101
|
Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol 2011; 21:183-99. [PMID: 21640825 DOI: 10.1016/j.semcancer.2011.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
Abstract
The cracks in the paradigm of oncogenic mutations and somatic evolution as driving force of tumorigenesis, lucidly exposed by the dynamic heterogeneity of "cancer stem cells" or the diffuse results of cancer genome sequencing projects, indicate the need for a more encompassing theory of cancer that reaches beyond the current proximate explanations based on individual genetic pathways. One such integrative concept, derived from first principles of the dynamics of gene regulatory networks, is that cancerous cell states are attractor states, just like normal cell types are. Here we extend the concept of cancer attractors to illuminate a more profound property of cancer initiation: its inherent inevitability in the light of metazoan evolution. Using Waddington's Epigenetic Landscape as a conceptual aid, for which we present a mathematical and evolutionary foundation, we propose that cancer is intrinsically linked to ontogenesis and phylogenesis. This explanatory rather than enumerating review uses a formal argumentation structure that is atypical in modern experimental biology but may hopefully offer a new coherent perspective to reconcile many conflicts between new findings and the old thinking in the categories of linear oncogenic pathways.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Biocomplexity and Informatics, University of Calgary, Alberta, Canada.
| |
Collapse
|
102
|
Kenchegowda S, Bazan NG, Bazan HEP. EGF stimulates lipoxin A4 synthesis and modulates repair in corneal epithelial cells through ERK and p38 activation. Invest Ophthalmol Vis Sci 2011; 52:2240-9. [PMID: 21220563 DOI: 10.1167/iovs.10-6199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect of epidermal growth factor (EGF) on lipoxin A4 (LXA4) synthesis and how it regulates corneal epithelial wound healing through mitogen-activated kinases, extracellular regulated kinase (ERK) 1/2, and p38. METHODS Rabbit corneal epithelial (RCE) cells were stimulated with EGF or LXA4 at different times. In some experiments, cells were pretreated with 12/15-lipoxygenase (12/15-LOX) inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC), ERK1/2 inhibitor PD98059, or p38 inhibitor SB203580. For wound-healing experiments, corneas from rabbits and 12/15-LOX (ALOX-15)-deficient mice were injured by epithelial removal and maintained in organ culture in the presence of EGF or LXA4 with or without inhibitors. Epithelial cell proliferation was assayed by immunofluorescence with Ki67 and cell counting. Scrape migration assays were performed in 6-well plates. LXA4 synthesis was analyzed by liquid chromatography-tandem mass spectrometry analysis. RESULTS EGF activated ERK1/2 and p38 in RCE cells in a sustained manner. EGF activation was partially inhibited by CDC. EGF and LXA4 increased corneal epithelial wound closure. ERK1/2 inhibition with PD98059 or p38 with SB203580 blocked the effect of LXA4 on wound healing. ALOX-15 corneas displayed inhibition of epithelial wound closure promoted by EGF, whereas LXA4 stimulation induced similar wound closure in wild-type and knockout mice. EGF-stimulated LXA4 synthesis in RCE cells was inhibited by CDC or the EGF receptor antagonist AG1478. CONCLUSIONS These results demonstrate that EGF-stimulated epithelial wound healing is partially mediated through a 12/15-LOX-LXA4 pathway, and activation of ERK1/2 and p38 is required for LXA4 action.
Collapse
Affiliation(s)
- Sachidananda Kenchegowda
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
103
|
Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. "Humanized" stem cell culture techniques: the animal serum controversy. Stem Cells Int 2011; 2011:504723. [PMID: 21603148 PMCID: PMC3096451 DOI: 10.4061/2011/504723] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/18/2011] [Accepted: 02/05/2011] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy is reaching a pinnacle with an understanding of the potential of human mesenchymal stem cells (hMSCs) to regenerate damaged tissue in the body. The limited numbers of these hMSCs in currently identified sources, like bone marrow, adipose tissue, and so forth, bring forth the need for their
in vitro culture/expansion. However, the extensive usage of supplements containing xenogeneic components in the expansion-media might pose a risk to the post-transplantation safety of patients. This warrants the necessity to identify and develop chemically defined or “humanized” supplements which would make
in vitro cultured/processed cells relatively safer for transplantation in regenerative medicine. In this paper, we outline the various caveats associated with conventionally used supplements of xenogenic origin and also portray the possible alternatives/additives which could one day herald the dawn of a new era in the translation of
in vitro cultured cells to therapeutic interventions.
Collapse
Affiliation(s)
- Chandana Tekkatte
- Frontier Lifeline Pvt. Ltd., TICEL Biopark, Taramani, Chennai 600113, India
| | | | | | | |
Collapse
|
104
|
Tyagi S, Ochem A, Tyagi M. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression. J Gen Virol 2011; 92:1710-1720. [PMID: 21450944 DOI: 10.1099/vir.0.029587-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription.
Collapse
Affiliation(s)
- Shilpi Tyagi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| | - Alex Ochem
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mudit Tyagi
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Adelbert Road, Cleveland, OH 44106, USA.,National Center for Biodefense and Infectious Diseases, George Mason University, Biomedical Research Laboratory, 10650 Pyramid Place, MS 1J5, Manassas, VA 20110, USA
| |
Collapse
|
105
|
Ely HA, Mellon PL, Coss D. GnRH induces the c-Fos gene via phosphorylation of SRF by the calcium/calmodulin kinase II pathway. Mol Endocrinol 2011; 25:669-80. [PMID: 21292826 DOI: 10.1210/me.2010-0437] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Despite extensive studies on GnRH regulation of the gonadotropin subunit genes, very little is known about mechanism of induction of intermediary immediate early genes, such as c-Fos, that are direct targets of GnRH signaling and that upon induction, activate transcription of gonadotropin genes. Although c-Fos is induced by a variety of stimuli in other cell types, in the gonadotropes, only GnRH induces c-Fos and through it FSHβ. Thus, understanding the specificity of c-Fos induction by GnRH will provide insight into GnRH regulation of FSHβ gene expression. GnRH induction of c-Fos in LβT2 cells requires the serum response factor (SRF)-binding site, but not the Ets/ELK1 site. This is in contrast to c-Fos induction by growth factors in other cells, which activate c-Fos transcription via phosphorylation of ELK1 and require the ELK1-binding site. The SRF site alone is sufficient for induction by GnRH, whereas induction by 12-tetradecanoylphorbol-13-acetate (TPA) requires both the ELK1 and SRF sites. Although ELK1 site is not required, upon GnRH stimulation, ELK1 interacts with SRF and is recruited to the SRF site. GnRH phosphorylates ELK1 through ERK1/2 and p38 MAPK, which correlates with the signaling pathways necessary for c-Fos and FSHβ induction. GnRH also causes phosphorylation of SRF through calmodulin-dependent kinase II (CamKII), which leads to increased binding to its site. CamKII activation is sufficient for phosphorylation of SRF and for induction of the c-Fos gene through the SRF site. Thus, GnRH uses a combination of growth factor signaling and the CamKII pathway to induce c-Fos to regulate FSHβ gene expression in gonadotrope cells.
