101
|
Yu X, Li D, Kottur J, Shen Y, Kim HS, Park KS, Tsai YH, Gong W, Wang J, Suzuki K, Parker J, Herring L, Kaniskan HÜ, Cai L, Jain R, Liu J, Aggarwal AK, Wang GG, Jin J. A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models. Sci Transl Med 2021; 13:eabj1578. [PMID: 34586829 PMCID: PMC8500670 DOI: 10.1126/scitranslmed.abj1578] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interactions between WD40 repeat domain protein 5 (WDR5) and its various partners such as mixed lineage leukemia (MLL) and c-MYC are essential for sustaining oncogenesis in human cancers. However, inhibitors that block protein-protein interactions (PPIs) between WDR5 and its binding partners exhibit modest cancer cell killing effects and lack in vivo efficacy. Here, we present pharmacological degradation of WDR5 as a promising therapeutic strategy for treating WDR5-dependent tumors and report two high-resolution crystal structures of WDR5-degrader-E3 ligase ternary complexes. We identified an effective WDR5 degrader via structure-based design and demonstrated its in vitro and in vivo antitumor activities. On the basis of the crystal structure of an initial WDR5 degrader in complex with WDR5 and the E3 ligase von Hippel–Lindau (VHL), we designed a WDR5 degrader, MS67, and demonstrated the high cooperativity of MS67 binding to WDR5 and VHL by another ternary complex structure and biophysical characterization. MS67 potently and selectively depleted WDR5 and was more effective than WDR5 PPI inhibitors in suppressing transcription of WDR5-regulated genes, decreasing the chromatin-bound fraction of MLL complex components and c-MYC, and inhibiting the proliferation of cancer cells. In addition, MS67 suppressed malignant growth of MLL-rearranged acute myeloid leukemia patient cells in vitro and in vivo and was well tolerated in vivo. Collectively, our results demonstrate that structure-based design can be an effective strategy to identify highly active degraders and suggest that pharmacological degradation of WDR5 might be a promising treatment for WDR5-dependent cancers.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jithesh Kottur
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huen Suk Kim
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyogo Suzuki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - H. Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rinku Jain
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Corresponding author. (J.J.); (G.G.W.)
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Corresponding author. (J.J.); (G.G.W.)
| |
Collapse
|
102
|
Lourenco C, Resetca D, Redel C, Lin P, MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen M, Arrowsmith CH, Raught B, Penn LZ. MYC protein interactors in gene transcription and cancer. Nat Rev Cancer 2021; 21:579-591. [PMID: 34188192 DOI: 10.1038/s41568-021-00367-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor and oncoprotein MYC is a potent driver of many human cancers and can regulate numerous biological activities that contribute to tumorigenesis. How a single transcription factor can regulate such a diverse set of biological programmes is central to the understanding of MYC function in cancer. In this Perspective, we highlight how multiple proteins that interact with MYC enable MYC to regulate several central control points of gene transcription. These include promoter binding, epigenetic modifications, initiation, elongation and post-transcriptional processes. Evidence shows that a combination of multiple protein interactions enables MYC to function as a potent oncoprotein, working together in a 'coalition model', as presented here. Moreover, as MYC depends on its protein interactome for function, we discuss recent research that emphasizes an unprecedented opportunity to target protein interactors to directly impede MYC oncogenesis.
Collapse
Affiliation(s)
| | - Diana Resetca
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Cornelia Redel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Peter Lin
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Alannah S MacDonald
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Roberto Ciaccio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tristan M G Kenney
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Wei
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David W Andrews
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Structural Genomics Consortium, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
103
|
Identifying and Validating MYC:Protein Interactors in Pursuit of Novel Anti-MYC Therapies. Methods Mol Biol 2021. [PMID: 34019286 DOI: 10.1007/978-1-0716-1476-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
By identifying MYC protein-protein interactors, we aim to gain a deeper mechanistic understanding of MYC as a regulator of gene transcription and potent oncoprotein. This information can then be used to devise strategies for disrupting critical MYC protein-protein interactions to inhibit MYC-driven tumorigenesis. In this chapter, we discuss four techniques to identify and validate MYC-interacting partners. First, we highlight BioID, a powerful discovery method used to identify high-confidence proximal interactors in living cells. We also discuss bioinformatic prioritization strategies for the BioID-derived MYC-proximal complexes. Next, we discuss how protein interactions can be validated using techniques such as in vivo-in vitro pull-down assays and the proximity ligation assay (PLA). We conclude with an overview of biolayer interferometry (BLI), a quantitative method used to characterize direct interactions between two proteins in vitro. Overall, we highlight the principles of each assay and provide methodology necessary to conduct these experiments and adapt them to the study of interactors of additional proteins of interest.
Collapse
|
104
|
Zhao FY, Zhang Q, Wang JM, Jiang JY, Huyan LY, Liu BQ, Yan J, Li C, Wang HQ. BAG3 epigenetically regulates GALNT10 expression via WDR5 and facilitates the stem cell-like properties of platin-resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:119077. [PMID: 34111434 DOI: 10.1016/j.bbamcr.2021.119077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignant cancer, frequently due to its late diagnosis and high recurrence. Cancer stem cells (CSCs) from different malignancies including ovarian cancer have been linked to chemotherapy resistance and poor prognosis. Therefore, identifying the molecular mechanisms mediating therapy resistance is urgent to finding novel targets for therapy-resistant tumors. Aberrant O-glycosylation ascribed to subtle alteration of GALNT family members during malignant transformation facilitate metastasis in various cancers. The current study demonstrated that BAG3 was upregulated in platin-resistant ovarian cancer tissues and cells, and high BAG3 predicted dismal disease-free survival of patients with ovarian cancer. In addition, the current study showed that BAG3 facilitated CSC-like properties of ovarian cancer cells via regulation of GALTN10. In a term of mechanism, BAG3 epigenetically regulated GALNT10 transactivation via histone H3 lysine 4 (H3K4) presenter WDR5. We demonstrated that WDR5 increased H3K4 trimethylation (H3K4me3) modification at the promoter regions of GALNT10, facilitating recruitment of transcription factor ZBTB2 to the GALNT10 promoter. Collectively, our study uncovers an epigenetic upregulation of GALNT10 by BAG3 via WDR5 to facilitate CSCs of platin-resistant ovarian cancers, providing additional information for further identification of attractive targets with therapeutic significance in platin-resistant ovarian cancer.
