of Microbiology & Immunology and Biochemistry, Montréal, QC, H3G 0B1, Canada
| | - Amit Bar-Or
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
103
|
Hoye ML, Archambault AS, Gordon TM, Oetjen LK, Cain MD, Klein RS, Crosby SD, Kim BS, Miller TM, Wu GF. MicroRNA signature of central nervous system-infiltrating dendritic cells in an animal model of multiple sclerosis. Immunology 2018; 155:112-122. [PMID: 29749614 PMCID: PMC6099169 DOI: 10.1111/imm.12934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/28/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune cells are integral to the pathogenesis of several diseases of the central nervous system (CNS), including multiple sclerosis (MS). Dendritic cells (DCs) are potent CD11c+ antigen-presenting cells that are critical regulators of adaptive immune responses, particularly in autoimmune diseases such as MS. The regulation of DC function in both the periphery and CNS compartment has not been fully elucidated. One limitation to studying the role of CD11c+ DCs in the CNS is that microglia can upregulate CD11c during inflammation, making it challenging to distinguish bone marrow-derived DCs (BMDCs) from microglia. Selective expression of microRNAs (miRNAs) has been shown to distinguish populations of innate cells and regulate their function within the CNS during neuro-inflammation. Using the experimental autoimmune encephalomyelitis (EAE) murine model of MS, we characterized the expression of miRNAs in CD11c+ cells using a non-biased murine array. Several miRNAs, including miR-31, were enriched in CD11c+ cells within the CNS during EAE, but not LysM+ microglia. Moreover, to distinguish CD11c+ DCs from microglia that upregulate CD11c, we generated bone marrow chimeras and found that miR-31 expression was specific to BMDCs. Interestingly, miR-31-binding sites were enriched in mRNAs downregulated in BMDCs that migrated into the CNS, and a subset was confirmed to be regulated by miR-31. Finally, miR-31 was elevated in DCs migrating through an in vitro blood-brain barrier. Our findings suggest miRNAs, including miR-31, may regulate entry of DCs into the CNS during EAE, and could potentially represent therapeutic targets for CNS autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Mariah L. Hoye
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | | | - Taylor M. Gordon
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
| | - Landon K. Oetjen
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Matthew D. Cain
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
| | - Robyn S. Klein
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Seth D. Crosby
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Brian S. Kim
- Department of MedicineWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
- Center for the Study of ItchWashington University School of MedicineSt LouisMOUSA
| | - Timothy M. Miller
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
| | - Gregory F. Wu
- Department of NeurologyWashington University School of MedicineSt LouisMOUSA
- The Hope Center for Neurological DisordersWashington University School of MedicineSt LouisMOUSA
- Department of Immunology & PathologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
104
|
Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Biomed Pharmacother 2018; 104:280-290. [DOI: 10.1016/j.biopha.2018.05.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
|
105
|
Let-7a promotes microglia M2 polarization by targeting CKIP-1 following ICH. Immunol Lett 2018; 202:1-7. [PMID: 30053453 DOI: 10.1016/j.imlet.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
Microglia polarization plays a crucial role in initiating brain inflammatory injury after intracerebral hemorrhage (ICH). Casein Kinase 2 Interacting Protein 1(CKIP-1) has been identified as a transcriptional molecular to manipulate microglia polarization. MiRNAs regulate gene expression and microglia polarization. In the experiment, CKIP-1 has been predicted as a target gene of let-7a. Let-7a, CKIP-1 and downstream proinflammatory mediator production of ICH mice were analyzed. In addition, inflammation, brain edema, and neurological functions in ICH mice were also assessed. Furthermore, let-7a mimic or inhibitors was administrated to study the potential role to manipulate microglia polarization after ICH. We reported that let-7a levels decreased but CKIP-1 levels increased after ICH. Using a dual-luciferase reporter assay, it was demonstrated that CKIP-1 was the target gene of let-7a. Let-7a overexpression decreased the protein levels of CKIP-1 and inhibition of let-7a increased the protein levels of CKIP-1. In addition, our results indicate that let-7a could inhibit expression of proinflammatory cytokines, reduce brain edema, and improve neurological functions in ICH mice. The study indicated that CKIP-1 was a target gene of let-7a and that let-7a regulated microglia M2 polarization by targeting CKIP-1 following ICH.
Collapse
|
106
|
Duan C, Liu Y, Li Y, Chen H, Liu X, Chen X, Yue J, Zhou X, Yang J. Sulfasalazine alters microglia phenotype by competing endogenous RNA effect of miR-136-5p and long non-coding RNA HOTAIR in cuprizone-induced demyelination. Biochem Pharmacol 2018; 155:110-123. [PMID: 29944870 DOI: 10.1016/j.bcp.2018.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023]
Abstract
Sulfasalazine (SF) promotes remyelination and improves the outcome of multiple sclerosis (MS) patients. However, the underlining mechanism remains elusive. Here, we examined whether SF blocks microglia switching to a pro-inflammatory M1-like phenotype through a competing endogenous RNA (ceRNA) effects in cuprizone-induced demyelination. The microglia reprogramming effects of SF in the mice model of cuprizone-induced demyelination was measured by histological, immunohistochemical and molecular biological methods. We also measured the effects of the condition media from SF-treated microglia on the differentiation of OLN-93 cells. Insights of the mechanism of ceRNAs of miR-136-5p and long non-coding RNA (lncRNA) HOTAIR were gained from bioinformatic analysis, luciferase assays and RNA binding protein immunoprecipitation. Microglia switched to a pro-inflammatory M1-like phenotype in cuprizone induced-demyelination. Conversely, SF inhibited the M1-like polarization with the increased remyelination which was attenuated by microglia depletion. SF inhibited production of M1-like factors TNF-α and INF-γ in microglia, and thereby promoted the differentiation of OLN-93 oligodendrocytes. SF down-regulated lncRNA HOTAIR but up-regulated miR-136-5p, and thus inactivated AKT2-NF-κB in cuprizone-treated microglia. Importantly, lncRNA HOTAIR overexpression reversed the increased miR-136-5p expression by SF and thereby attenuated the inhibition of AKT2-mediated NF-κB activation. Mimic of miR-136-5p inhibited cuprizone-induced activation of AKT2-NF-κB in the microglia. In summary, SF blocks microglia switching to a pro-inflammatory M1-like phenotype by ceRNA effect of miR-136-5p and lncRNA HOTAIR in cuprizone-induced demyelination. Our findings show the therapeutic potential of SF for human MS probably by targeting epigenetic regulation in microglia.