Collapse
Affiliation(s)
- Heather A Ely
- Department of Reproductive Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0674, USA
| | | | | |
Collapse
|
106
|
Ye YC, Yu L, Wang HJ, Tashiro SI, Onodera S, Ikejima T. TNFα-Induced Necroptosis and Autophagy via Supression of the p38–NF-κB Survival Pathway in L929 Cells. J Pharmacol Sci 2011; 117:160-9. [DOI: 10.1254/jphs.11105fp] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
107
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
108
|
Ronkina N, Menon MB, Schwermann J, Arthur JSC, Legault H, Telliez JB, Kayyali US, Nebreda AR, Kotlyarov A, Gaestel M. Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Res 2010; 39:2503-18. [PMID: 21109534 PMCID: PMC3074129 DOI: 10.1093/nar/gkq1178] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immediate early gene (IEG) expression is coordinated by multiple MAP kinase signaling pathways in a signal specific manner. Stress-activated p38α MAP kinase is implicated in transcriptional regulation of IEGs via MSK-mediated CREB phosphorylation. The protein kinases downstream to p38, MAPKAP kinase (MK) 2 and MK3 have been identified to regulate gene expression at the posttranscriptional levels of mRNA stability and translation. Here, we analyzed stress-induced IEG expression in MK2/3-deficient cells. Ablation of MKs causes a decrease of p38α level and p38-dependent IEG expression. Unexpectedly, restoration of p38α does not rescue the full-range IEG response. Instead, the catalytic activity of MKs is necessary for the major transcriptional activation of IEGs. By transcriptomics, we identified MK2-regulated genes and recognized the serum response element (SRE) as a common promoter element. We show that stress-induced phosphorylation of serum response factor (SRF) at serine residue 103 is significantly reduced and that induction of SRE-dependent reporter activity is impaired and can only be rescued by catalytically active MK2 in MK2/3-deficient cells. Hence, a new function of MKs in transcriptional activation of IEGs via the p38α-MK2/3-SRF-axis is proposed which probably cooperates with MKs’ role in posttranscriptional gene expression in inflammation and stress response.
Collapse
Affiliation(s)
- N Ronkina
- Institute of Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Sudar E, Dobutovic B, Soskic S, Mandusic V, Zakula Z, Misirkic M, Vucicevic L, Janjetovic K, Trajkovic V, Mikhailidis DP, Isenovic ER. Regulation of inducible nitric oxide synthase activity/expression in rat hearts from ghrelin-treated rats. J Physiol Biochem 2010; 67:195-204. [PMID: 21107779 DOI: 10.1007/s13105-010-0063-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3 nmol/5 μl) or an equal volume of phosphate-buffered saline, injected every 24 h into the lateral cerebral ventricle for 5 days and 2 h after the last treatment the animals were sacrificed. Serum NO, L-arginine (L-Arg), and arginase activity were measured spectrophotometrically. For phosphorylation of Akt, ERK1/2, and iNOS protein expression, Western blot method was used. The expression of Nos2 mRNA was measured by the quantitative real-time polymerase chain reaction (qRT-PCR). Treatment with ghrelin significantly increased NO production in serum by 1.4-fold compared with control. The concentration of L-Arg was significantly higher in ghrelin-treated rats than in control while arginase activity was significantly lower in ghrelin-treated than in control hearts. Ghrelin treatment increased phosphorylation of Akt by 1.9-fold and ERK1/2 by 1.6-fold and increased iNOS expression by 2.5-fold compared with control. In addition, ghrelin treatment increased Nos2 gene expression by 2.2-fold as determined by qRT-PCR. These results indicate that ghrelin regulation of iNOS expression/activity is mediated via Akt/ERK1/2 signaling pathway. These results may be relevant to understanding molecular mechanisms underlying direct cardiovascular actions of ghrelin.
Collapse
Affiliation(s)
- Emina Sudar
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Cadete VJJ, Sawicka J, Polewicz D, Doroszko A, Wozniak M, Sawicki G. Effect of the Rho kinase inhibitor Y-27632 on the proteome of hearts with ischemia-reperfusion injury. Proteomics 2010; 10:4377-85. [PMID: 21136592 DOI: 10.1002/pmic.201000393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growing attention has been given to the role of the Rho kinase pathway in the development of heart disease and ischemia/reperfusion (I/R) injury. Y-27632 is a Rho kinase inhibitor demonstrated to protect against I/R injury, but the exact mechanism by which it does so remains to be elucidated. The goal of this project was to determine new targets by which Y-27632 can protect the heart against I/R injury. Isolated rat hearts were perfused under aerobic conditions or subjected to I/R in the presence or absence of Y-27632. Administration of Y-27632 (1 μM) before ischemia and during the first 10 min of reperfusion resulted in complete recovery of cardiac function. 2-D electrophoresis followed by MS identified four proteins whose levels were affected by Y-27632 treatment. Lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase were significantly increased in the Y-27632 treated group, while creatine kinase was normalized to control levels. In addition, we found increased level of two different molecular fragments of ATP synthase, which were normalized by Y-27632. This increase suggests that during ischemia ATP synthase is subjected to degradation. The changes in metabolic enzymes' levels and their regulation by Y-27632 suggest that the cardioprotective effect of Y-27632 involves increased energy production.
Collapse
Affiliation(s)
- Virgilio J J Cadete
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
111
|
Nong L, Yin G, Ren K, Tang J, Fan W. Periodic mechanical stress enhances rat chondrocyte area expansion and migration through Src-PLCγ1-ERK1/2 signaling. Eur J Cell Biol 2010; 89:705-11. [DOI: 10.1016/j.ejcb.2010.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/20/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022] Open
|
112
|
Park C, Jin CY, Kim GY, Cheong J, Jung JH, Yoo YH, Choi YH. A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro. Toxicol In Vitro 2010; 24:1920-6. [PMID: 20696234 DOI: 10.1016/j.tiv.2010.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/07/2010] [Accepted: 08/02/2010] [Indexed: 01/28/2023]
Abstract
The pro-apoptotic activity of J-7, a synthetic methyl jasmonate derivative, on the Hep3B human hepatocarcinoma cell line was investigated. Treatment of Hep3B cells with J-7 resulted in growth inhibition and the induction of apoptosis as measured by trypan blue-excluding cells, MTT assay, nuclear staining, DNA fragmentation, and flow cytometry analysis. The increased apoptotic events in Hep3B cells caused by J-7 were associated with the alteration in the ratio of Bax/Bcl-2 protein expression. J-7 treatment induced the expression of death receptor-related proteins such as death receptor 5, which triggered the activation of caspase-8 and the down-regulation of the whole Bid expression. In addition, the apoptosis induction by J-7 was correlated with the activation of caspase-9 and caspase-3, down-regulation IAP family proteins such as XIAP and cIAP-1, and concomitant degradation of poly (ADP-ribose) polymerase. However, the cytotoxic and apoptotic effects induced by J-7 were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role that caspase-3 plays in the process. Furthermore, blocking the extracellular signal-regulated protein kinase and c-Jun N-terminal kinase pathways showed increased apoptosis and the activation of caspases in J-7-induced apoptosis. The results indicated that J-7 induces the apoptosis of Hep3B cells through a signaling cascade of death-receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways, which are associated with the activation of the mitogen-activated protein kinases signal pathway.
Collapse
Affiliation(s)
- Cheol Park
- Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan 614-714, South Korea
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
BACKGROUND Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. METHODS The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-kbeta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. RESULTS CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-kbeta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. CONCLUSIONS Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.