Collapse
Affiliation(s)
- Fu-Ying Zhao
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Qi Zhang
- Criminal Investigation Police University of China, Shenyang 110854, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, Shenyang 110001, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Ling-Yue Huyan
- 5+3 integrated clinical medicine 103K, China Medical University, Shenyang 110026, China
| | - Bao-Qin Liu
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Chao Li
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang 110026, China.
| |
Collapse
|
105
|
Chen X, Xu J, Wang X, Long G, You Q, Guo X. Targeting WD Repeat-Containing Protein 5 (WDR5): A Medicinal Chemistry Perspective. J Med Chem 2021; 64:10537-10556. [PMID: 34283608 DOI: 10.1021/acs.jmedchem.1c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is a member of the WD40 protein family, and it is widely involved in various biological activities and not limited to epigenetic regulation in vivo. WDR5 is also involved in the initiation and development of many diseases and plays a key role in these diseases. Since WDR5 was discovered, it has been suggested as a potential disease treatment target, and a large number of inhibitors targeting WDR5 have been discovered. In this review, we discussed the development of inhibitors targeting WDR5 over the years, and the biological mechanisms of these inhibitors based on previous mechanistic studies were explored. Finally, we describe the development potential of inhibitors targeting WDR5 and prospects for further applications.
Collapse
Affiliation(s)
- Xin Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junjie Xu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guanlu Long
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
106
|
Sharma P, LaRosa C, Antwi J, Govindarajan R, Werbovetz KA. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021; 26:molecules26144213. [PMID: 34299488 PMCID: PMC8307698 DOI: 10.3390/molecules26144213] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Nitrogen-containing heterocyclic rings are common structural components of marketed drugs. Among these heterocycles, imidazole/fused imidazole rings are present in a wide range of bioactive compounds. The unique properties of such structures, including high polarity and the ability to participate in hydrogen bonding and coordination chemistry, allow them to interact with a wide range of biomolecules, and imidazole-/fused imidazole-containing compounds are reported to have a broad spectrum of biological activities. This review summarizes recent reports of imidazole/fused imidazole derivatives as anticancer agents appearing in the peer-reviewed literature from 2018 through 2020. Such molecules have been shown to modulate various targets, including microtubules, tyrosine and serine-threonine kinases, histone deacetylases, p53-Murine Double Minute 2 (MDM2) protein, poly (ADP-ribose) polymerase (PARP), G-quadraplexes, and other targets. Imidazole-containing compounds that display anticancer activity by unknown/undefined mechanisms are also described, as well as key features of structure-activity relationships. This review is intended to provide an overview of recent advances in imidazole-based anticancer drug discovery and development, as well as inspire the design and synthesis of new anticancer molecules.
Collapse
Affiliation(s)
- Pankaj Sharma
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Chris LaRosa
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
| | - Janet Antwi
- Division of Mathematics, Computer & Natural Sciences Division, Ohio Dominican University, Columbus, OH 43219, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (P.S.); (C.L.)
- Correspondence:
| |
Collapse
|
107
|
Chen W, Chen X, Li D, Zhou J, Jiang Z, You Q, Guo X. Discovery of DDO-2213 as a Potent and Orally Bioavailable Inhibitor of the WDR5-Mixed Lineage Leukemia 1 Protein-Protein Interaction for the Treatment of MLL Fusion Leukemia. J Med Chem 2021; 64:8221-8245. [PMID: 34105966 DOI: 10.1021/acs.jmedchem.1c00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is essential for the stability and methyltransferase activity of the mixed lineage leukemia 1 (MLL1) complex. Dysregulation of the MLL1 gene is associated with human acute leukemias, and the direct disruption of the WDR5-MLL1 protein-protein interaction (PPI) is emerging as an alternative strategy for MLL-rearranged cancers. Here, we represent a new aniline pyrimidine scaffold for WDR5-MLL1 inhibitors. A comprehensive structure-activity analysis identified a potent inhibitor 63 (DDO-2213), with an IC50 of 29 nM in a competitive fluorescence polarization assay and a Kd value of 72.9 nM for the WDR5 protein. Compound 63 selectively inhibited MLL histone methyltransferase activity and the proliferation of MLL translocation-harboring cells. Furthermore, 63 displayed good pharmacokinetic properties and suppressed the growth of MV4-11 xenograft tumors in mice after oral administration, first verifying the in vivo efficacy of targeting the WDR5-MLL1 PPI by small molecules.