Collapse
Affiliation(s)
- Chenfan Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanzhuo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Honglei Chen
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoxiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University For Nationalities, Wuhan 430074, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan 430071, China
| | - Jing Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
107
|
Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional Regulation of Macrophages Polarization by MicroRNAs. Front Immunol 2018; 9:1175. [PMID: 29892301 PMCID: PMC5985397 DOI: 10.3389/fimmu.2018.01175] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/11/2018] [Indexed: 01/26/2023] Open
Abstract
Diversity and plasticity are the hallmarks of cells from the monocyte-macrophage lineage. Macrophages undergo classical M1 or alternative M2 activation in response to the microenvironment signals. Several transcription factors, such as peroxisome proliferator-activated receptors, signal transducers and activators of transcription, CCAAT-enhancer-binding proteins, interferon regulatory factors, Kruppel-like factors, GATA binding protein 3, nuclear transcription factor-κB, and c-MYC, were found to promote the expression of specific genes, which dictate the functional polarization of macrophages. Importantly, these transcription factors can be regulated by microRNAs (miRNAs), a group of small non-coding RNAs, which regulate gene expression through translation repression or mRNA degradation. Recent studies have also revealed that miRNAs control macrophage polarization by regulating transcription factors in response to the microenvironment signals. This review will summarize recent progress of miRNAs in the transcriptional regulation of macrophage polarization and provide the insights into the development of macrophage-centered diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Heng Li
- The Clinic Medical College, Guilin Medical University, Guilin, Guangxi, China
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi, China
| | - Meng-Qi Li
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, AB, Canada.,Key Laboratory of Molecular Targets and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guo-Jun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China.,Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, AB, Canada
| |
Collapse
|
108
|
Marques-Rocha JL, Garcia-Lacarte M, Samblas M, Bressan J, Martínez JA, Milagro FI. Regulatory roles of miR-155 and let-7b on the expression of inflammation-related genes in THP-1 cells: effects of fatty acids. J Physiol Biochem 2018; 74:579-589. [PMID: 29790117 DOI: 10.1007/s13105-018-0629-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The main aim of this investigation was to study the regulatory roles of let-7b and miR-155-3p on the expression of inflammation-associated genes in monocytes, macrophages, and lipopolysaccharide (LPS)-activated macrophages (AcM). A second goal was to analyze the potential modulatory roles of different fatty acids, including oleic, palmitic, eicosapentaenoic (EPA), and docosahexaenoic (DHA), on the expression of these miRNAs in the three cell types. This hypothesis was tested in human acute monocytic leukemia cells (THP-1), which were differentiated into macrophages with 2-O-tetradecanoylphorbol-13-acetate (TPA) and further activated with LPS for 24 h. Monocytes, macrophages, and AcM were transfected with a negative control, or mimics for miR-155-3p and miR-let-7b-5p. The expression of both miRNAs and some proinflammatory genes was analyzed by qRT-PCR. Interestingly, let-7b mimic reduced the expression of IL6 and TNF in monocytes, and SERPINE1 expression in LPS-activated macrophages. However, IL6, TNF, and SERPINE1 were upregulated in macrophages by let-7b mimic. IL6 expression was higher in the three types of cells after transfecting with miR-155-3p mimic. Similarly, expression of SERPINE1 was increased by miR-155-3p mimic in monocytes and macrophages. However, TLR4 was downregulated by miR-155-3p in monocytes and macrophages. Regarding the effects of the different fatty acids, oleic acid increased the expression of let-7b in macrophages and AcM and also increased the expression of miR-155 in monocytes when compared with DHA but not when compared with non-treated cells. Overall, these results suggest anti- and proinflammatory roles of let-7b and miR-155-3p in THP-1 cells, respectively, although these outcomes are strongly dependent on the cell type. Noteworthy, oleic acid might exert beneficial anti-inflammatory effects in immune cells (i.e., non-activated and LPS-activated macrophages) by upregulating the expression of let-7b.
Collapse
Affiliation(s)
- J L Marques-Rocha
- Department of Integrated Education of Health, Federal University of Espirito Santo, Vitória, Brazil
| | - M Garcia-Lacarte
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research, University of Navarra, c / Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - M Samblas
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research, University of Navarra, c / Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - J Bressan
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, Brazil
| | - J A Martínez
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research, University of Navarra, c / Irunlarrea 1, 31008, Pamplona, Navarra, Spain.,CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,IMDEA Food, Madrid, Spain
| | - F I Milagro
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research, University of Navarra, c / Irunlarrea 1, 31008, Pamplona, Navarra, Spain. .,CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
109
|
Aryal B, Suárez Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul Pharmacol 2018; 114:64-75. [PMID: 29551552 DOI: 10.1016/j.vph.2018.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
The endothelial lining can be viewed as the first line of defense against risk factors of vascular disease. Endothelial dysfunction is regarded as an initial event for atherogenesis since defects in vascular integrity and homeostasis are responsible for lipid infiltration and recruitment of monocytes into the vessel wall. Monocytes-turned-macrophages, which possess astounding inflammatory plasticity, perpetuate chronic inflammation and growth of atherosclerotic plaques and, are therefore central for the pathogenesis of atherosclerosis. Because endothelial cells and macrophages are key players during atherogenesis, it is crucial to understand the regulation of their functions in order to develop strategies to intervene disease progression. Interestingly, non-coding RNAs (ncRNAs), broad class of RNA molecules that do not code for proteins, are capable of reprogramming multiple cell functions and, thus, can be used as target agents. MicroRNAs are small ncRNAs whose roles in the regulation of vascular functions and development of atherosclerosis through post-transcriptional manipulation of gene expression have been widely explored. Recently, other ncRNAs including long noncoding RNAs (lncRNAs) have also emerged as potential regulators of these functions. However, given their poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in vascular biology. This review aims to provide a comprehensive perspective of ncRNA, mostly focusing in lncRNAs, mechanism of action and relevance in regulating lipid metabolism-independent endothelial and macrophages functions in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA..
| |
Collapse
|
110
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
111
|
Sun J, Huang Q, Li S, Meng F, Li X, Gong X. miR-330-5p/Tim-3 axis regulates macrophage M2 polarization and insulin resistance in diabetes mice. Mol Immunol 2018; 95:107-113. [PMID: 29433065 DOI: 10.1016/j.molimm.2018.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Obesity is associated with a state of low-grade inflammatory response in adipose tissue, and contributes to the development of type 2 diabetes. Immune cells such as macrophages can infiltrate adipose tissue and are responsible for the majority of inflammatory cytokine production. Therefore, adipose tissue promotes macrophage infiltration, resulting in local inflammation and insulin resistance. Tim-3 negatively regulates IFN-γ secretion and influences the ability to induce T cell tolerance in diabetes. MicroRNA contributes to the development of immunological tolerance and involves in macrophage polarization. However, the potential of Tim-3 to regulate macrophage polarization and the related microRNA has not been reported. In this experiment, 8-week-old C57BL/6 mice were fed a high-fat diet for 8 weeks. The adipose tissue macrophages were isolated, miR-330-5p and Tim-3 levels, and M1/M2 polarization were analyzed. In addition, insulin tolerance tests was detected. The results demonstrated that miR-330-5p levels increased but Tim-3 levels decreased, leading to M1 polarization and insulin tolerance in diabetes mice. In addition, inhibition of miR-330-5p enhanced Tim-3 levels, leading to M2 polarization and insulin tolerance attenuation in diabetes mice. Furthermore, we detected the inverse relationship between miR-330-5p and Tim-3. We found that Tim-3 mRNA contained conserved miR-330-5p binding sites in its 3'UTR, and miR-330-5p could directly regulate Tim-3 expression through these 3'UTR sites. Our study demonstrated that miR-330-5p served as a regulator of the M2 polarization and miR-330-5p/Tim-3 axis potentially down-regulated insulin resistance in diabetes, probably through enhancing the M2 polarization of macrophage.
Collapse
Affiliation(s)
- Jiling Sun
- Department of Nurse, The People's Hospital of Linyi, Linyi, Shandong 276000, China
| | - Qiujing Huang
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Shufa Li
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China.
| | - Fanqing Meng
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xunhua Li
- Department of Urology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xiaoyun Gong
- Department of Public Health, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| |
Collapse
|
112
|
MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 2018; 46:122-31. [PMID: 26954942 DOI: 10.1097/shk.0000000000000604] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monocytes and macrophages are important components of the immune system, specialized in either removing pathogens as part of innate immunity or contributing to adaptive immunity through antigen presentation. Essential to such functions is classical activation (M1) and alternative activation (M2) of macrophages. M1 polarization of macrophages is characterized by production of pro-inflammatory cytokines, antimicrobial and tumoricidal activity, whereas M2 polarization of macrophages is linked to immunosuppression, tumorigenesis, wound repair, and elimination of parasites. MiRNAs are small non-coding RNAs with the ability to regulate gene expression and network of cellular processes. A number of studies have determined miRNA expression profiles in M1 and M2 polarized human and murine macrophages using microarray and RT-qPCR arrays techniques. More specifically, miR-9, miR-127, miR-155, and miR-125b have been shown to promote M1 polarization while miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a, and miR-125a-5p induce M2 polarization in macrophages by targeting various transcription factors and adaptor proteins. Further, M1 and M2 phenotypes play distinctive roles in cell growth and progression of inflammation-related diseases such as sepsis, obesity, cancer, and multiple sclerosis. Hence, miRNAs that modulate macrophage polarization may have therapeutic potential in the treatment of inflammation-related diseases. This review highlights recent findings in miRNA expression profiles in polarized macrophages from murine and human sources, and summarizes how these miRNAs regulate macrophage polarization. Last, therapeutic potential of miRNAs in inflammation-related diseases through modulation of macrophage polarization is also discussed.
Collapse
|
113
|
Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, Castillo-Triviño T, Olascoaga J, Otaegui D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 2018. [PMID: 28651352 DOI: 10.1093/hmg/ddx243] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease.