Collapse
|
114
|
Lin ML, Lu YC, Chung JG, Wang SG, Lin HT, Kang SE, Tang CH, Ko JL, Chen SS. Down-regulation of MMP-2 through the p38 MAPK-NF-κB-dependent pathway by aloe-emodin leads to inhibition of nasopharyngeal carcinoma cell invasion. Mol Carcinog 2010; 49:783-97. [DOI: 10.1002/mc.20652] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
115
|
Yao AH, Yang Y, Li XC, Pu LY, Zhong JW, Liu XZ, Yu Y, Zhang F, Kong LB, Wang XH. Hepatic regenerative response in small-sized liver isografts in the rat. J Surg Res 2010; 161:328-335. [PMID: 19592017 DOI: 10.1016/j.jss.2009.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/05/2009] [Accepted: 02/13/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND To investigate hepatic regenerative response and associated mechanisms in different-size liver grafts in the rat. METHODS Rat models of different-size-graft liver transplantation (whole, 50%-size, or 30%-size) were established, with a sham operation group serving as a control. Portal pressure, graft injury, interleukin 6 (IL-6), signal transducer and activator of transcription (Stat3), mitogen-activated protein kinase (MAPK), cyclin D1, and proliferating cell nuclear antigen (PCNA) were all assessed. RESULTS The portal pressure was significantly higher and hepatic injury more severe in the smaller sized groups than in the whole graft group, especially in the 30%-size grafts. Hepatic IL-6 and tumor necrosis factor-alpha (TNF-alpha) levels in the two smaller sized groups were significantly higher than in the whole graft group, while IL-6 levels appeared to be negatively associated with graft sizes. Downstream markers of IL-6, Stat3 and MAPK phosphorylation, cyclin D1, and PCNA expression were also markedly increased in the small-sized grafts compared with the whole grafts, and appeared to positively correlate with early measurements of portal pressure and subsequent hepatic injury. CONCLUSION Vigorous hepatic regeneration in small-for-size liver grafts may be associated with highly activated IL-6/Stat3 and MAPK signaling, which may in turn correlate with graft size, portal pressure, and hepatic injury.
Collapse
Affiliation(s)
- Ai Hua Yao
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
117
|
Buzzi N, Boland R, Russo de Boland A. Signal transduction pathways associated with ATP-induced proliferation of colon adenocarcinoma cells. Biochim Biophys Acta Gen Subj 2010; 1800:946-55. [PMID: 20562007 DOI: 10.1016/j.bbagen.2010.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In previous work, we have demonstrated that extracellular adenosine 5'-triphosphate (ATP) acts on intestinal Caco-2 cell P2Y receptors promoting a rapid increase in the phosphorylation of ERK1/2, p46 JNK and p38 MAP kinases (MAPKs). METHODS AND RESULTS In this study, we investigated whether the extracellular ATP-P2Y receptor signalling pathways were required for the proliferation of Caco-2 cells. Confocal microscopy and immunobloting studies showed that ERK1/2 and JNK translocate into the nucleus of the cells stimulated by ATP, where they participate, together with p38 MAPK, in the phosphorylation of JunD, ATF-1 and ATF-2 transcription factors. In addition, ATP through the activation of MAPKs induces the expression of the immediate early genes products of the Jun family, c-Fos and MAP kinase phosphatase-1 (MKP-1). Moreover, ERK1/2 and p38 MAPK are involved in the phosphorylation of MKP-1 in Caco-2 cells. Of physiological significance, in agreement with the mitogenic role of the MAPK cascade, ATP increased Caco-2 cell proliferation, and this effect was blocked by UO126, SB203580 and SP600125, the specific inhibitors of ERK1/2, p38 MAPK and JNK1/2, respectively. CONCLUSION Extracellular ATP induces proliferation of Caco-2 human colonic cancer cells by activating MAPK cascades and modulation of transcription factors. GENERAL SIGNIFICANCE These findings and identification of the specific P2Y subtype receptors involved in the mitogenic effect of ATP on Caco-2 cells might be relevant for understanding tumor cell development, resistance to treatment regimens and the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Buzzi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
118
|
Zanca C, Cozzolino F, Quintavalle C, Di Costanzo S, Ricci-Vitiani L, Santoriello M, Monti M, Pucci P, Condorelli G. PED interacts with Rac1 and regulates cell migration/invasion processes in human non-small cell lung cancer cells. J Cell Physiol 2010; 225:63-72. [DOI: 10.1002/jcp.22197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
119
|
Chaum E, Yin J, Yang H, Thomas F, Lang JC. Quantitative AP-1 gene regulation by oxidative stress in the human retinal pigment epithelium. J Cell Biochem 2010; 108:1280-91. [PMID: 19795388 DOI: 10.1002/jcb.22358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to characterize the early molecular responses to quantified levels of oxidative stress (OS) in the human retinal pigment epithelium (RPE). Confluent ARPE-19 cells were cultured for 3 days in defined medium to stabilize gene expression. The cells were exposed to varying levels of OS (0-500 microM H(2)O(2)) for 1-8 h and gene expression was followed for up to 24-h after OS. Using real-time qPCR, we quantified the expression of immediate early genes from the AP-1 transcription factor family and other genes involved in regulating the redox status of the cells. Significant and quantitative changes were seen in the expression of six AP-1 transcription factor genes, FosB, c-Fos, Fra-1, c-Jun, JunB, and ATF3 from 1-8 h following OS. The peak level of induced transcription from OS varied from 2- to 128-fold over the first 4 h, depending on the gene and magnitude of OS. Increased transcription at higher levels of OS was also seen for up to 8-h for some of these genes. Protein translation was examined for 24-h following OS using Western blotting methods, and compared to the qPCR responses. We identified six AP-1 family genes that demonstrate quantitative upregulation of expression in response to OS. Two distinct types of quantifiable OS-specific responses were observed; dose-dependent responses, and threshold responses. Our studies show that different levels of OS can regulate the expression of AP-1 transcription factors quantitatively in the human RPE in vitro.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
120
|
Gailhouste L, Ezan F, Bessard A, Frémin C, Rageul J, Langouët S, Baffet G. RNAi-mediated MEK1 knock-down prevents ERK1/2 activation and abolishes human hepatocarcinoma growth in vitro and in vivo. Int J Cancer 2010; 126:1367-77. [PMID: 19816936 DOI: 10.1002/ijc.24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitogen-activated protein kinases MEK/ERK pathway regulates fundamental processes in malignant cells and represents an attractive target in the development of new cancer treatments especially for human hepatocarcinoma highly resistant to chemotherapy. Although gene extinction experiments have suggested distinct roles for these proteins, the MEK/ERK cascade remains widely considered as exhibiting an overlap of functions. To investigate the functionality of each kinase in tumorigenesis, we have generated stably knock-down clones for MEK1/2 and ERK1/2 isoforms in the human hepatocellular carcinoma line HuH7. Our results have shown that RNAi strategy allows a specific disruption of the targeted kinases and argued for the critical function of MEK1 in liver tumor growth. Transient and stable extinction experiments demonstrated that MEK1 isoform acts as a major element in the signal transduction by phosphorylating ERK1 and ERK2 after growth factors stimulation, whereas oncogenic level of ERK1/2 phosphorylation appears to be MEK1 and MEK2 dependent in basal condition. In addition, silencing of MEK1 or ERK2 abolished cell proliferation and DNA replication in vitro as well as tumor growth in vivo after injection in rodent. In contrast, targeting MEK2 or ERK1 had no effect on hepatocarcinoma progression. These results strongly corroborate the relevance of targeting the MEK cascade as attested by pharmacologic drugs and support the potential application of RNAi in future development of more effective cancer therapies. Our study emphasizes the importance of the MEK/ERK pathway in human hepatocarcinoma cell growth and argues for a crucial role of MEK1 and ERK2 in this regulation.