Collapse
Affiliation(s)
- Weilin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xin Chen
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dongdong Li
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jianrui Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
108
|
Imran A, Moyer BS, Canning AJ, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Kinetics of the multitasking high-affinity Win binding site of WDR5 in restricted and unrestricted conditions. Biochem J 2021; 478:2145-2161. [PMID: 34032265 PMCID: PMC8214142 DOI: 10.1042/bcj20210253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Brandon S. Moyer
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
| | - Ashley J. Canning
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Dan Kalina
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Thomas M. Duncan
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Kelsey J. Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- The BioInspired Institute, Syracuse University, Syracuse, New York, 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
109
|
Chen T, Li K, Liu Z, Liu J, Wang Y, Sun R, Li Z, Qiu B, Zhang X, Ren G, Xu Y, Zhang Z. WDR5 facilitates EMT and metastasis of CCA by increasing HIF-1α accumulation in Myc-dependent and independent pathways. Mol Ther 2021; 29:2134-2150. [PMID: 33601056 PMCID: PMC8178527 DOI: 10.1016/j.ymthe.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy with extremely poor prognoses. The oncogenic role and prognostic value of c-Myc in CCA is not well elucidated. WD repeat domain 5 (WDR5) is a critical regulatory factor directly interacting with c-Myc to regulate c-Myc recruitment at chromosomal locations, but the interaction of WDR5 and c-Myc in CCA was uncovered. In our study, we detected WDR5 and c-Myc expression in all CCA types, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA, and evaluated their prognostic significance. Consequently, we demonstrated that WDR5 was significantly correlated with poor prognosis of CCA and that WDR5 and c-Myc co-expression was a more sensitive prognostic factor. With in vitro and in vivo experiments and bioinformatics, we showed that WDR5 interacted with the Myc box IIIb (MBIIIb) motif of c-Myc and facilitated Myc-induced HIF1A transcription, thereby promoting the epithelial-mesenchymal transition (EMT), invasion, and metastasis of CCA. Moreover, WDR5 enhanced hypoxia-inducible factor 1 subunit α (HIF-1α) accumulation by binding with histone deacetylase 2 (HDAC2) and increasing histone 3 lysine 4 acetylation (H3K4ac) deacetylation of the prolyl hydroxylase domain protein 2 (PHD2) promoter, resulting in the attenuation of chromatin opening and PHD2 expression, and eventually leading to HIF-1α stabilization and accumulation. In conclusion, WDR5 facilitated EMT and metastasis of CCA by increasing HIF-1α accumulation in a Myc-dependent pathway to promote HIF-1α transcription and a Myc-independent pathway to stabilize HIF-1α.
Collapse
Affiliation(s)
- Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoming Zhang
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| | - Guangli Ren
- Department of General Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
110
|
Yang J, Ding S. Engineering L7Ae for RNA-Only Delivery Kill Switch Targeting CMS2 Type Colorectal Cancer Cells. ACS Synth Biol 2021; 10:1095-1105. [PMID: 33939419 DOI: 10.1021/acssynbio.0c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lack of specific-targeting therapy to precisely identify and kill malignant cells while sparing others is a great challenge in colorectal cancer (CRC) treatment. In the era of molecular classification of tumors, CRC has been grouped into four Consensus Molecular Subtypes. Accounting for 37% of all types, the CMS2 group (canonical type) shows distinguishing features: WNT and MYC signaling activation. In this study, we designed an RNA-only delivery kill switch to specifically eliminate CMS2 type CRC cells. The sensing and logic processing functions are integrated by the newly engineered L7Ae, which can not only detect the stability of β-catenin protein and the presence of cytoplasm located Myc/Myc-nick, but also do logic computation. The circuit specifically eliminated HCT-116 cells while sparing other kinds of cells, showing a proof-of-principle approach to precisely target CMS2 type CRC.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
111
|
Mechanism for DPY30 and ASH2L intrinsically disordered regions to modulate the MLL/SET1 activity on chromatin. Nat Commun 2021; 12:2953. [PMID: 34012049 PMCID: PMC8134635 DOI: 10.1038/s41467-021-23268-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
Recent cryo-EM structures show the highly dynamic nature of the MLL1-NCP (nucleosome core particle) interaction. Functional implication and regulation of such dynamics remain unclear. Here we show that DPY30 and the intrinsically disordered regions (IDRs) of ASH2L work together in restricting the rotational dynamics of the MLL1 complex on the NCP. We show that DPY30 binding to ASH2L leads to stabilization and integration of ASH2L IDRs into the MLL1 complex and establishes new ASH2L-NCP contacts. The significance of ASH2L-DPY30 interactions is demonstrated by requirement of both ASH2L IDRs and DPY30 for dramatic increase of processivity and activity of the MLL1 complex. This DPY30 and ASH2L-IDR dependent regulation is NCP-specific and applies to all members of the MLL/SET1 family of enzymes. We further show that DPY30 is causal for de novo establishment of H3K4me3 in ESCs. Our study provides a paradigm of how H3K4me3 is regulated on chromatin and how H3K4me3 heterogeneity can be modulated by ASH2L IDR interacting proteins. Regulation of the MLL family of histone H3K4 methyltransferases on the nucleosome core particle (NCP) remains largely unknown. Here the authors show that intrinsically disordered regions of ASH2L and DPY30 restrict the rotational dynamics of MLL1 on the NCP, allowing more efficient enzyme-substrate engagement and higher H3K4 trimethylation activity.
Collapse
|
112
|
Dölle A, Adhikari B, Krämer A, Weckesser J, Berner N, Berger LM, Diebold M, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Gebel J, Löhr F, Dötsch V, Eilers M, Heinzlmeir S, Kuster B, Sotriffer C, Wolf E, Knapp S. Design, Synthesis, and Evaluation of WD-Repeat-Containing Protein 5 (WDR5) Degraders. J Med Chem 2021; 64:10682-10710. [PMID: 33980013 DOI: 10.1021/acs.jmedchem.1c00146] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone H3K4 methylation serves as a post-translational hallmark of actively transcribed genes and is introduced by histone methyltransferase (HMT) and its regulatory scaffolding proteins. One of these is the WD-repeat-containing protein 5 (WDR5) that has also been associated with controlling long noncoding RNAs and transcription factors including MYC. The wide influence of dysfunctional HMT complexes and the typically upregulated MYC levels in diverse tumor types suggested WDR5 as an attractive drug target. Indeed, protein-protein interface inhibitors for two protein interaction interfaces on WDR5 have been developed. While such compounds only inhibit a subset of WDR5 interactions, chemically induced proteasomal degradation of WDR5 might represent an elegant way to target all oncogenic functions. This study presents the design, synthesis, and evaluation of two diverse WDR5 degrader series based on two WIN site binding scaffolds and shows that linker nature and length strongly influence degradation efficacy.