Collapse
Affiliation(s)
- Leire Iparraguirre
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Maider Muñoz-Culla
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.,Spanish Network of Multiple Sclerosis, 08028, Barcelona, Spain
| | - Iñigo Prada-Luengo
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.,Spanish Network of Multiple Sclerosis, 08028, Barcelona, Spain.,Neurology Department, Donostia University Hospital, 20014, San Sebastián, Spain
| | - Javier Olascoaga
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.,Spanish Network of Multiple Sclerosis, 08028, Barcelona, Spain.,Neurology Department, Donostia University Hospital, 20014, San Sebastián, Spain
| | - David Otaegui
- Multiple Sclerosis Unit, Neurosciences Area, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.,Spanish Network of Multiple Sclerosis, 08028, Barcelona, Spain
| |
Collapse
|
114
|
Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, Zhang L, Cao P, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget 2018; 7:25683-97. [PMID: 27028860 PMCID: PMC5041936 DOI: 10.18632/oncotarget.8361] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Liver metastasis accounts for many of the cancer deaths in patients. Effective treatment for metastatic liver tumors is not available. Here, we provide evidence for the role of miR-18a in the induction of liver M1 (F4/80+interferon gamma (IFNγ)+IL-12+) macrophages. We found that miR-18a encapsulated in grapefruit-derived nanovector (GNV) mediated inhibition of liver metastasis that is dependent upon the induction of M1 (F4/80+IFNγ+IL-12+) macrophages; depletion of macrophages eliminated its anti-metastasis effect. Furthermore, the miR-18a mediated induction of macrophage IFNγ by targeting IRF2 is required for subsequent induction of IL-12. IL-12 then activates natural killer (NK) and natural killer T (NKT) cells for inhibition of liver metastasis of colon cancer. This conclusion is supported by the fact that knockout of IFNγ eliminates miR-18a mediated induction of IL-12, miR-18a treatment has an anti-metastatic effects in T cell deficient mice but there is no anti-metastatic effect on NK and NKT deficient mice. Co-delivery of miR-18a and siRNA IL-12 to macrophages did not result in activation of co-cultured NK and NKT cells. Taken together our results indicate that miR-18a can act as an inhibitor for liver metastasis through induction of M1 macrophages.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Program in Biostatistics, Bioinformatics and Systems Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abhilash Samykutty
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoying Zhuang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Pengxiao Cao
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Donald Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex VA Medical Center, Louisville, KY 40206, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
115
|
Luo D, Fu J. Identifying characteristic miRNAs-genes and risk pathways of multiple sclerosis based on bioinformatics analysis. Oncotarget 2018; 9:5287-5300. [PMID: 29435179 PMCID: PMC5797050 DOI: 10.18632/oncotarget.23866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disorder of the central nervous system. In MS, the genetic susceptibility is high and currently there is no effective treatment. MicroRNA, a small non-coding RNA, plays a vital role in immune responses. Aberrant or dysfunctional miRNAs may cause several diseases, including MS, thus miRNAs and miRNA related genes may be therapeutic weapons against MS. Here, we identified 21 miRNAs in peripheral blood mono-nuclear cells from over 600 persons, including healthy controls. By using informatics databases, 1637 susceptibility genes were evaluated and Cytoscape was used to integrate and visualize the relation between the miRNA identified and susceptibility genes. By using the cluster Profile package, a total of 10 risk pathways were discovered. Top pathways included: hsa05200 (pathway in cancer), hsa04010 (MAPK signaling pathway), and hsa04060 (cytokine-cytokine receptor interaction). By using the STRING database, a protein-protein interaction network was conducted to identify highly susceptibility genes. Moreover, the GSE21942 dataset was used to indicate the gene expression profiles and to correct prediction results, thereby identifying the most pivotal genes. The MiRSystem database provided information on both pivotal miRNAs and genes. In conclusion, miR-199a and miR-142-3p may be crucial for MS by targeting pivotal susceptibility genes, in particular KRAS and IL7R.
Collapse
Affiliation(s)
- Deling Luo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin 150086, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Nangang District, Harbin 150086, China
| |
Collapse
|
116
|
Abstract
Microglia serve as brain-resident myeloid cells that affect cerebral development, ischemia, neurodegeneration, and neuro-viral infection. MicroRNAs play a key role in central nervous system disease through post-transcriptional regulation. Indeed, evidence shows that microRNAs are one of the most important regulators mediating microglial activation, polarization, and autophagy, and subsequently affecting neuroinflammation and the outcome of central nervous system disease. In this review, we provide insight into the function of microRNAs, which may be an attractive strategy and influential treatment for microglia-related central nervous system dysfunction. Moreover, we comprehensively describe how microglia fight against central nervous system disease via multiple functional microRNAs.
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Tian-Long Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
117
|
Li D, Yang H, Ma J, Luo S, Chen S, Gu Q. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3. Hum Cell 2017; 31:106-115. [PMID: 29274035 PMCID: PMC5852205 DOI: 10.1007/s13577-017-0187-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Accumulating evidences suggest that neuroinflammation is a pathological hallmark of Parkinson’s disease (PD), a neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). MicroRNAs have been recently recognized as crucial regulators of inflammatory responses. Here, we found significant downregulation of microRNA-30e (miR-30e) in SNpc of MPTP-induced PD mice. Next, we employed miR-30e agomir to upregulate miR-30e expression in MPTP-treated mice. Our results showed that delivery of miR-30e agomir remarkably improved motor behavioral deficits and neuronal activity, and inhibited the loss of dopamine neurons. Moreover, the increased α-synuclein protein expression in SNpc of MPTP-PD mice was alleviated by the upregulation of miR-30e. Further, miR-30e agomir administration also attenuated the marked increase of inflammatory cytokines, such as TNF-α, COX-2, iNOS, and restored the decreased secretion of BDNF in SNpc. In addition, we demonstrated for the first time that miR-30e directly targeted to Nlrp3, thus suppressing Nlrp3 mRNA and protein expression. Finally, miR-30e upregulation significantly inhibited the activation of Nlrp3 inflammasome as evident from the decreased Nlrp3, Caspase-1 and ASC expressions and IL-18 and IL-1β secretions. Taken together, our study demonstrates that miR-30e ameliorates neuroinflammation in the MPTP model of PD by decreasing Nlrp3 inflammasome activity. These findings suggesting that miR30e may be a key inflammation-mediated molecule that could be a potential target for PD therapeutics.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Jianjun Ma
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Sha Luo
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Qi Gu
- Department of Neurology, Henan Provincial People Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| |
Collapse
|
118
|
Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Front Immunol 2017; 8:1520. [PMID: 29176977 PMCID: PMC5686097 DOI: 10.3389/fimmu.2017.01520] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.
Collapse
Affiliation(s)
- Stephanie A Amici
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Joycelyn Dong
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,McCormick School of Engineering, Division of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
119
|
Evaluation of Selected MicroRNAs Expression in Remission Phase of Multiple Sclerosis and Their Potential Link to Cognition, Depression, and Disability. J Mol Neurosci 2017; 63:275-282. [PMID: 29043654 DOI: 10.1007/s12031-017-0977-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Accumulating data suggests that miRNAs might play a major role in neuroinflammatory processes. Therefore, our study aimed to first estimate the levels of miR-155, miR-326, and miR-301a in serum of RR-MS patients in the remission phase and then compare the levels of the examined miRNAs at different times after relapse. In this study, 36 RR-MS patients in the remission phase took part. We analyzed two subgroups of RR-MS: one, 1 to 2 months after completing steroid treatment during relapse (post-acute; n = 13) and the other, over 2 years without any relapse (stable; n = 23). Moreover, we made correlations between these biochemical results and clinical parameters of cognitive impairment, depression, and disability. The obtained results presented downregulation of miR-155 and miR-301a (in 94% and 51% samples, respectively) and overexpression of miR-326 (in 72% samples) in RR-MS patients. Moreover, we observed a positive correlation between the relative expression of miRNAs and BDI (Beck Depression Index) for miR-326 (rho = 0.385459, p = 0.022210; Spearman's rank correlation) and miR-301a (rho = 0.435131, p = 0.008991; Spearman rank correlation). We also observed the differences in expression levels between the post-acute and stable phases of RR-MS. The expression levels of miR-301a and miR155 were higher in the post-acute vs. stable phase of remission (2.385 vs. 0.524 and 0.594 vs. 0.147; respectively). Our study, for the first time, presents miRNA expression differences in two stages of remission: post-acute and stable.