Collapse
Affiliation(s)
- Luc Gailhouste
- EA 4427-SeRAIC, IFR 140, Université de Rennes 1, F-35043 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E257-69. [PMID: 19903866 DOI: 10.1152/ajpendo.00609.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design in the fasted (n = 10) and fed (n = 10) states. RE consisted of 10 sets of knee extensions. One leg worked against light load (LL) at 16% of one-repetition maximum (1RM), the other leg against heavy load (HL) at 70% 1RM, with intensities equalized for total lifted load. Males were infused with [(13)C]leucine, and vastus lateralis biopsies were obtained bilaterally at rest as well as 0.5, 3, and 5.5 h after RE. Western blots were run on muscle lysates and phosphospecific antibodies used to detect phosphorylation status of targets involved in regulation of FSR. The intramuscular collagen FSR was evenly increased following LL- and HL-RE and was not affected by feeding. Myofibrillar FSR was unaffected by LL-RE, whereas HL-RE resulted in a delayed improvement (0.14 +/- 0.02%/h, P < 0.05). Myofibrillar FSR was increased at rest by feeding (P < 0.05) and remained elevated late in the postexercise period compared with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k and eukaryotic elongation factor 2 phosphorylations in correspondence with the observed changes in myofibrillar FSR, whereas 4E-BP1 remained to respond only to the HL contraction intensity. Thus the study design allows us to conclude that the MAPk- and mammalian target of rapamycin-dependent signaling responds to contractile activity, whereas elongation mainly was found to respond to feeding. Furthermore, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile activity and intensity.
Collapse
Affiliation(s)
- Lars Holm
- Institute of Sports Medicine, Bispebjerg Hospital and Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
122
|
Mikula M, Hanusek K, Paziewska A, Dzwonek A, Rubel T, Bomsztyk K, Ostrowski J. Halogenated imidazole derivatives block RNA polymerase II elongation along mitogen inducible genes. BMC Mol Biol 2010; 11:4. [PMID: 20078881 PMCID: PMC2824761 DOI: 10.1186/1471-2199-11-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 01/15/2010] [Indexed: 01/24/2023] Open
Abstract
Background Aberrant activation of protein kinases is one of the essential oncogenic driving forces inherent to the process of tumorigenesis. The protein kinase CK2 plays an important role in diverse biological processes, including cell growth and proliferation as well as in the governing and transduction of prosurvival signals. Increased expression of CK2 is a hallmark of some cancers, hence its antiapoptotic properties may be relevant to cancer onset. Thus, the designing and synthesis of the CK2 inhibitors has become an important pursuit in the search for cancer therapies. Results Using a high-throughput microarray approach, we demonstrate that two potent inhibitors of CK2, 4,5,6,7-tetrabromo-benzimidazole (TBBz) and 2-Dimethyloamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), blocked mitogen induced mRNA expression of immediate early genes. Given the impact of these inhibitors on the process of transcription, we investigated their effects on RNA Polymerase II (RNAPII) elongation along the mitogen inducible gene, EGR1 (early growth response 1), using chromatin immunoprecipitation (ChIP) assay. ChIP analysis demonstrated that both drugs arrest RNAPII elongation. Finally, we show that CDK9 kinase activity, essential for the triggering of RNAPII elongation, was blocked by TBBz and to lesser degree by DMAT. Conclusions Our approach revealed that small molecules derived from halogenated imidazole compounds may decrease cell proliferation, in part, by inhibiting pathways that regulate transcription elongation.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Gastroenterology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
123
|
Levay K, Slepak VZ. Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage. Exp Cell Res 2010; 316:1254-62. [PMID: 20060826 DOI: 10.1016/j.yexcr.2010.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/17/2009] [Accepted: 01/02/2010] [Indexed: 11/15/2022]
Abstract
Tescalcin is a 25-kDa EF-hand Ca(2+)-binding protein that is differentially expressed in several mammalian tissues. Previous studies demonstrated that expression of this protein is essential for differentiation of hematopoietic precursor cell lines and primary stem cells into megakaryocytes. Here we show that tescalcin is expressed in primary human granulocytes and is upregulated in human promyelocytic leukemia HL-60 cells that have been induced to differentiate along the granulocytic lineage. However, during induced macrophage-like differentiation of HL-60 cells the expression of tescalcin is downregulated. The decrease in expression is associated with a rapid drop in tescalcin mRNA level, whereas upregulation occurs via a post-transcriptional mechanism. Tescalcin is necessary for HL-60 differentiation into granulocytes as its knockdown by shRNA impairs the ability of HL-60 cells to acquire the characteristic phenotypes such as phagocytic activity and generation of reactive oxygen species measured by respiratory burst assay. Both up- and downregulation of tescalcin require activation of the MEK/ERK cascade. It appears that commitment of HL-60 cells toward granulocytic versus macrophage-like lineage correlates with expression of tescalcin and kinetics of ERK activation. In retinoic acid-induced granulocytic differentiation, the activation of ERK and upregulation of tescalcin occurs slowly (16-48 h). In contrast, in PMA-induced macrophage-like differentiation the activation of ERK is rapid (15-30 min) and tescalcin is downregulated. These studies indicate that tescalcin is one of the key gene products that is involved in switching differentiation program in some cell types.
Collapse
Affiliation(s)
- Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101-6189, USA.
| | | |
Collapse
|
124
|
Zhang Z, Song Q, Lin M, Ding Y, Kang X, Yao Z. Immunomodulated signaling in macrophages: Studies on activation of Raf-1, MAPK, cPLA(2) and secretion of IL-12. ACTA ACUST UNITED AC 2009; 40:583-92. [PMID: 18726282 DOI: 10.1007/bf02882688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1997] [Indexed: 11/25/2022]
Abstract
Little is known about the mechanism and signal transduction by LPS-mediated immunomodulation of murine peritoneal macrophages. It is found that the signal molecules of the down-stream of Ras, Raf-1, MAPK p44, and MAPK p42 are phosphorylated, and cPLA(2) is activated with a significant increase of the release of [ H(3) ] AA by macrophages in response to LPS and PMA. Compared with the very recent finding that LPS and PMA trigger the activation and translocation of PKC-alpha and PKC-epsilon, these findings suggest that there is a connection between PKC signaling pathway and the Raf-1/MAPK pathway and that the activation of these main signaling events may be closely related to the secretion of IL-12 during LPS-induced modulation of macrophages.
Collapse
Affiliation(s)
- Z Zhang
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
125
|
Chen X, Tian Y, Yao L, Zhang J, Liu Y. Hypoxia stimulates proliferation of rat neural stem cells with influence on the expression of cyclin D1 and c-Jun N-terminal protein kinase signaling pathway in vitro. Neuroscience 2009; 165:705-14. [PMID: 19909792 DOI: 10.1016/j.neuroscience.2009.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 10/26/2009] [Accepted: 11/04/2009] [Indexed: 02/01/2023]
Abstract
Ischemia/hypoxia is known to induce the neural stem cells proliferation and neural differentiation in rodent and human brain; however its mechanisms remain largely unknown. In this study we investigated the effect of hypoxia on neural stem cells (NSCs) proliferation with the expression of cyclin D1 and the phosphorylation of mitogen-activated protein kinases (MAPK) signaling molecules. NSCs were cultured from cortex of fetal Sprague-Dawley rats on embryonic day 5.5. The hypoxia was made using a microaerophilic incubation system. The NSCs proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, diameter measurement of neurospheres, bromodeoxyuridine (BrdU) incorporation assay and cell cycle analysis. The cell death of NSCs was evaluated by terminal dUTP nick-end labeling (TUNEL) assay. The expression of cyclin D1, phosphorylated extracellular signal regulated kinase (ERK), c-Jun N-terminal protein kinase (JNK) and p38 were analyzed by immunoblotting assay. The results showed that hypoxia increased NSCs proliferation in cell amount, diameter of neurospheres, BrdU incorporation and cell division, and the highest proliferation of the NSCs was observed with 12 h hypoxic treatment; hypoxia did not decrease cell death of NSCs; after hypoxic treatment, the expression of cyclin D1 increased, meanwhile P-JNK2 level increased, P-p38 decreased, and no significant change in P-ERK2 level compared to normoxic cultures. JNK inhibitor SP600125 attenuated the increase of cyclin D1 induced by hypoxia. These findings propose that hypoxia increases cyclin D1 expression through activation of JNK in NSCs of rat in vitro, suggesting a novel possible mechanism for hypoxia-induced proliferation of NSCs.