Collapse
Affiliation(s)
- Anja Dölle
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Krämer
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janik Weckesser
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Nicola Berner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lena-Marie Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Mathias Diebold
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Jakob Gebel
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Frank Löhr
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Volker Dötsch
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
113
|
Woodley CM, Romer AS, Wang J, Guarnaccia AD, Elion DL, Maxwell JN, Guerrazzi K, McCann TS, Popay TM, Matlock BK, Flaherty DK, Lorey SL, Liu Q, Tansey WP, Weissmiller AM. Multiple interactions of the oncoprotein transcription factor MYC with the SWI/SNF chromatin remodeler. Oncogene 2021; 40:3593-3609. [PMID: 33931740 PMCID: PMC8141032 DOI: 10.1038/s41388-021-01804-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.
Collapse
Affiliation(s)
- Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David L Elion
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tyler S McCann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
114
|
Wolpaw AJ, Bayliss R, Büchel G, Dang CV, Eilers M, Gustafson WC, Hansen GH, Jura N, Knapp S, Lemmon MA, Levens D, Maris JM, Marmorstein R, Metallo SJ, Park JR, Penn LZ, Rape M, Roussel MF, Shokat KM, Tansey WP, Verba KA, Vos SM, Weiss WA, Wolf E, Mossé YP. Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Res 2021; 81:1627-1632. [PMID: 33509943 PMCID: PMC8392692 DOI: 10.1158/0008-5472.can-20-3108] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance in vivo, the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.
Collapse
MESH Headings
- Age of Onset
- Antineoplastic Agents/history
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/therapeutic use
- Child
- Drug Discovery/history
- Drug Discovery/methods
- Drug Discovery/trends
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor/history
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/trends
- Gene Expression Regulation, Neoplastic/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- N-Myc Proto-Oncogene Protein/antagonists & inhibitors
- N-Myc Proto-Oncogene Protein/genetics
- N-Myc Proto-Oncogene Protein/physiology
- Neoplasms/drug therapy
- Neoplasms/epidemiology
- Neoplasms/genetics
- Therapies, Investigational/history
- Therapies, Investigational/methods
- Therapies, Investigational/trends
Collapse
Affiliation(s)
- Adam J Wolpaw
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Richard Bayliss
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Gabriele Büchel
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Wuürzburg, Wuürzburg, Germany
| | - Chi V Dang
- Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York, New York
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
| | - W Clay Gustafson
- University of California San Francisco, UCSF Benioff Children's Hospital, San Francisco, California
| | | | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine and Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | | | - Kliment A Verba
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William A Weiss
- Departments of Neurology and Pediatrics, Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
115
|
Pellanda P, Dalsass M, Filipuzzi M, Loffreda A, Verrecchia A, Castillo Cano V, Thabussot H, Doni M, Morelli MJ, Soucek L, Kress T, Mazza D, Mapelli M, Beaulieu ME, Amati B, Sabò A. Integrated requirement of non-specific and sequence-specific DNA binding in Myc-driven transcription. EMBO J 2021; 40:e105464. [PMID: 33792944 DOI: 10.15252/embj.2020105464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.
Collapse
Affiliation(s)
- Paola Pellanda
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Virginia Castillo Cano
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain
| | | | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Mapelli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
116
|
Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021; 22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/29/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription is an elaborate process that is required to establish and maintain the identity of the more than two hundred cell types of a metazoan organism. Strict regulation of gene expression is therefore vital for tissue formation and homeostasis. An accumulating body of work found that ubiquitylation of histones, transcription factors, or RNA polymerase II is crucial for ensuring that transcription occurs at the right time and place during development. Here, we will review principles of ubiquitin-dependent control of gene expression and discuss how breakdown of these regulatory circuits leads to a wide array of human diseases.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Michael Rape
- Department of Molecular Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
117
|
Gene Transactivation and Transrepression in MYC-Driven Cancers. Int J Mol Sci 2021; 22:ijms22073458. [PMID: 33801599 PMCID: PMC8037706 DOI: 10.3390/ijms22073458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.
Collapse
|
118
|
Nagy Z, Seneviratne JA, Kanikevich M, Chang W, Mayoh C, Venkat P, Du Y, Jiang C, Salib A, Koach J, Carter DR, Mittra R, Liu T, Parker MW, Cheung BB, Marshall GM. An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nat Commun 2021; 12:1881. [PMID: 33767157 PMCID: PMC7994381 DOI: 10.1038/s41467-021-22143-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
To achieve the very high oncoprotein levels required to drive the malignant state cancer cells utilise the ubiquitin proteasome system to upregulate transcription factor levels. Here our analyses identify ALYREF, expressed from the most common genetic copy number variation in neuroblastoma, chromosome 17q21-ter gain as a key regulator of MYCN protein turnover. We show strong co-operativity between ALYREF and MYCN from transgenic models of neuroblastoma in vitro and in vivo. The two proteins form a nuclear coactivator complex which stimulates transcription of the ubiquitin specific peptidase 3, USP3. We show that increased USP3 levels reduce K-48- and K-63-linked ubiquitination of MYCN, thus driving up MYCN protein stability. In the MYCN-ALYREF-USP3 signal, ALYREF is required for MYCN effects on the malignant phenotype and that of USP3 on MYCN stability. This data defines a MYCN oncoprotein dependency state which provides a rationale for future pharmacological studies. Neuroblastoma (NB) is often driven by MYCN amplification. Here, the authors show that the most frequent genetic lesion, gain of 17q21-ter in NB leads to overexpression of ALYREF, which forms a complex with MYCN, regulating MYCN stability via the deubiquitinating enzyme, USP3.