Collapse
|
120
|
Propofol Attenuates Inflammatory Response in LPS-Activated Microglia by Regulating the miR-155/SOCS1 Pathway. Inflammation 2017; 41:11-19. [DOI: 10.1007/s10753-017-0658-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
121
|
Owen DR, Narayan N, Wells L, Healy L, Smyth E, Rabiner EA, Galloway D, Williams JB, Lehr J, Mandhair H, Peferoen LA, Taylor PC, Amor S, Antel JP, Matthews PM, Moore CS. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J Cereb Blood Flow Metab 2017; 37:2679-2690. [PMID: 28530125 PMCID: PMC5536262 DOI: 10.1177/0271678x17710182] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18kDa Translocator Protein (TSPO) is the most commonly used tissue-specific marker of inflammation in positron emission tomography (PET) studies. It is expressed in myeloid cells such as microglia and macrophages, and in rodent myeloid cells expression increases with cellular activation. We assessed the effect of myeloid cell activation on TSPO gene expression in both primary human and rodent microglia and macrophages in vitro, and also measured TSPO radioligand binding with 3H-PBR28 in primary human macrophages. As observed previously, we found that TSPO expression increases (∼9-fold) in rodent-derived macrophages and microglia upon pro-inflammatory stimulation. However, TSPO expression does not increase with classical pro-inflammatory activation in primary human microglia (fold change 0.85 [95% CI 0.58-1.12], p = 0.47). In contrast, pro-inflammatory activation of human monocyte-derived macrophages is associated with a reduction of both TSPO gene expression (fold change 0.60 [95% CI 0.45-0.74], p = 0.02) and TSPO binding site abundance (fold change 0.61 [95% CI 0.49-0.73], p < 0.0001). These findings have important implications for understanding the biology of TSPO in activated macrophages and microglia in humans. They are also clinically relevant for the interpretation of PET studies using TSPO targeting radioligands, as they suggest changes in TSPO expression may reflect microglial and macrophage density rather than activation phenotype.
Collapse
Affiliation(s)
- David R Owen
- 1 Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, UK
| | - Nehal Narayan
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK
| | - Luke Healy
- 4 Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Erica Smyth
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK
| | - Eugenii A Rabiner
- 3 Imanova Centre for Imaging Science, Hammersmith Hospital, London, UK.,5 Centre for Neuroimaging Sciences, King's College, London, UK
| | - Dylan Galloway
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - John B Williams
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - Joshua Lehr
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| | - Harpreet Mandhair
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Laura An Peferoen
- 7 Pathology Department, VU Medical Centre, VU University of Amsterdam, The Netherlands
| | - Peter C Taylor
- 2 Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Sandra Amor
- 7 Pathology Department, VU Medical Centre, VU University of Amsterdam, The Netherlands.,8 Neuroimmunology Unit, Blizard Institute, Barts and the London School of medicine & Dentistry Queen Mary University of London, UK
| | - Jack P Antel
- 4 Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Paul M Matthews
- 1 Division of Brain Sciences, Department of Medicine Hammersmith Hospital, Imperial College London, London, UK.,9 UK Dementia Research Institute, Imperial College London, London, UK
| | - Craig S Moore
- 6 Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland
| |
Collapse
|
122
|
Gerrard B, Singh V, Babenko O, Gauthier I, Wee Yong V, Kovalchuk I, Luczak A, Metz GAS. Chronic mild stress exacerbates severity of experimental autoimmune encephalomyelitis in association with altered non-coding RNA and metabolic biomarkers. Neuroscience 2017; 359:299-307. [PMID: 28739526 DOI: 10.1016/j.neuroscience.2017.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/25/2017] [Accepted: 07/13/2017] [Indexed: 01/17/2023]
Abstract
The causal factors determining the onset and severity of multiple sclerosis (MS) are not well understood. Here, we investigated the influence of chronic stress on clinical symptoms, metabolic and epigenetic manifestations of experimental autoimmune encephalomyelitis (EAE), a common animal model of MS. Lewis rats were immunized for monophasic EAE with MBP69-88 and were exposed to chronic stress for 37days starting 7days prior to immunization. The exposure to stress accelerated and exacerbated the clinical symptoms of EAE. Both stress and EAE also disrupted metabolic status as indicated by trace elemental analysis in body hair. Stress particularly exacerbated chlorine deposition in EAE animals. Moreover, deep sequencing revealed a considerable impact of stress on microRNA expression in EAE. EAE by itself upregulated microRNA expression in lumbar spinal cord, including miR-21, miR-142-3p, miR-142-5p, miR-146a, and miR-155. Stress in EAE further up-regulated miR-16, miR-146a and miR-155 levels. The latter two microRNAs are recognized biomarkers of human MS. Thus, stress may synergistically exacerbate severity of EAE by altering epigenetic regulatory pathways. The findings suggest that stress may represent a significant risk factor for symptomatic deterioration in MS. Stress-related metabolic and microRNA signatures support their value as biomarkers for predicting the risk and severity of MS.
Collapse
Affiliation(s)
- Brietta Gerrard
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Vaibhav Singh
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Olena Babenko
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | - Isabelle Gauthier
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences and Oncology, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4 Canada
| | - Artur Luczak
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
123
|
Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, Ji Z, Geng X, Ji X, Du H, Leak RK, Hu X. Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Front Aging Neurosci 2017; 9:233. [PMID: 28785217 PMCID: PMC5519528 DOI: 10.3389/fnagi.2017.00233] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/05/2017] [Indexed: 01/11/2023] Open
Abstract
Stroke is the most common type of cerebrovascular disease and is a leading cause of disability and death. Ischemic stroke accounts for approximately 80% of all strokes. The remaining 20% of strokes are hemorrhagic in nature. To date, therapeutic options for acute ischemic stroke are very limited. Recent research suggests that shifting microglial phenotype from the pro-inflammatory M1 state toward the anti-inflammatory and tissue-reparative M2 phenotype may be an effective therapeutic strategy for ischemic stroke. The dietary phytochemical curcumin has shown promise in experimental stroke models, but its effects on microglial polarization and long-term recovery after stroke are unknown. Here we address these gaps by subjecting mice to distal middle cerebral artery occlusion (dMCAO) and administering curcumin intraperitoneally (150 mg/kg) immediately after ischemia and 24 h later. Histological studies revealed that curcumin post-treatment significantly reduced cerebral ischemic damage 3 days after dMCAO. Sensorimotor functions—as measured by the adhesive removal test and modified Garcia scores—were superior in curcumin-treated mice at 3, 5, 7 and 10 days after stroke. RT-PCR measurements revealed an elevation of M2 microglia/macrophage phenotypic markers and a reduction in M1 markers in curcumin-treated brains 3 days after dMCAO. Immunofluorescent staining further showed that curcumin treatment significantly increased the number of CD206+Iba1+ M2 microglia/macrophages and reduced the number of CD16+Iba1+ M1 cells 10 days after stroke. In vitro studies using the BV2 microglial cell line confirmed that curcumin inhibited lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-induced M1 polarization. Curcumin treatment concentration-dependently reduced the expression of pro-inflammatory cytokines, including TNF-α, IL-6 and IL-12p70, in the absence of any toxic effect on microglial cell survival. In conclusion, we demonstrate that curcumin has a profound regulatory effect on microglial responses, promoting M2 microglial polarization and inhibiting microglia-mediated pro-inflammatory responses. Curcumin post-treatment reduces ischemic stroke-induced brain damage and improves functional outcomes, providing new evidence that curcumin might be a promising therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Zongjian Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China.,Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Yuanyuan Ran
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China.,Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Shuo Huang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China.,Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Shaohong Wen
- Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Wenxiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Xiangrong Liu
- Institute of Hypoxia Medicine, Xuanwu Hospital, Xuan Wu Hospital of the Capital Medical UniversityBeijing, China
| | - Zhili Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Xunming Ji
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China.,Institute of Hypoxia Medicine, Xuanwu Hospital, Xuan Wu Hospital of the Capital Medical UniversityBeijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne UniversityPittsburgh, PA, United States
| | - Xiaoming Hu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China.,Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| |
Collapse
|
124
|
Jagot F, Davoust N. [MiRNAs: new actors in the physiopathology of multiple sclerosis]. Med Sci (Paris) 2017; 33:620-628. [PMID: 28990564 DOI: 10.1051/medsci/20173306019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an auto-immune demyelinating disorder characterized by a chronic neuro-inflammatory process associated with an infiltration of the central nervous system (CNS) by autoreactive lymphocytes. The etiology of the disease remains unclear but the recent discovery of a dysregulated miRNA network in both cells and extracellular fluids of MS patients has brought new insights on the pathophysiological mechanisms involved in this disorder. miRNAs can induce a T cell polarization towards a pathological Th17 or Th1 phenotype and a deleterious activation of microglia, the CNS-resident macrophages. We provide here a review of the most recent data regarding miRNA dysregulation and pathophysiological roles in MS patients and in the animal model of MS, EAE (experimental autoimmune encephalomyelitis). Moreover, we discuss the putative clinical value of miRNAs as a novel biomarker and diagnostic tool for MS.