Collapse
Affiliation(s)
- X Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, The State Key Subject for Physiology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | |
Collapse
|
126
|
Maity G, Fahreen S, Banerji A, Roy Choudhury P, Sen T, Dutta A, Chatterjee A. Fibronectin-integrin mediated signaling in human cervical cancer cells (SiHa). Mol Cell Biochem 2009; 336:65-74. [PMID: 19816757 DOI: 10.1007/s11010-009-0256-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 09/15/2009] [Indexed: 12/12/2022]
Abstract
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin-integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin-integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-kappaB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.
Collapse
Affiliation(s)
- Gargi Maity
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
127
|
Patented natural avocado sugars modulate the HBD-2 expression in human keratinocytes through the involvement of protein kinase C and protein tyrosine kinases. Arch Dermatol Res 2009; 302:201-9. [PMID: 19760202 DOI: 10.1007/s00403-009-0991-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 08/07/2009] [Indexed: 12/20/2022]
Abstract
Skin keratinocytes constitute a protective mechanical barrier against invading microorganisms. Stimulated keratinocytes produce endogenous peptides such as the beta-defensins that have direct antimicrobial activity against a broad spectrum of pathogens, including most bacteria, certain fungi and enveloped viruses. In particular, human beta-defensin 2 (HBD-2) is virtually absent in normal skin and its expression in human keratinocytes requires stimulation by cytokines or bacteria. AV119, a patented avocado sugar, triggers the up-regulation of HBD-2, but the signalling mechanisms involved in this up-regulation in stimulated keratinocytes are not fully understood. In the present study, we examined the intracellular signalling pathways and nuclear responses in skin keratinocytes that contribute to HBD-2 gene expression upon stimulation with AV119. Our data provide information on signalling pathways in which the activation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) takes place and leads to AP-1 and HBD-2 gene activation.
Collapse
|
128
|
Ozaki N, Ohmuraya M, Hirota M, Ida S, Wang J, Takamori H, Higashiyama S, Baba H, Yamamura KI. Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol Cancer Res 2009; 7:1572-81. [PMID: 19737965 DOI: 10.1158/1541-7786.mcr-08-0567] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serine protease inhibitor, Kazal type 1 (SPINK1) is expressed not only in normal human pancreatic acinar cells but also in a variety of pancreatic ductal neoplasms. There are structural similarities between SPINK1 and epidermal growth factor (EGF). Hence, we hypothesized that SPINK1 binds to EGF receptor (EGFR) to activate its downstream signaling. We first showed that SPINK1 induced proliferation of NIH 3T3 cells and pancreatic cancer cell lines. We showed that SPINK1 coprecipitated with EGFR in an immunoprecipitation experiment and that the binding affinity of SPINK1 to EGFR was about half of that of EGF using quartz-crystal microbalance (QCM) technique. As expected, EGFR and its downstream molecules, signal transducer and activator of transcription 3, v-Akt murine thymoma viral oncogene homologue, and extracellular signal-regulated kinase 1/2, were phosphorylated by SPINK1 as well as EGF. To determine which pathway is the most important for cell growth, we further analyzed the effect of inhibitors. Growth stimulation by EGF or SPINK1 was completely inhibited by EGFR and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor but not by Janus-activated kinase and phosphoinositide 3-kinase inhibitors. To further analyze the clinical importance of SPINK1 in the development of pancreatic cancer, we examined the expression of SPINK1 and EGFR in pancreatic tubular adenocarcinomas and pancreatic intraepithelial neoplasm. Both SPNK1 and EGFR were coexpressed not only in the early stage of cancer, PanIN-1A, but also in advanced stages. Taken together, these results suggest that SPINK1 stimulates the proliferation of pancreatic cancer cells through the EGFR/mitogen-activated protein kinase cascade.
Collapse
Affiliation(s)
- Nobuyuki Ozaki
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
130
|
Abraha AB, Whalen MM. The role of p44/42 activation in tributyltin-induced inhibition of human natural killer cells: effects of MEK inhibitors. J Appl Toxicol 2009; 29:165-73. [PMID: 18989867 DOI: 10.1002/jat.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Destruction of tumor cells is a key function of natural killer (NK) cells. Previous studies have shown that tributyltin (TBT) can significantly reduce the lytic function of the human NK cells with accompanying increases in the phosphorylation (activation) states of the mitogen activated protein kinases (MAPKs), p44/42. The current studies examine the role of p44/42 activation in the TBT-induced reduction of NK-lytic function, by using MAPK kinase (MEK) inhibitors, PD98059 and U0126. A 1 h treatment with PD98059 or U0126 or both decreased the ability of NK cells to lyse K562 tumor cells. PD98059, U0126 or a combination of both inhibitors were able to completely block TBT-induced activation of p44/42. However, when p44/42 activation was blocked by the presence of PD98059, U0126 or the combination, subsequent exposure to TBT was still able to decrease the lytic function of NK cells. These results indicate that TBT-induced activation of p44/42 occurs via the activation of its upstream activator, MEK, and not by a TBT-induced inhibition of p44/42 phosphatase activity. Additionally, as lytic function was never completely blocked by MEK inhibitors, the results indicate that activation of p44/42 pathway is not solely responsible for the activation of lytic function of freshly isolated human NK cells. Finally, the results showed that TBT-induced activation of p44/42 is not solely responsible for the loss of lytic function.
Collapse
Affiliation(s)
- Abraham B Abraha
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA
| | | |
Collapse
|
131
|
Eisenmann KM, Dykema KJ, Matheson SF, Kent NF, DeWard AD, West RA, Tibes R, Furge KA, Alberts AS. 5q– myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009; 28:3429-41. [DOI: 10.1038/onc.2009.207] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
132
|
Gius D, Mattson D, Bradbury CM, Smart DK, Spitz DR. Thermal stress and the disruption of redox-sensitive signalling and transcription factor activation: possible role in radiosensitization. Int J Hyperthermia 2009; 20:213-23. [PMID: 15195515 DOI: 10.1080/02656730310001619505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In spite of ongoing research efforts, the specific mechanism(s) of heat-induced alterations in the cellular response to ionizing radiation (IR) remain ambiguous, in part because they likely involve multiple mechanisms and potential targets. One such group of potential targets includes a class of cytoplasmic signalling and/or nuclear transcription factors known as immediate early response genes, which have been suggested to perform cytotoxic as well as cytoprotective roles during cancer therapy. One established mechanism regulating the activity of these early response elements involves changes in cellular oxidation/reduction (redox) status. After establishing common alterations in early response genes by oxidative stress and heat exposure, one could infer that heat shock may have similarities to other forms of environmental antagonists that induce oxidative stress. In this review, recent evidence supporting a mechanistic link between heat shock and oxidative stress will be summarized. In addition, the hypothesis that one mechanism whereby heat shock alters cellular responses to anticancer agents (including hyperthermic radiosensitization) is through heat-induced disruption of redox-sensitive signalling factors will be discussed.