Collapse
Affiliation(s)
- Zsuzsanna Nagy
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Maxwell Kanikevich
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - William Chang
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, Australia
| | - Pooja Venkat
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Yanhua Du
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Alice Salib
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, Australia.,School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Rituparna Mittra
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, Australia. .,School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Randwick, NSW, Australia. .,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
119
|
Zhou Q, Chen X, He H, Peng S, Zhang Y, Zhang J, Cheng L, Liu S, Huang M, Xie R, Lin T, Huang J. WD repeat domain 5 promotes chemoresistance and Programmed Death-Ligand 1 expression in prostate cancer. Theranostics 2021; 11:4809-4824. [PMID: 33754029 PMCID: PMC7978315 DOI: 10.7150/thno.55814] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose: Advanced prostate cancer (PCa) has limited treatment regimens and shows low response to chemotherapy and immunotherapy, leading to poor prognosis. Histone modification is a vital mechanism of gene expression and a promising therapy target. In this study, we characterized WD repeat domain 5 (WDR5), a regulator of histone modification, and explored its potential therapeutic value in PCa. Experimental Design: We characterized specific regulators of histone modification, based on TCGA data. The expression and clinical features of WDR5 were analyzed in two dependent cohorts. The functional role of WDR5 was further investigated with siRNA and OICR-9429, a small molecular antagonist of WDR5, in vitro and in vivo. The mechanism of WDR5 was explored by RNA-sequencing and chromatin immunoprecipitation (ChIP). Results: WDR5 was overexpressed in PCa and associated with advanced clinicopathological features, and predicted poor prognosis. Both inhibition of WDR5 by siRNA and OICR-9429 could reduce proliferation, and increase apoptosis and chemosensitivity to cisplatin in vitro and in vivo. Interestingly, targeting WDR5 by siRNA and OICR-9429 could block IFN-γ-induced PD-L1 expression in PCa cells. Mechanistically, we clarified that some cell cycle, anti-apoptosis, DNA repair and immune related genes, including AURKA, CCNB1, E2F1, PLK1, BIRC5, XRCC2 and PD-L1, were directly regulated by WDR5 and OICR-9429 in H3K4me3 and c-Myc dependent manner. Conclusions: These data revealed that targeting WDR5 suppressed proliferation, enhanced apoptosis, chemosensitivity to cisplatin and immunotherapy in PCa. Therefore, our findings provide insight into OICR-9429 is a multi-potency and promising therapy drug, which improves the antitumor effect of cisplatin or immunotherapy in PCa.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haixia He
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sen Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
120
|
Cao J, Fan T, Li Y, Du Z, Chen L, Wang Y, Wang X, Shen J, Huang X, Xiong B, Cao D. Phage-Display Based Discovery and Characterization of Peptide Ligands against WDR5. Molecules 2021; 26:1225. [PMID: 33668971 PMCID: PMC7956166 DOI: 10.3390/molecules26051225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
Abstract
WD40 is a ubiquitous domain presented in at least 361 human proteins and acts as scaffold to form protein complexes. Among them, WDR5 protein is an important mediator in several protein complexes to exert its functions in histone modification and chromatin remodeling. Therefore, it was considered as a promising epigenetic target involving in anti-cancer drug development. In view of the protein-protein interaction nature of WDR5, we initialized a campaign to discover new peptide-mimic inhibitors of WDR5. In current study, we utilized the phage display technique and screened with a disulfide-based cyclic peptide phage library. Five rounds of biopanning were performed and isolated clones were sequenced. By analyzing the sequences, total five peptides were synthesized for binding assay. The four peptides are shown to have the moderate binding affinity. Finally, the detailed binding interactions were revealed by solving a WDR5-peptide cocrystal structure.
Collapse
Affiliation(s)
- Jiawen Cao
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tiantian Fan
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yanlian Li
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhiyan Du
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ying Wang
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Wang
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingkang Shen
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xun Huang
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bing Xiong
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of College of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; (J.C.); (T.F.); (Y.L.); (Z.D.); (L.C.); (Y.W.); (X.W.); (J.S.); (X.H.)
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
121
|
Li Q, Mao F, Zhou B, Huang Y, Zou Z, denDekker AD, Xu J, Hou S, Liu J, Dou Y, Rao RC. p53 Integrates Temporal WDR5 Inputs during Neuroectoderm and Mesoderm Differentiation of Mouse Embryonic Stem Cells. Cell Rep 2021; 30:465-480.e6. [PMID: 31940490 PMCID: PMC7024586 DOI: 10.1016/j.celrep.2019.12.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/11/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
How ubiquitous transcription factors (TFs) coordinate temporal inputs from broadly expressed epigenetic factors to control cell fate remains poorly understood. Here, we uncover a molecular relationship between p53, an abundant embryonic TF, and WDR5, an essential member of the MLL chromatin modifying complex, that regulates mouse embryonic stem cell fate. Wild-type Wdr5 or transient Wdr5 knockout promotes a distinct pattern of global chromatin accessibility and spurs neuroectodermal differentiation through an RbBP5-dependent process in which WDR5 binds to, and activates transcription of, neural genes. Wdr5 rescue after its prolonged inhibition targets WDR5 to mesoderm lineage-specifying genes, stimulating differentiation toward mesoderm fates in a p53-dependent fashion. Finally, we identify a direct interaction between WDR5 and p53 that enables their co-recruitment to, and regulation of, genes known to control cell proliferation and fate. Our results unmask p53-dependent mechanisms that temporally integrate epigenetic WDR5 inputs to drive neuroectoderm and mesoderm differentiation from pluripotent cells. How ubiquitous chromatin-associated proteins and transcription factors (TFs) regulate cell fate determination is poorly understood. Li et al. show that regulation of the broadly expressed TF p53 by the chromatin-associated protein WDR5 is required for neuroectoderm versus mesoderm lineage determination in mouse embryonic stem cells (ESCs).