Collapse
Affiliation(s)
- Ferdinand Jagot
- Département de biologie, École Normale Supérieure de Lyon, France
| | - Nathalie Davoust
- Département de biologie, École Normale Supérieure de Lyon, France - Laboratoire de biologie et de modélisation de la cellule, UMR5239/École Normale Supérieure de Lyon, UMS 344 Biosciences Lyon Gerland, université de Lyon, France
| |
Collapse
|
125
|
Selmaj I, Cichalewska M, Namiecinska M, Galazka G, Horzelski W, Selmaj KW, Mycko MP. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann Neurol 2017; 81:703-717. [PMID: 28411393 DOI: 10.1002/ana.24931] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Accumulating evidence supports a role for exosomes in immune regulation. In this study, we investigated the total circulating exosome transcriptome in relapsing-remitting multiple sclerosis (RRMS) patients and healthy controls (HC). METHODS Next generation sequencing (NGS) was used to define the global RNA profile of serum exosomes in 19 RRMS patients (9 in relapse, 10 in remission) and 10 HC. We analyzed 5 million reads and >50,000 transcripts per sample, including a detailed analysis of microRNAs (miRNAs) differentially expressed in RRMS. The discovery set data were validated by quantification using digital quantitative polymerase chain reaction with an independent cohort of 63 RRMS patients (33 in relapse, 30 in remission) and 32 HC. RESULTS Exosomal RNA NGS revealed that of 15 different classes of transcripts detected, 4 circulating exosomal sequences within the miRNA category were differentially expressed in RRMS patients versus HC: hsa-miR-122-5p, hsa-miR-196b-5p, hsa-miR-301a-3p, and hsa-miR-532-5p. Serum exosomal expression of these miRNAs was significantly decreased during relapse in RRMS. These miRNAs were also decreased in patients with a gadolinium enhancement on brain magnetic resonance imaging. In vitro secretion of these miRNAs by peripheral blood mononuclear cells was also significantly impaired in RRMS. INTERPRETATION These data show that circulating exosomes have a distinct RNA profile in RRMS. Because putative targets for these miRNAs include the signal transducer and activator of transcription 3 and the cell cycle regulator aryl hydrocarbon receptor, the data suggest a disturbed cell-to-cell communication in this disease. Thus, exosomal miRNAs might represent a useful biomarker to distinguish multiple sclerosis relapse. Ann Neurol 2017;81:703-717.
Collapse
Affiliation(s)
- Igor Selmaj
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| | - Maria Cichalewska
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| | - Magdalena Namiecinska
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| | - Grazyna Galazka
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| | - Wojciech Horzelski
- Applied Computer Science, Department of Mathematics and Informatics, University of Lodz, Lodz, Poland
| | - Krzysztof W Selmaj
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| | - Marcin P Mycko
- Laboratory of Neuroimmunology, Department of Neurology, University of Lodz, Lodz, Poland
| |
Collapse
|
126
|
Fang X, Sun D, Wang Z, Yu Z, Liu W, Pu Y, Wang D, Huang A, Liu M, Xiang Z, He C, Cao L. MiR-30a Positively Regulates the Inflammatory Response of Microglia in Experimental Autoimmune Encephalomyelitis. Neurosci Bull 2017; 33:603-615. [PMID: 28717866 DOI: 10.1007/s12264-017-0153-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022] Open
Abstract
Multiple sclerosis (MS) is a classical inflammatory demyelinating disease of the central nervous system (CNS). Microglia are the main resident immune cells in the CNS and are closely associated with the pathogenesis of MS. In the present study, we found that miR-30a was highly expressed in jellyfish-like microglia in chronic active lesions of MS patients, as well as in the microglia of mice with experimental autoimmune encephalomyelitis (EAE) at the chronic phase. In vitro, the conditioned supernatant of mouse microglia overexpressing miR-30a promoted the apoptosis of oligodendrocyte precursor cells (OPCs), and inhibited OPC differentiation. In vivo, overexpressing miR-30a in transplanted microglia exacerbated the progression of EAE. Overexpression and knock-down experiments in primary cultured mouse microglia showed that miR-30a increased the expression of IL-1β and iNOS, which are pro-inflammatory, while inhibiting the expression of Ym-1 and CD206. Mechanistically, miR-30a inhibited the expression of Ppargc1b, which is the co-activator of peroxisome proliferator-activated receptor gamma, resulting in pro-inflammatory effects. Our work shows that miR-30a is an important regulator of the inflammatory response in microglia, and may be a promising therapeutic target for inflammatory diseases like MS in the CNS.
Collapse
Affiliation(s)
- Xue Fang
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Dingya Sun
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Zhihong Wang
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Zhongwang Yu
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Weili Liu
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Yingyan Pu
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Dan Wang
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Aijun Huang
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Mingdong Liu
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Zhenghua Xiang
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China
| | - Cheng He
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China.
| | - Li Cao
- Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Institute of Neuroscience, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
127
|
miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. J Neurosci 2017; 36:8516-32. [PMID: 27511021 DOI: 10.1523/jneurosci.0735-16.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. SIGNIFICANCE STATEMENT Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies.
Collapse
|
128
|
Saika R, Sakuma H, Noto D, Yamaguchi S, Yamamura T, Miyake S. MicroRNA-101a regulates microglial morphology and inflammation. J Neuroinflammation 2017; 14:109. [PMID: 28558818 PMCID: PMC5450088 DOI: 10.1186/s12974-017-0884-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglia, as well as other tissue-resident macrophages, arise from yolk sac progenitors. Thus, it is likely that the central nervous system environment is critical for the acquisition of a distinct microglial phenotype. Several microRNAs that are enriched in the brain play crucial roles in brain development and may also play a role in the differentiation of microglia. METHODS To track the differentiation of hematopoietic cells into microglia, lineage-negative bone marrow cells were co-cultured with astrocytes in the absence or presence of microRNAs or their inhibitors. Microglia-like cells were identified as small, round cells that were immunopositive for CD11b, Iba1, CX3CR1, and triggering receptor expressed on myeloid cells (TREM)-2. RESULTS Five microRNAs (miR-101a, miR-139-3p, miR-214*, miR-218, and miR-1186) were identified as modifiers of the differentiation of bone marrow-derived microglia-like cells. Among them, miR-101a facilitated the differentiation of bone marrow cells into microglia-like cells most potently. Small, round cells expressing CD11b, Iba1, CX3CR1, and TREM-2 were predominant in cells treated by miR-101a. miR-101a was abundantly expressed in non-microglial brain cells. Transfection of miR-101a into microglia significantly increased the production of IL-6 in response to LPS. Finally, miR-101a downregulated the expression of MAPK phosphatase-1. CONCLUSIONS miR-101a, which is enriched in the brain, promotes the differentiation of bone marrow cells into microglia-like cells.