Collapse
Affiliation(s)
- D Gius
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Radiation Oncology Sciences Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
133
|
Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S, Kim JS, Kim JH, Choe JH, Nam SJ, Lee JE, Yang JH. EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signal 2009; 21:892-8. [PMID: 19385051 DOI: 10.1016/j.cellsig.2009.01.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of epidermal growth factor receptors (EGFRs) and their ligands are highly expressed in malignant tumor cells. The EGF signaling pathway is also activated in up to one-third of patients with breast cancer. In this study, we investigated the novel function of the JAK3 inhibitor, WHI-P131, on EGF-induced MMP-9 expression and the regulatory mechanism of EGF-induced MMP-9 expression in SKBR3 cells. We observed that EGF increased MMP-9 mRNA and protein expression in a dose-dependent manner. EGF also induced the phosphorylation of EGFR, ERK, and STAT-3, and these effects were inhibited by the EGFR inhibitor, AG1478.To investigate the involvement of the STAT-3 pathway on EGF-induced MMP-9 expression, we pretreatedSKBR3 cells with JAK1, JAK2, and JAK3 inhibitors prior to EGF treatment. The results showed that the JAK3 inhibitor, WHI-P131, as well as JAK3 siRNA transfection, but not the JAK1 and JAK2 inhibitors, significantly decreased EGF-induced MMP-9 expression. In addition, EGF-induced STAT-3 phosphorylation was only inhibited by WHI-P131. We then transfected cells with adenoviral STAT-3 (Ad-STAT-3), followed by treatment with EGF. Interestingly, EGF-induced MMP-9 expression was decreased by Ad-STAT-3 overexpression in a dose-dependent manner, while it was significantly increased by STAT-3 siRNA transfection. Our results also showed that basal levels of MMP-9 expression were significantly increased by constitutive active-MEK (CAMEK)overexpression. EGF-induced ERK phosphorylation was prevented by WHI-P131, but not by JAK1 andJAK2 inhibitors. On the other hand, EGF-induced MMP-9 expression was decreased by the MEK1/2 inhibitor,UO126. Therefore, for the first time, we suggest that the JAK3 inhibitor, WHI-P131, inhibits EGF-induced STAT-3 phosphorylation as well as ERK phosphorylation. The JAK3/ERK pathway may play an important role in EGFinduced MMP-9 expression in SKBR3 cells.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ilwon-dong 50, Kangnam-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Oncogenic viruses. Cancer Treat Res 2009. [PMID: 19415199 DOI: 10.1007/978-0-387-78574-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
135
|
Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. THE NEW PHYTOLOGIST 2009; 183:62-75. [PMID: 19402879 DOI: 10.1111/j.1469-8137.2009.02838.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
* Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ying-Hui Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yue-Ping Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chang-Ai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guo-Dong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jin-Guang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cheng-Chao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
136
|
Cheng Y, Qiu F, Ye YC, Guo ZM, Tashiro SI, Onodera S, Ikejima T. Autophagy inhibits reactive oxygen species-mediated apoptosis via activating p38-nuclear factor-kappa B survival pathways in oridonin-treated murine fibrosarcoma L929 cells. FEBS J 2009; 276:1291-306. [PMID: 19187231 DOI: 10.1111/j.1742-4658.2008.06864.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autophagy and apoptosis have been known to be interconnected positively or negatively; however, the molecular mechanisms mediating these two cellular processes are not fully understood. In the present study, we demonstrated that the exposure of L929 cells to oridonin led to intracellular reactive oxygen species generation, followed by lipid peroxidation, as well as decreases in superoxide dismutase and glutathione activities. The reactive oxygen species scavenger N-acetyl-cysteine resulted in the complete inhibition of oridonin-induced apoptosis and mitochondrial membrane potential collapse. We showed that reactive oxygen species triggered apoptosis by Bax translocation, cytochrome c release and extracellular signal-regulated kinase activation. Further data confirmed that oridonin also induced L929 cell autophagy, as demonstrated by extensive autophagic vacuolization and the punctuate distribution of monodansylcadaverine staining and GFP-LC3, as well as the LC3-II/LC3-I proportion and Beclin 1 activation. Subsequently, we found that inhibition of autophagy by 3-methyladenine or small interfering RNA against LC3 and Beclin 1 promoted oridonin-induced cell apoptosis. The effects of p38 and nuclear factor-kappa B in oridonin-induced apoptosis and autophagy were further examined. Interruption of p38 and nuclear factor-kappa B activation by specific inhibitors or small interfering RNAs promoted apoptosis and reactive oxygen species generation, but decreased autophagy. Moreover, we showed that inhibition of autophagy reduced oridonin-induced activation of p38. Additionally, nuclear factor-kappa B activation was inhibited by blocking the p38 pathway. Consequently, these findings indicate that oridonin-induced L929 cell apoptosis is regulated by reactive oxygen species-mediated signaling pathways, and that oridonin-induced autophagy may block apoptosis by up-regulating p38 and nuclear factor-kappa B activation.
Collapse
Affiliation(s)
- Yan Cheng
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
137
|
Brinkman JA, El-Ashry D. ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia 2009; 14:67-78. [PMID: 19263197 DOI: 10.1007/s10911-009-9113-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/10/2009] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer amongst women in the westernized world. The presence or absence of ERalpha in breast cancers is an important prognostic indicator. About 30-40% of breast cancers lack detectable ERalpha protein. ERalpha- breast cancers are resistant to endocrine therapies and have a worse prognosis than ERalpha+ breast cancers. Since expression of ERalpha is necessary for response to endocrine therapies, investigational studies are ongoing in order to understand the generation of the ERalpha- phenotype and develop interventions to restore ERalpha expression in ERalpha- breast cancers. DNA methylation and chromatin remodeling are two epigenetic mechanisms that have been linked with the lack of ERalpha expression and in these cases; demethylation of the ERalpha promoter or treatment with HDAC inhibitors shows promise in restoring ERalpha expression in ERalpha- breast cancers. Two additional potential mechanisms underlying generation of the ERalpha- phenotype involve E6-AP and Src, both of which have been shown to be elevated in ERalpha- breast cancer and can drive the proteasomal degradation of ERalpha. Recently, studies have demonstrated that upregulated growth factor signaling due to hyperactive MAPK activity significantly contributes to generation of the ERalpha- phenotype and that inhibition of MAPK activity can cause re-expression of the ERalpha and restore sensitivity to endocrine therapies. Given the challenges in treating ERalpha- breast cancer, understanding and manipulating the cellular mechanisms that effect expression of ERalpha are imperative in order to restore sensitivity to endocrine therapies and to design novel therapeutics for the treatment of ERalpha- breast cancers.