Collapse
Affiliation(s)
- Qiang Li
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Fengbiao Mao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanhao Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Zhenhua Zou
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jing Xu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sean Hou
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rajesh C Rao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Taubman Institute, University of Michigan, Ann Arbor, MI, USA; Section of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
122
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
123
|
Basinski BW, Balikov DA, Aksu M, Li Q, Rao RC. Ubiquitous Chromatin Modifiers in Congenital Retinal Diseases: Implications for Disease Modeling and Regenerative Medicine. Trends Mol Med 2021; 27:365-378. [PMID: 33573910 DOI: 10.1016/j.molmed.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Retinal congenital malformations known as microphthalmia, anophthalmia, and coloboma (MAC) are associated with alterations in genes encoding epigenetic proteins that modify chromatin. We review newly discovered functions of such chromatin modifiers in retinal development and discuss the role of epigenetics in MAC in humans and animal models. Further, we highlight how advances in epigenomic technologies provide foundational and regenerative medicine-related insights into blinding disorders. Combining knowledge of epigenetics and pluripotent stem cells (PSCs) is a promising avenue because epigenetic factors cooperate with eye field transcription factors (EFTFs) to direct PSC fate - a foundation for congenital retinal disease modeling and cell therapy.
Collapse
Affiliation(s)
- Brian W Basinski
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A Balikov
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Michael Aksu
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA; Section of Ophthalmology, Surgery Service, Veterans Administration Ann Arbor Healthsystem, Ann Arbor, MI, USA.
| |
Collapse
|
124
|
Li D, Shu X, Zhu P, Pei D. Chromatin accessibility dynamics during cell fate reprogramming. EMBO Rep 2021; 22:e51644. [PMID: 33480184 PMCID: PMC7857421 DOI: 10.15252/embr.202051644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Genome architecture and chromatin dynamics govern the fate and identify of a cell. Recent advances in mapping chromatin landscapes offer valuable tools for the acquisition of accurate information regarding chromatin dynamics. Here we discuss recent findings linking chromatin dynamics to cell fate control. Specifically, chromatin undergoes a binary off/on switch during iPSC reprogramming, closing and opening loci occupied by somatic and pluripotency transcription factors, respectively. This logic of a binary off/on switch may also be operational in cell fate control during normal development and implies that further approaches could potentially be developed to direct cell fate changes both in vitro and in vivo.
Collapse
Affiliation(s)
- Dongwei Li
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
| | - Ping Zhu
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhouChina
| |
Collapse
|
125
|
Guarnaccia AD, Rose KL, Wang J, Zhao B, Popay TM, Wang CE, Guerrazzi K, Hill S, Woodley CM, Hansen TJ, Lorey SL, Shaw JG, Payne WG, Weissmiller AM, Olejniczak ET, Fesik SW, Liu Q, Tansey WP. Impact of WIN site inhibitor on the WDR5 interactome. Cell Rep 2021; 34:108636. [PMID: 33472061 PMCID: PMC7871196 DOI: 10.1016/j.celrep.2020.108636] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition. We show that the WIN site inhibitor alters the interaction of WDR5 with dozens of proteins, including those linked to phosphatidylinositol 3-kinase (PI3K) signaling. As proof of concept, we demonstrate that the master kinase PDPK1 is a bona fide high-affinity WIN site binding protein that engages WDR5 to modulate transcription of genes expressed in the G2 phase of the cell cycle. This dataset expands our understanding of WDR5 and serves as a resource for deciphering the action of WIN site inhibitors.
Collapse
Affiliation(s)
- Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Christina E Wang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - J Grace Shaw
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William G Payne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Edward T Olejniczak
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
126
|
Popay TM, Wang J, Adams CM, Howard GC, Codreanu SG, Sherrod SD, McLean JA, Thomas LR, Lorey SL, Machida YJ, Weissmiller AM, Eischen CM, Liu Q, Tansey WP. MYC regulates ribosome biogenesis and mitochondrial gene expression programs through its interaction with host cell factor-1. eLife 2021; 10:e60191. [PMID: 33416496 PMCID: PMC7793627 DOI: 10.7554/elife.60191] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oncoprotein transcription factor MYC is a major driver of malignancy and a highly validated but challenging target for the development of anticancer therapies. Novel strategies to inhibit MYC may come from understanding the co-factors it uses to drive pro-tumorigenic gene expression programs, providing their role in MYC activity is understood. Here we interrogate how one MYC co-factor, host cell factor (HCF)-1, contributes to MYC activity in a human Burkitt lymphoma setting. We identify genes connected to mitochondrial function and ribosome biogenesis as direct MYC/HCF-1 targets and demonstrate how modulation of the MYC-HCF-1 interaction influences cell growth, metabolite profiles, global gene expression patterns, and tumor growth in vivo. This work defines HCF-1 as a critical MYC co-factor, places the MYC-HCF-1 interaction in biological context, and highlights HCF-1 as a focal point for development of novel anti-MYC therapies.