Collapse
Affiliation(s)
- Reiko Saika
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan.,Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, Japan.,Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan
| | - Hiroshi Sakuma
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan.,Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan.,Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongou, Bunkyo, Tokyo, Japan
| | - Shuhei Yamaguchi
- Department of Neurology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo, Japan. .,Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongou, Bunkyo, Tokyo, Japan.
| |
Collapse
|
129
|
Galloway DA, Williams JB, Moore CS. Effects of fumarates on inflammatory human astrocyte responses and oligodendrocyte differentiation. Ann Clin Transl Neurol 2017; 4:381-391. [PMID: 28589165 PMCID: PMC5454401 DOI: 10.1002/acn3.414] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Dimethyl fumarate (DMF) is a fumaric acid ester approved for the treatment of relapsing‐remitting multiple sclerosis (RRMS). In both the brain and periphery, DMF and its metabolite monomethyl fumarate (MMF) exert anti‐inflammatory and antioxidant effects. Our aim was to compare the effects of DMF and MMF on inflammatory and antioxidant pathways within astrocytes, a critical supporting glial cell in the central nervous system (CNS). Direct effects of fumarates on neural progenitor cell (NPC) differentiation toward the oligodendrocyte lineage were also assessed. Methods Primary astrocyte cultures were derived from both murine and human brains. Following pretreatment with MMF, DMF, or vehicle, astrocytes were stimulated with IL‐1β for 24 h; gene and microRNA expression were measured by qPCR. Cytokine production and reactive oxygen species (ROS) generation were also measured. NPCs were differentiated into the oligodendrocyte lineage in the presence of fumarates and immunostained using early oligodendrocyte markers. Results In both murine and human astrocytes, DMF, but not MMF, significantly reduced secretion of IL‐6, CXCL10, and CCL2; neither fumarate promoted a robust increase in antioxidant gene expression, although both MMF and DMF prevented intracellular ROS production. Pretreatment with fumarates reduced microRNAs ‐146a and ‐155 upon stimulation. In NPC cultures, DMF increased the number of O4+ and NG2+ cells. Interpretation These results suggest that DMF, and to a lesser extent MMF, mediates the anti‐inflammatory effects within astrocytes. This is supported by recent observations that in the inflamed CNS, DMF may be the active compound mediating the anti‐inflammatory effects independent from altered antioxidant gene expression.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - John B Williams
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| | - Craig S Moore
- Division of Bio Medical Sciences Faculty of Medicine Memorial University of Newfoundland St. John's Newfoundland Canada
| |
Collapse
|
130
|
Paeonol protects against TNF-α-induced proliferation and cytokine release of rheumatoid arthritis fibroblast-like synoviocytes by upregulating FOXO3 through inhibition of miR-155 expression. Inflamm Res 2017; 66:603-610. [DOI: 10.1007/s00011-017-1041-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/26/2022] Open
|
131
|
Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR, Faden AI. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 2017; 14:47. [PMID: 28292310 PMCID: PMC5351060 DOI: 10.1186/s12974-017-0819-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/18/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Local and systemic inflammatory responses are initiated early after traumatic brain injury (TBI), and may play a key role in the secondary injury processes resulting in neuronal loss and neurological deficits. However, the mechanisms responsible for the rapid expansion of neuroinflammation and its long-term progression have yet to be elucidated. Here, we investigate the role of microparticles (MP), a member of the extracellular vesicle family, in the exchange of pro-inflammatory molecules between brain immune cells, as well as their transfer to the systemic circulation, as key pathways of inflammation propagation following brain trauma. METHODS Adult male C57BL/6 mice were subjected to controlled cortical impact TBI for 24 h, and enriched MP were isolated in the blood, while neuroinflammation was assessed in the TBI cortex. MP were characterized by flow cytometry, and MP content was assayed using gene and protein markers for pro-inflammatory mediators. Enriched MP co-cultured with BV2 or primary microglial cells were used for immune propagation assays. Enriched MP from BV2 microglia or CD11b-positive microglia from the TBI brain were stereotactically injected into the cortex of uninjured mice to evaluate MP-related seeding of neuroinflammation in vivo. RESULTS As the neuroinflammatory response is developing in the brain after TBI, microglial-derived MP are released into the circulation. Circulating enriched MP from the TBI animals can activate microglia in vitro. Lipopolysaccharide stimulation increases MP release from microglia in vitro and enhances their content of pro-inflammatory mediators, interleukin-1β and microRNA-155. Enriched MP from activated microglia in vitro or CD11b-isolated microglia/macrophage from the TBI brain ex vivo are sufficient to initiate neuroinflammation following their injection into the cortex of naïve (uninjured) animals. CONCLUSIONS These data provide further insights into the mechanisms underlying the development and dissemination of neuroinflammation after TBI. MP loaded with pro-inflammatory molecules initially released by microglia following trauma can activate additional microglia that may contribute to progressive neuroinflammatory response in the injured brain, as well as stimulate systemic immune responses. Due to their ability to independently initiate inflammatory responses, MP derived from activated microglia may provide a potential therapeutic target for other neurological disorders in which neuroinflammation may be a contributing factor.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Bogdan A Stoica
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - David J Loane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ming Yang
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Asit Kumar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA
| | - Stephen R Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Health Sciences Facility II (HSFII), #S247 20 Penn Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
132
|
Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y. A comparative study of the characterization of miR-155 in knockout mice. PLoS One 2017; 12:e0173487. [PMID: 28278287 PMCID: PMC5344489 DOI: 10.1371/journal.pone.0173487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models.
Collapse
Affiliation(s)
- Dong Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yongchun Cui
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bin Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Xiaokang Luo
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bo Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yue Tang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
- * E-mail:
| |
Collapse
|
133
|
Obora K, Onodera Y, Takehara T, Frampton J, Hasei J, Ozaki T, Teramura T, Fukuda K. Inflammation-induced miRNA-155 inhibits self-renewal of neural stem cells via suppression of CCAAT/enhancer binding protein β (C/EBPβ) expression. Sci Rep 2017; 7:43604. [PMID: 28240738 PMCID: PMC5378916 DOI: 10.1038/srep43604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
Intracerebral inflammation resulting from injury or disease is implicated in disruption of neural regeneration and may lead to irreversible neuronal dysfunction. Analysis of inflammation-related microRNA profiles in various tissues, including the brain, has identified miR-155 among the most prominent miRNAs linked to inflammation. Here, we hypothesize that miR-155 mediates inflammation-induced suppression of neural stem cell (NSC) self-renewal. Using primary mouse NSCs and human NSCs derived from induced pluripotent stem (iPS) cells, we demonstrate that three important genes involved in NSC self-renewal (Msi1, Hes1 and Bmi1) are suppressed by miR-155. We also demonstrate that suppression of self-renewal genes is mediated by the common transcription factor C/EBPβ, which is a direct target of miR-155. Our study describes an axis linking inflammation and miR-155 to expression of genes related to NSC self-renewal, suggesting that regulation of miR-155 may hold potential as a novel therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Kayoko Obora
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Toshiyuki Takehara
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - John Frampton
- School of Biomedical Engineering, Dalhousie University. Halifax, Nova Scotia, Canada
| | - Joe Hasei
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kanji Fukuda
- Department of Rehabilitation Medicine, Kindai University Faculty of Medicine, Osaka, Japan.,Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
134
|
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017; 11:151-167. [PMID: 28125293 DOI: 10.2217/bmm-2016-0242] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the result of progressive deterioration of neurons, ultimately leading to disabilities. There is no effective cure for NDDs at present; ongoing therapies are mainly aimed at treating the most bothersome symptoms. Since early treatment is crucial in NDDs, there is an urgent need for specific and sensitive biomarkers that can aid in early diagnosis of these disorders. Recently, altered expression of miRNAs has been implicated in several neurological disorders, including NDDs. miRNA expression has been extensively investigated in the cells, tissues and body fluids of patients with different types of NDDs. The aim of this review is to provide a comprehensive overview of miRNAs as biomarkers and therapeutic targets for NDDs.
Collapse
Affiliation(s)
- Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh M Vasu
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431 3192, Japan
| | - Suresh A Poovathinal
- Department of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
135
|
Dickey LL, Hanley TM, Huffaker TB, Ramstead AG, O'Connell RM, Lane TE. MicroRNA 155 and viral-induced neuroinflammation. J Neuroimmunol 2017; 308:17-24. [PMID: 28139244 DOI: 10.1016/j.jneuroim.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) regulation of gene expression is becoming an increasingly recognized mechanism by which host immune responses are governed following microbial infection. miRNAs are short, non-coding RNAs that repress translation of target genes, and have been implicated in a number of activities that modulate host immune responses, including the regulation of immune cell proliferation, survival, expansion, differentiation, migration, polarization, and effector function. This review highlights several examples in which mammalian-encoded miR-155 influences immune responses following viral infection of the CNS.