Collapse
Affiliation(s)
- Joeli A Brinkman
- University of Miami, Miller School of Medicine, Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | | |
Collapse
|
138
|
Kassen SC, Thummel R, Campochiaro LA, Harding MJ, Bennett NA, Hyde DR. CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Exp Eye Res 2009; 88:1051-64. [PMID: 19450453 DOI: 10.1016/j.exer.2009.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/10/2009] [Accepted: 01/16/2009] [Indexed: 01/13/2023]
Abstract
Ciliary neurotrophic factor (CNTF) acts in several processes in the vertebrate retina, including neuroprotection of photoreceptors in the stressed adult retina and regulation of neuronal progenitor cell proliferation during retinal development. However, the signaling pathway it utilizes (Jak/Stat, MAPK, or Akt) in these processes is ambiguous. Because dark-adapted albino zebrafish exhibit light-induced rod and cone cell death and subsequently regenerate the lost photoreceptor cells, zebrafish should be a useful model to study the role of CNTF in both neuroprotection and neuronal progenitor cell proliferation. We therefore investigated the potential roles of CNTF in both the undamaged and light-damaged adult zebrafish retinas. Intraocular injection of CNTF suppressed light-induced photoreceptor cell death, which then failed to exhibit the regeneration response that is marked by proliferating Müller glia and neuronal progenitor cells. Inhibiting the MAPK signaling pathway, but neither the Stat3 nor Akt pathways, significantly reduced the CNTF-mediated neuroprotection of light-induced photoreceptor cell death. Intraocular injection of CNTF into non-light-treated (undamaged) eyes mimicked constant intense light treatment by increasing Stat3 expression in Müller glia followed by increasing the number of proliferating Müller glia and neuronal progenitors. Knockdown of Stat3 expression in the CNTF-injected non-light-treated retinas significantly reduced the number of proliferating Müller glia, while coinjection of CNTF with either MAPK or Akt inhibitors did not inhibit the CNTF-induced Müller glia proliferation. Thus, CNTF utilizes a MAPK-dependant signaling pathway in neuroprotection of light-induced photoreceptor cell death and a Stat3-dependant signaling pathway to stimulate Müller glia proliferation.
Collapse
Affiliation(s)
- Sean C Kassen
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Chen YC, Lin SI, Chen YK, Chiang CS, Liaw GJ. The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression. Nucleic Acids Res 2009; 37:1061-72. [PMID: 19129218 PMCID: PMC2651784 DOI: 10.1093/nar/gkn1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Torso (Tor) signaling pathway activates tailless (tll) expression by relieving tll repression. None of the repressors identified so far, such as Capicuo, Groucho and Tramtrack69 (Ttk69), bind to the tor response element (tor-RE) or fully elucidate tll repression. In this study, an expanded tll expression pattern was shown in embryos with reduced heat shock factor (hsf) and Trithorax-like (Trl) activities. The GAGA factor, GAF encoded by Trl, bound weakly to the tor-RE, and this binding was enhanced by both Hsf and Ttk69. A similar extent of expansion of tll expression was observed in embryos with simultaneous knockdown of hsf, Trl and ttk69 activities, and in embryos with constitutively active Tor. Hsf is a substrate of mitogen-activated protein kinase and S378 is the major phosphorylation site. Phosphorylation converts Hsf from a repressor to an activator that works with GAF to activate tll expression. In conclusion, the GAF/Hsf/Ttk69 complex binding to the tor-RE remodels local chromatin structure to repress tll expression and the Tor signaling pathway activate tll expression by modulating a dual transcriptional switch.
Collapse
Affiliation(s)
- Yu-Chien Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112 Taiwan, ROC
| | | | | | | | | |
Collapse
|
140
|
González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. ACTA ACUST UNITED AC 2008; 183:653-66. [PMID: 19015316 PMCID: PMC2582892 DOI: 10.1083/jcb.200805049] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C.
Collapse
Affiliation(s)
- José María González
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain
| | | | | | | | | |
Collapse
|
141
|
African swine fever virus blocks the host cell antiviral inflammatory response through a direct inhibition of PKC-theta-mediated p300 transactivation. J Virol 2008; 83:969-80. [PMID: 19004945 DOI: 10.1128/jvi.01663-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-alpha) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-theta completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-theta enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-theta and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.
Collapse
|
142
|
Marin ECS, Balbi APC, Francescato HDC, Alves da Silva CG, Costa RS, Coimbra TM. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy. Ren Fail 2008; 30:547-55. [PMID: 18569937 DOI: 10.1080/08860220802060448] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Collapse
|
143
|
Méndez-Samperio P, Miranda E, Trejo A. Regulation of human beta-defensin-2 by Mycobacterium bovis bacillus Calmette-Guérin (BCG): involvement of PKC, JNK, and PI3K in human lung epithelial cell line (A549). Peptides 2008; 29:1657-63. [PMID: 18603327 DOI: 10.1016/j.peptides.2008.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
Human beta-defensin (HBD)-2 is an inducible antimicrobial peptide that plays an important role in innate immunity. Induction of this peptide by mycobacteria in epithelial cells has been reported. However, the mechanism(s) by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers gene transcription of HBD-2 remains poorly understood. In the present work we found that treatment of human epithelial cells with Ro32-0432 or Gö6976, two selective inhibitors of protein kinase C (PKC), significantly reduced the effect of M. bovis BCG on induced HBD-2 mRNA expression (65 and 80% inhibition by 10microM Ro32-0432, and 1microM Gö6976 as assessed by real-time PCR, respectively). Moreover, there was increased activation of c-Jun N-terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K)/Akt in A549 cells infected with M. bovis BCG, and this JNK and PI3K activation was mediated through PKC. Finally, we found that M. bovis BCG-induced HBD-2 mRNA gene expression in A549 cells was dependent on JNK, and PI3K determined by real-time PCR analysis, which was attenuated by inhibitors of JNK (SP600125 and AG126), and PI3K (wortmannin and Ly294002). These studies are the first to show that M. bovis BCG-induced HBD-2 mRNA expression in A549 cells is regulated at least in part through activation of signaling proteins of PKC, JNK and PI3K.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, D.F. 11340 México, Mexico.
| | | | | |
Collapse
|
144
|
Wang W, Edington HD, Jukic DM, Rao UNM, Land SR, Kirkwood JM. Impact of IFNalpha2b upon pSTAT3 and the MEK/ERK MAPK pathway in melanoma. Cancer Immunol Immunother 2008; 57:1315-21. [PMID: 18386001 PMCID: PMC11030104 DOI: 10.1007/s00262-008-0466-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/28/2008] [Indexed: 12/12/2022]
Abstract
PURPOSE High-dose IFNalpha2b (HDI) was established as the first effective adjuvant therapy for patients with high-risk resected melanoma more than a decade ago, but its fundamental molecular mechanism of action remains unclear. STAT3 and the mitogen activated protein kinases (MAPKs), especially ERK (extracellular signal-regulating kinase) and MEK (MAPK/ERK kinase), play roles in melanoma progression and host immunity. We have therefore evaluated STAT3 and MEK/ERK MAP kinases in patients with regional lymph node metastasis (stage IIIB) of melanoma in the context of a prospective neoadjuvant trial of HDI (UPCI 00-008). PATIENTS AND METHODS In the context of this trial, HDI was administered daily for 20 doses following diagnostic biopsy, and prior to definitive surgery. Immunohistochemistry for pSTAT3, phospho-MEK1/2, phospho-ERK1/2, and EGFR was performed on paired fixed (nine patients) biopsies. RESULTS HDI was found to down-regulate pSTAT3 (P = 0.008) and phospho-MEK1/2 (P = 0.008) levels significantly in tumor cells. Phospho-ERK1/2 was down-regulated by HDI in tumor cells (P = 0.015), but not in lymphoid cells. HDI down-regulated EGFR (P = 0.013), but pSTAT3 activation appeared not to be associated with EGFR expression and the MEK/ERK MAPK pathway. CONCLUSION We conclude that HDI regulates MAPK signaling differentially in melanoma tumor cells and host lymphoid cells in vivo. STAT3 activation is independent of the EGFR/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 1.32, 5117 Centre Avenue, Pittsburgh, PA 15213-2584 USA
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 1.32, 5117 Centre Avenue, Pittsburgh, PA 15213-2584 USA
| | | | - Drazen M. Jukic
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Uma N. M. Rao
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Stephanie R. Land
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 1.32, 5117 Centre Avenue, Pittsburgh, PA 15213-2584 USA
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 1.32, 5117 Centre Avenue, Pittsburgh, PA 15213-2584 USA
| |
Collapse
|
145
|
WEI XL, LIN L, HOU Y, FU X, ZHANG JY, MAO ZB, YU CL. Construction of recombinant adenovirus co-expression vector carrying the human transforming growth factor-β1 and vascular endothelial growth factor genes and its effect on anterior cruciate ligament fibroblasts. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200808010-00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
146
|
Iwata A, Miura S, Kanazawa I, Sawada M, Nukina N. α-Synuclein forms a complex with transcription factor Elk-1. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00232.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
147
|
Inagaki H, Tsuzuki S, Iino T, Inoue K, Fushiki T. Development of an in vitro system for screening the ligands of a membrane glycoprotein CD36. Cytotechnology 2008; 57:145-50. [PMID: 19003159 PMCID: PMC2553671 DOI: 10.1007/s10616-008-9123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 01/07/2008] [Indexed: 11/26/2022] Open
Abstract
It has well been known that human and rodents exhibit a preference for fats. This suggests the existence of an orosensory system responsible for the detection of dietary fats. A plasma membrane glycoprotein CD36, besides the role in the uptake of long-chain fatty acids (LCFAs) as well as oxidized low-density lipoprotein (OxLDL) in a variety of cells, has been postulated to be a candidate fat taste receptor on the tongue. Therefore, molecules that bind with CD36 to cause intracellular signaling but have fewer calories could be substitutes for dietary fats. In the present study, we developed an in vitro system for the screening of CD36 ligands using Chinese hamster ovary-K1 cells (CHO-K1) stably transfected with human or mouse CD36. When incubated with OxLDL labeled with fluorescence dye, the fluorescence was much higher in the transfected CHO-K1 cells than in non-transfected CHO-K1 cells. Incubation of the transfected cells with OxLDL caused a rapid phosphorylation of extracellular signal regulated kinase, and the degree was significantly higher compared with that in non-transfected CHO-K1 cells. The expression system using CHO-K1 cells could be a convenient tool to screen the novel ligands of CD36.