Collapse
Affiliation(s)
- Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Clare M Adams
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Simona G Codreanu
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Stacy D Sherrod
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - John A McLean
- Center for Innovative Technology (CIT), Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Lance R Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Christine M Eischen
- Department of Cancer Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
127
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
128
|
Ross J, Miron CE, Plescia J, Laplante P, McBride K, Moitessier N, Möröy T. Targeting MYC: From understanding its biology to drug discovery. Eur J Med Chem 2020; 213:113137. [PMID: 33460833 DOI: 10.1016/j.ejmech.2020.113137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023]
Abstract
The MYC oncogene is considered to be a high priority target for clinical intervention in cancer patients due to its aberrant activation in more than 50% of human cancers. Direct small molecule inhibition of MYC has traditionally been hampered by its intrinsically disordered nature and lack of both binding site and enzymatic activity. In recent years, however, a number of strategies for indirectly targeting MYC have emerged, guided by the advent of protein structural information and the growing set of computational tools that can be used to accelerate the hit to lead process in medicinal chemistry. In this review, we provide an overview of small molecules developed for clinical applications of these strategies, which include stabilization of the MYC guanine quadruplex, inhibition of BET factor BRD4, and disruption of the MYC:MAX heterodimer. The recent identification of novel targets for indirect MYC inhibition at the protein level is also discussed.
Collapse
Affiliation(s)
- Julie Ross
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada
| | - Caitlin E Miron
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Jessica Plescia
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Patricia Laplante
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Kevin McBride
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada; Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada; Division of Experimental Medicine, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
129
|
The Molecular 'Myc-anisms' Behind Myc-Driven Tumorigenesis and the Relevant Myc-Directed Therapeutics. Int J Mol Sci 2020; 21:ijms21249486. [PMID: 33322239 PMCID: PMC7764474 DOI: 10.3390/ijms21249486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
MYC, a well-studied proto-oncogene that is overexpressed in >20% of tumors across all cancers, is classically known as “undruggable” due to its crucial roles in cell processes and its lack of a drug binding pocket. Four decades of research and creativity led to the discovery of a myriad of indirect (and now some direct!) therapeutic strategies targeting Myc. This review explores the various mechanisms in which Myc promotes cancer and highlights five key therapeutic approaches to disrupt Myc, including transcription, Myc-Max dimerization, protein stability, cell cycle regulation, and metabolism, in order to develop more specific Myc-directed therapies.
Collapse
|
130
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
131
|
Khan P, Siddiqui JA, Maurya SK, Lakshmanan I, Jain M, Ganti AK, Salgia R, Batra SK, Nasser MW. Epigenetic landscape of small cell lung cancer: small image of a giant recalcitrant disease. Semin Cancer Biol 2020; 83:57-76. [PMID: 33220460 PMCID: PMC8218609 DOI: 10.1016/j.semcancer.2020.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar Kishor Ganti
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA; Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte 91010, CA, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
132
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
133
|
Huang D, Chen X, Chen X, Qu Y, Wang Y, Yang Y, Cheng Y. WDR5 Promotes Proliferation and Correlates with Poor Prognosis in Oesophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:10525-10534. [PMID: 33116631 PMCID: PMC7573303 DOI: 10.2147/ott.s234773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background The WD40 protein family member WD repeat domain 5 (WDR5) plays significant roles in the tumorigenesis and development of multiple organ tumours. However, the correlation between WDR5 expression and oesophageal squamous cell carcinoma (ESCC) has not been elucidated. Methods WDR5 mRNA expression data were acquired from The Cancer Genome Atlas (TCGA) database, and the expression and prognostic potential of WDR5 were assessed by immunohistochemistry (IHC) and Western blot. The cell counting kit-8 (CCK-8), colony formation assay and cell cycle evaluation were performed to verify the WDR5 function in vitro. The xenograft model was used to verify WDR5 function in vivo. Results The mRNA and protein expression levels of WDR5 were significantly upregulated in ESCC tissues compared with expression in adjacent normal tissues. Kaplan-Meier analysis showed that high WDR5 expression in ESCC patients was associated with poor overall survival (P=0.004). Multivariate analysis revealed that WDR5 overexpression emerged as an independent predictor of poor overall survival (P=0.013) in ESCC. The in vitro and in vivo experiments revealed that downregulation of WDR5 expression blocked cell proliferation of ESCC. Mechanistically, we found that WDR5 may influence ESCC proliferation by targeting the PI3K/AKT/mTOR signalling pathway. Conclusion Our data demonstrate that overexpression of WDR5 was associated with poor prognosis in patients with ESCC and that WDR5 may act as a potential novel prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Di Huang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xue Chen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yan Qu
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yuanyuan Wang
- Department of Oncology, People's Hospital of Linyi County, Dezhou, Shandong 251500, People's Republic of China
| | - Yafei Yang
- Department of Hepatobiliary Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| |
Collapse
|
134
|