Collapse
Affiliation(s)
- Laura L Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Timothy M Hanley
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas B Huffaker
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Andrew G Ramstead
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Ryan M O'Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| | - Thomas E Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, United States.
| |
Collapse
|
136
|
MicroRNA-155 contributes to enhanced resistance to apoptosis in monocytes from patients with rheumatoid arthritis. J Autoimmun 2017; 79:53-62. [PMID: 28118944 PMCID: PMC5397583 DOI: 10.1016/j.jaut.2017.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/04/2023]
Abstract
Monocytes and macrophages are key mediators of inflammation in rheumatoid arthritis (RA). Their persistence at the inflammatory site is likely to contribute to immunopathology. We sought to characterise one mechanism by which persistence may be achieved: resistance to apoptosis and the role of mir-155 in this process. CD14+ monocytes from peripheral blood (PBM) and synovial fluid (SFM) of RA patients were found to be resistant to spontaneous apoptosis relative to PBM from healthy control (HC) individuals. RA SFM were also resistant to anti-Fas-mediated apoptosis and displayed a gene expression profile distinct from HC and RA PBM populations. Gene expression profiling analysis revealed that the differentially expressed genes in RA SFM vs. PBM were enriched for apoptosis-related genes and showed increased expression of the mir-155 precursor BIC. Following identification of potential mir-155 target transcripts by bioinformatic methods, we show increased levels of mature mir-155 expression in RA PBM and SFM vs. HC PBM and a corresponding decrease in SFM of two predicted mir-155-target mRNAs, apoptosis mediators CASP10 and APAF1. Using miR mimics, we demonstrate that mir-155 over-expression in healthy CD14+ cells conferred resistance to spontaneous apoptosis, but not Fas-induced death in these cells, and resulted in increased production of cytokines and chemokines. Collectively our data indicate that CD14+ cells from patients with RA show enhanced resistance to apoptosis, and suggest that an increase in mir-155 may partially contribute to this phenotype. CD14+ cells from the inflamed RA joint are strongly resistant to death. Microarrays show differences in apoptosis genes in CD14+ cells from the RA joint. Mir-155 is increased and its targets decreased in RA joint CD14+ cells. Overexpression of mir-155 increases apoptosis resistance of healthy CD14+ cells.
Collapse
|
137
|
miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:111-131. [DOI: 10.1007/978-981-10-5987-2_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
138
|
MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage. Immunol Lett 2016; 182:1-11. [PMID: 28025043 DOI: 10.1016/j.imlet.2016.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/22/2022]
Abstract
Microglia mediated inflammation contributes to intracerebral hemorrhage (ICH) induced secondary injury. Activated microglia has dual functions as pro-inflammatory (M1) and anti-inflammatory (M2) factors in brain injury and repair. MiR-124 is a potent anti-inflammatory agent which affects microglia after brain injury. However, the potential of modulating the M1/M2 polarization of microglia after ICH has not been reported. In this experiment, we detected the effect of miR-124 on the M1/M2 polarization state. In addition, the ability miR-124 to subsequently impacted neurological deficit and cerebral water content of ICH mice were studied. Furthermore, the relationship between miR-124 and C/EBP-α target was detected. We found that miR-124 significantly increased in M2-polarized microglia. Transduction of miR-124 mimics decreased proinflammatory cytokine levels. A coculture model of microglia and neuron indicated that M2-polarized microglia protected neuron damage. Furthermore, miR-124 banded to the 3-untranslated region of C/EBP-α and downregulated its protein levels. In vivo, infusion of miR-124 decreased brain levels of C/EBP-α and significantly reduced brain injury in ICH mice. Thus, miR-124 ameliorated ICH-induced inflammatory injury by modulating microglia polarization toward the M2 phenotype via C/EBP-α. MiR-124 regulatory mechanisms also might represent new therapeutic strategy in ICH.
Collapse
|
139
|
Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 2016; 54:8071-8089. [PMID: 27889895 PMCID: PMC5684251 DOI: 10.1007/s12035-016-0297-1] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Inflammatory reactions could be both beneficial and detrimental to the brain, depending on strengths of their activation in various stages of neurodegeneration. Mild activation of microglia and astrocytes usually reveals neuroprotective effects and ameliorates early symptoms of neurodegeneration; for instance, released cytokines help maintain synaptic plasticity and modulate neuronal excitability, and stimulated toll-like receptors (TLRs) promote neurogenesis and neurite outgrowth. However, strong activation of glial cells gives rise to cytokine overexpression/dysregulation, which accelerates neurodegeneration. Altered mutual regulation of p53 protein, a major tumor suppressor, and NF-κB, the major regulator of inflammation, seems to be crucial for the shift from beneficial to detrimental effects of neuroinflammatory reactions in neurodegeneration. Therapeutic intervention in the p53-NF-κB axis and modulation of TLR activity are future challenges to cope with neurodegeneration.
Collapse
Affiliation(s)
- Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Breno Satler Diniz
- Department of Psychiatry and Behavioral Sciences, and The Consortium on Aging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
140
|
Dickey LL, Worne CL, Glover JL, Lane TE, O’Connell RM. MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. J Neuroinflammation 2016; 13:240. [PMID: 27604627 PMCID: PMC5015201 DOI: 10.1186/s12974-016-0699-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/20/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced neuroinflammation. METHODS Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155 (+/+) wildtype (WT) mice or miR-155 (-/-) mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the impact of miR-155 on trafficking, T cells from infected WT or miR-155 (-/-) mice were adoptively transferred into RAG1 (-/-) mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was determined using the Mantel-Cox log-rank test or Student's T tests. RESULTS Compared to WT mice, JHMV-infected miR-155 (-/-) mice developed exacerbated disease concomitant with increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with increased susceptibility to disease, miR-155 (-/-) mice had diminished CD8(+) T cell responses in terms of numbers, cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155 (-/-) , virus-specific CD4(+) T cells; however, expression of the chemokine homing receptors analyzed on CD4(+) cells was not affected. Except for very early during infection, there were not significant differences in macrophage infiltration into the CNS between WT and miR-155 (-/-) JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT and miR-155 (-/-) JHMV-infected mice. CONCLUSIONS These findings support a novel role for miR-155 in host defense in a model of viral-induced encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or host-damaging role during neuroinflammation depending on the disease trigger.
Collapse
Affiliation(s)
- Laura L. Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen L. Worne
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jessica L. Glover
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
141
|
Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2016; 6:24599-610. [PMID: 26337206 PMCID: PMC4694781 DOI: 10.18632/oncotarget.5248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.
Collapse
|
142
|
Aslani S, Jafari N, Javan MR, Karami J, Ahmadi M, Jafarnejad M. Epigenetic Modifications and Therapy in Multiple Sclerosis. Neuromolecular Med 2016; 19:11-23. [PMID: 27382982 DOI: 10.1007/s12017-016-8422-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
Abstract
Breakthroughs in genetic studies, like whole human genome sequencing and genome-wide association studies (GWAS), have richened our knowledge of etiopathology of autoimmune diseases (AID) through discovery of genetic patterns. Nonetheless, the precise etiology of autoimmune diseases remains largely unknown. The lack of complete concordance of autoimmune disease in identical twins suggests that non-genetic factors also play a major role in determining disease susceptibility. Although there is no certain definition, epigenetics has been known as heritable alterations in gene function without changes in the nucleotide sequence. DNA methylation, histone modifications, and microRNA-associated gene expression suppression are the central mechanisms for epigenetic regulations. Multiple sclerosis (MS) is a disorder of the central nervous system (CNS), characterized by both inflammatory and neurodegenerative features. Although studies on epigenetic alterations in MS only began in the past decade, a mounting number of surveys suggest that epigenetic changes may be involved in the initiation and development of MS, probably through bridging the effects of environmental risk factors to genetics. Arming with clear understanding of epigenetic dysregulations underpins development of epigenetic therapies. Identifying agents inhibiting the enzymes controlling epigenetic modifications, particularly DNA methyltransferases and histone deacetylases, will be promising therapeutic tool toward MS. In the article underway, it is aimed to go through the recent progresses, attempting to disclose how epigenetics associates with the pathogenesis of MS and how can be used as therapeutic approach.
Collapse
Affiliation(s)
- Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Jafari
- Markey Cancer Center, University of Kentucky, 741 South Limestone St. Biomedical Biological Research Building (BBSRB), 378D, Lexington, KY, 40506, USA.