Collapse
Affiliation(s)
- Hitomi Inagaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Takashi Iino
- Pharmafoods International Co. Ltd., 24-5, Donoato-Nishimachi, Kisshoin-Ishihara, Minami-ku, Kyoto, 601-8357 Japan
| | - Kazuo Inoue
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tohru Fushiki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
148
|
Cook N, Harris A, Hopkins A, Hughes K. Scintillation proximity assay (SPA) technology to study biomolecular interactions. ACTA ACUST UNITED AC 2008; Chapter 19:Unit 19.8. [PMID: 18429228 DOI: 10.1002/0471140864.ps1908s27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scintillation proximity assay (SPA) is a versatile homogeneous technique for radioactive assays which eliminates the need for separation steps. In SPA, scintillant is incorporated into small fluomicrospheres. These microspheres or "beads" are constructed in such a way as to bind specific molecules. If a radioactive molecule is bound to the bead, it is brought into close enough proximity that it can stimulate the scintillant contained within to emit light. Otherwise, the unbound radioactivity is too distant, the energy released is dissipated before reaching the bead, and these disintegrations are not detected. In this unit, the application of SPA technology to measuring protein-protein interactions, Src Homology 2 (SH2) and 3 (SH3) domain binding to specific peptide sequences, and receptor-ligand interactions are described. Three other protocols discuss the application of SPA technology to cell-adhesion-molecule interactions, protein-DNA interactions, and radioimmunoassays. In addition, protocols are given for preparation of SK-N-MC cells and cell membranes.
Collapse
Affiliation(s)
- Neil Cook
- Amersham Biosciences Ltd., Cardiff, United Kingdom
| | | | | | | |
Collapse
|
149
|
Nakanishi M, Tomaru Y, Miura H, Hayashizaki Y, Suzuki M. Identification of transcriptional regulatory cascades in retinoic acid-induced growth arrest of HepG2 cells. Nucleic Acids Res 2008; 36:3443-54. [PMID: 18445634 PMCID: PMC2425469 DOI: 10.1093/nar/gkn066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a potent inducer of cell differentiation and growth arrest. Here, we investigated ATRA-induced regulatory cascades associated with growth arrest of the human hepatoma cell line HepG2. ATRA induced >2-fold changes in the expression of 402 genes including 55 linked to cell-cycle regulation, cell growth or apoptosis during 48 h treatment. Computational search predicted that 250 transcriptional regulatory factors (TRFs) could recognize the proximal upstream regions of any of the 55 genes. Expression of 61 TRF genes was significantly changed during ATRA incubation, providing many potential regulatory edges. We focused on six TRFs that could regulate many of the 55 genes and found a total of 160 potential edges in which the expression of each of the genes was changed later than the expression change of the corresponding regulator. RNAi knockdown of the selected TRFs caused perturbation of the respective potential targets. The genes showed an opposite regulation pattern by ATRA and specific siRNA treatments were selected as strong candidates for direct TRF targets. Finally, 36 transcriptional regulatory edges were validated by chromatin immunoprecipitation. These analyses enabled us to depict a part of the transcriptional regulatory cascades closely linked to ATRA-induced cell growth arrest.
Collapse
Affiliation(s)
- Misato Nakanishi
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Yasuhiro Tomaru
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Hisashi Miura
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Yoshihide Hayashizaki
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Masanori Suzuki
- Laboratory of Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Division of Genomics, Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 and Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Main Campus, 2-1 Hirosawa, Wako, 351-0198, Japan
- *To whom correspondence should be addressed. +81 045 508 7241+81 045 508 7370,
| |
Collapse
|
150
|
Song J, Zhang YW, Yao AH, Yu Y, Hua ZY, Pu LY, Li GQ, Li XC, Zhang F, Sheng GQ, Wang XH. Adenoviral cardiotrophin-1 transfer improves survival and early graft function after ischemia and reperfusion in rat small-for-size liver transplantation model. Transpl Int 2008; 21:372-383. [PMID: 18167151 DOI: 10.1111/j.1432-2277.2007.00616.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study was to investigate the effect of donor liver adenoviral cardiotrophin-1 (CT-1) gene transfer on early graft survival and function in rat small-for-size liver transplantation. We constructed a recombinant murine CT-1 adenoviral vector. Donor rats were transduced in vivo with adenoviruses expressing CT-1 (AdCT-1) or control vector (AdEGFP). Livers were harvested 4 days later, reduced to 40% of weight, and transplanted. A syngeneic rat orthotopic liver transplantation model was performed using 40% small-for-size grafts. Graft survival, liver function, hepatic architecture change, the degree of necrosis and apoptosis, and cell survival signaling pathways were assessed. AdCT-1 pretreatment markedly improved liver function and the survival of small-for-size grafts. In the CT-1 treatment group, hepatic architecture was well protected, apoptotic and necrotic cells were reduced; anti-apoptotic protein bcl-2 was up-regulated and pro-apoptotic cleaved caspase-3 was down-regulated, cell survival signaling pathways were activated by phosphorylation of protein kinase B (Akt), extracellular-regulated kinase (ERK) and Signal transducer and activator of transcription-3 (Stat-3) after transplantation. In conclusion, donor liver adenoviral CT-1 transfer ameliorated ischemia/reperfusion injury by decreasing hepatic necrosis and apoptosis in small-for-size liver transplantation, mediated in part by activation of the Akt, ERK, and Stat-3 survival signaling pathways. These results may provide a potential clinical strategy to improve the outcome of small-for-size liver grafts.
Collapse
Affiliation(s)
- Jun Song
- The Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|