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Jafarnejad
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| |
Collapse
|
143
|
Christmann RB, Wooten A, Sampaio-Barros P, Borges CL, Carvalho CRR, Kairalla RA, Feghali-Bostwick C, Ziemek J, Mei Y, Goummih S, Tan J, Alvarez D, Kass DJ, Rojas M, de Mattos TL, Parra E, Stifano G, Capelozzi VL, Simms RW, Lafyatis R. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther 2016; 18:155. [PMID: 27377409 PMCID: PMC4932708 DOI: 10.1186/s13075-016-1054-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND MicroRNA (miRNA) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from patients with SSc-ILD. A chronic lung fibrotic murine model was used. METHODS RNA was isolated from lung tissue of 12 patients with SSc-ILD and 5 controls. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and peripheral blood mononuclear cells (PBMC) were isolated from healthy controls and patients with SSc-ILD. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DNA Intelligent Analysis (DIANA)-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. RESULTS Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q < 0.25). DIANA-miRPath revealed 57 Kyoto Encyclopedia of Genes and Genomes pathways related to the most dysregulated miRNA. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts only mildly expressed miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. CONCLUSIONS miRNA are dysregulated in the lungs and PBMC of patients with SSc-ILD. Based on mRNA-miRNA interaction analysis and pathway tools, miRNA may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD.
Collapse
Affiliation(s)
- Romy B Christmann
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA.
| | - Alicia Wooten
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Percival Sampaio-Barros
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Carlos R R Carvalho
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ronaldo A Kairalla
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Jessica Ziemek
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Yu Mei
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Salma Goummih
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Jiangning Tan
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Diana Alvarez
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Daniel J Kass
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | - Mauricio Rojas
- University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| | | | - Edwin Parra
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giuseppina Stifano
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Vera L Capelozzi
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert W Simms
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA
| | - Robert Lafyatis
- Boston University School of Medicine, E501, Arthritis Center, Medical Campus, 72 East Concord Street, Boston, MA, 02118-2526, USA.,University of Pittsburgh, Division of Pulmonary, Allergy, and Critical Care Medicine, and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Pittsburgh, PA, USA
| |
Collapse
|
144
|
microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J Neurosci 2016; 36:2383-90. [PMID: 26911687 DOI: 10.1523/jneurosci.3900-15.2016] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.
Collapse
|
145
|
Galloway DA, Moore CS. miRNAs As Emerging Regulators of Oligodendrocyte Development and Differentiation. Front Cell Dev Biol 2016; 4:59. [PMID: 27379236 PMCID: PMC4911355 DOI: 10.3389/fcell.2016.00059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic demyelination is a hallmark of neurological disorders such as multiple sclerosis (MS) and several leukodystrophies. In the central nervous system (CNS), remyelination is a regenerative process that is often inadequate during these pathological states. In the MS context, in situ evidence suggests that remyelination is mediated by populations of oligodendrocyte progenitor cells (OPCs) that proliferate, migrate, and differentiate into mature, myelin-producing oligodendrocytes at sites of demyelinated lesions. The molecular programming of OPCs into mature oligodendrocytes is governed by a myriad of complex intracellular signaling pathways that modulate this process. Recent research has demonstrated the importance of specific and short non-coding RNAs, known as microRNAs (miRNAs), in regulating OPC differentiation and remyelination. Fortunately, it may be possible to take advantage of numerous developmental studies (both human and rodent) that have previously characterized miRNA expression profiles from the early neural progenitor cell to the late myelin-producing oligodendrocyte. Here we review much of the work to date and discuss the impact of miRNAs on OPC and oligodendrocyte biology. Additionally, we consider the potential for miRNA-mediated therapy in the context of remyelination and brain repair.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
146
|
Natalizumab Therapy Modulates miR-155, miR-26a and Proinflammatory Cytokine Expression in MS Patients. PLoS One 2016; 11:e0157153. [PMID: 27310932 PMCID: PMC4911163 DOI: 10.1371/journal.pone.0157153] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs fine-tune the regulation of Th1/Th17 lymphocyte subsets in multiple sclerosis. We investigated the expression of miRNAs (previously associated with mycobacterial and viral infections) in MS patients and healthy donors (HD) following 6 months natalizumab therapy. In addition, Th1/Th17 cytokines and the presence of anti-EBNA1/VCA IgG in MS patients with different pattern of miRNA expression have been evaluated. MiR-155, miR-26a, miR-132, miR-146a and Th1/Th17 cytokines expression was detected by RT-real time PCR; moreover anti-EBNA1 and VCA IgG titres were measured by ELISA. We observed an up-regulation of miR-155 (p value = 0.009) and miR-132 (p value = 0.04) in MS patients compared to HD. In MS patients, IL-17a (p = 0.037), IFN γ (p = 0.012) and TNFα (p = 0.015) but not IL-6 were over-expressed compared to HD. Two different miRNAs patterns associated to the expression of different cytokines were observed in the MS cohort. Moreover, a down-regulation of miR-155 and miR-26a was seen in MS patients during and after natalizumab therapy. MS patients that over-expressed miR-155 showed a higher EBNA1 IgG titer than MS patients with high levels of miR-26a. In conclusions the expression of particular miRNAs modulates the pro-inflammatory cytokine expression and the humoral response against EBV and this expression is natalizumab regulated.
Collapse
|
147
|
Huang Q, Xiao B, Ma X, Qu M, Li Y, Nagarkatti P, Nagarkatti M, Zhou J. MicroRNAs associated with the pathogenesis of multiple sclerosis. J Neuroimmunol 2016; 295-296:148-61. [DOI: 10.1016/j.jneuroim.2016.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
|
148
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM, Li J. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 2016; 148:237-48. [PMID: 27005899 DOI: 10.1111/imm.12608] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity and plasticity are hallmarks of macrophages. Classically activated macrophages are considered to promote T helper type 1 responses and have strong microbicidal, pro-inflammatory activity, whereas alternatively activated macrophages are supposed to be associated with promotion of tissue remodelling and responses to anti-inflammatory reactions. Transformation of different macrophage phenotypes is reflected in their different, sometimes even opposite, roles in various diseases or inflammatory conditions. MicroRNAs (miRNAs) have emerged as critical regulators of macrophage polarization (MP). Several miRNAs are induced by Toll-like receptors signalling in macrophages and target the 3'-untranslated regions of mRNAs encoding key molecules involved in MP. Therefore, identification of miRNAs related to the dynamic changes of MP and understanding their functions in regulating this process are important for discussing the molecular basis of disease progression and developing novel miRNA-targeted therapeutic strategies. Here, we review the current knowledge of the role of miRNAs in MP with relevance to immune response and inflammation.
Collapse
Affiliation(s)
- Xiao-Qin Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yao Dai
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China.,Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yang Yang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
149
|
Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 2016; 30:2662-72. [PMID: 27118674 DOI: 10.1096/fj.201600435rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.
Collapse
Affiliation(s)
| | | | - Helga E de Vries
- Blood-Brain Barrier Research Group, Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
150
|
Jagot F, Davoust N. Is It worth Considering Circulating microRNAs in Multiple Sclerosis? Front Immunol 2016; 7:129. [PMID: 27092141 PMCID: PMC4821089 DOI: 10.3389/fimmu.2016.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
New evidence has highlighted that miRNA production and trafficking can be dysregulated in both autoimmmune and neurological disorders. Multiple sclerosis (MS) in particular is an autoimmune pathology leading to neurodegeneration. Profiling studies performed on cells derived from MS patients have described a dysregulated network of miRNAs in both immune and neural cells. Interestingly, new evidence has emerged showing that circulating miRNAs are also dysregulated in MS body fluids, including plasma/serum and cerebrospinal fluid. This review summarizes the current scientific theories on the function of this altered circulating miRNA network. It builds up new insights about miRNA transfer mechanisms including extracellular vesicle trafficking involved in cell-to-cell communication and the possible physiopathological functions of these transfers in MS. Finally, this review proposes that monitoring altered miRNA expression levels could serve as a potential biomarker read-out of MS subtype and severity.
Collapse
Affiliation(s)
- Ferdinand Jagot
- Biology Department, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France
| | - Nathalie Davoust
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 344 Biosciences Lyon Gerland, Université de Lyon , Lyon , France
| |
Collapse
|