Ma Q, Long W, Xing C, Jiang C, Su J, Wang HY, Liu Q, Wang RF. PHF20 Promotes Glioblastoma Cell Malignancies Through a WISP1/ BGN-Dependent Pathway. Front Oncol 2020; 10:573318. [PMID: 33117706 PMCID: PMC7574681 DOI: 10.3389/fonc.2020.573318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) stem cells are resistant to cancer therapy, and therefore responsible for tumor progression and recurrence after conventional therapy. However, the molecular mechanisms driving the maintenance of stemness and dedifferentiation are poorly understood. In this study, we identified plant homeodomain finger-containing protein 20 (PHF20) as a crucial epigenetic regulator for sustaining the stem cell-like phenotype of GBM. It is highly expressed in GBM and tightly associated with high levels of aggressiveness of tumors and potential poor prognosis in GBM patients. Knockout of PHF20 inhibits GBM cell proliferation, as well as its invasiveness and stem cell-like traits. Mechanistically, PHF20 interacts with WDR5 and binds to the promoter regions of WISP1 for its expression. Subsequently, WISP1 and BGN act in concert to regulate the degradation of β-Catenin. Our findings have identified PHF20 as a key driver of GBM malignant behaviors, and provided a potential target for developing prognosis and therapy.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery in the Third Hospital of Peking University, Peking University, Beijing, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chongming Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun Su
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States.,Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
135
|
Wang H, Wu D, Cai L, Li X, Zhang Z, Chen S. Aberrant methylation of WD-repeat protein 41 contributes to tumour progression in triple-negative breast cancer. J Cell Mol Med 2020; 24:6869-6882. [PMID: 32394588 PMCID: PMC7299681 DOI: 10.1111/jcmm.15344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
WD-repeat proteins are implicated in a variety of biological functions, most recently in oncogenesis. However, the underlying function of WD-repeat protein 41 (WDR41) in tumorigenesis remains elusive. The present study was aimed to explore the role of WDR41 in breast cancer. Combined with Western blotting and immunohistochemistry, the results showed that WDR41 was expressed at low levels in breast cancer, especially in triple-negative breast cancer (TNBC). Using methylation-specific PCR (MSP), we observed that WDR41 presented hypermethylation in MDA-MB-231 cells. Methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) management increased the expression of WDR41 in MDA-MB-231 cells, but not in MCF-10A (normal mammary epithelial cells) or oestrogen receptor-positive MCF-7 breast cancer cells. WDR41-down-regulation promoted, while WDR41-up-regulation inhibited the tumour characteristics of TNBC cells including cell viability, cell cycle and migration. Further, WDR41-up-regulation dramatically suppressed tumour growth in vivo. Mechanistically, WDR41 protein ablation activated, while WDR41-up-regulation repressed the AKT/GSK-3β pathway and the subsequent nuclear activation of β-catenin in MDA-MB-231 cells, and 5-aza-dC treatment enhanced this effect. After treatment with the AKT inhibitor MK-2206, WDR41-down-regulation-mediated activation of the GSK-3β/β-catenin signalling was robustly abolished. Collectively, methylated WDR41 in MDA-MB-231 cells promotes tumorigenesis through positively regulating the AKT/GSK-3β/β-catenin pathway, thus providing an important foundation for treating TNBC.
Collapse
Affiliation(s)
- Han Wang
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
| | - Dan Wu
- Department of oncologyXiamen Fifth hospitalXiamenChina
| | - Liangliang Cai
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
| | - Xiaohong Li
- Department of Medical OncologyCancer HospitalThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Zhiming Zhang
- Department of Breast SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Shuai Chen
- Department of oncologyXiamen Fifth hospitalXiamenChina
- Translational Medicine Research Center (TMRC)School of Pharmaceutical ScienceXiamen UniversityXiamenFujianChina
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Otolaryngology‐Head and Neck SurgeryXiamenChina
| |
Collapse
|
136
|
Shi X, Zhou R, Zheng L, Jiang M. Prognostic significance of C-MYC dysregulation in esophageal squamous cell carcinoma: a meta-analysis. Biomark Med 2020; 14:599-609. [PMID: 32462905 DOI: 10.2217/bmm-2019-0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aim: The clinicopathological and prognostic significance of C-MYC dysregulation (amplification or overexpression) in esophageal squamous cell carcinoma (ESCC) remains controversial. Therefore, we performed this meta-analysis to elucidate this relationship. Materials & methods: Available studies were retrieved from PubMed, Web of Science, EMBASE and the Cochrane Library, and ten studies with a total of 1432 patients were included in this meta-analysis. Results: Pooled results showed that C-MYC dysregulation was significantly associated with poor overall survival (hazard ratio: 1.405 [95% CI: 1.170-1.639]; p < 0.001) and lymph node metastasis (odds ratio: 1.798 [95% CI: 1.125-2.873]; p = 0.014). Subgroup analysis confirmed the results and more prominent predictive effects were observed in the C-MYC amplification group. Conclusion: C-MYC dysregulation is a promising biomarker for ESCC prognosis.
Collapse
Affiliation(s)
- Xuejiao Shi
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Renhua Zhou
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Mawei Jiang
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| |
Collapse
|
137
|
Beaulieu ME, Castillo F, Soucek L. Structural and Biophysical Insights into the Function of the Intrinsically Disordered Myc Oncoprotein. Cells 2020; 9:E1038. [PMID: 32331235 PMCID: PMC7226237 DOI: 10.3390/cells9041038] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Myc is a transcription factor driving growth and proliferation of cells and involved in the majority of human tumors. Despite a huge body of literature on this critical oncogene, our understanding of the exact molecular determinants and mechanisms that underlie its function is still surprisingly limited. Indubitably though, its crucial and non-redundant role in cancer biology makes it an attractive target. However, achieving successful clinical Myc inhibition has proven challenging so far, as this nuclear protein is an intrinsically disordered polypeptide devoid of any classical ligand binding pockets. Indeed, Myc only adopts a (partially) folded structure in some contexts and upon interacting with some protein partners, for instance when dimerizing with MAX to bind DNA. Here, we review the cumulative knowledge on Myc structure and biophysics and discuss the implications for its biological function and the development of improved Myc inhibitors. We focus this biophysical walkthrough mainly on the basic region helix-loop-helix leucine zipper motif (bHLHLZ), as it has been the principal target for inhibitory approaches so far.
Collapse
Affiliation(s)
| | | | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, 08035 Barcelona, Spain; (F.C.); (L.S.)
- Vall d’Hebron Institute of Oncology (VHIO), Edifici Cellex, 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08035 Bellaterra, Spain
| |
Collapse
|
138
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
139
|
Chacón Simon S, Wang F, Thomas LR, Phan J, Zhao B, Olejniczak ET, Macdonald JD, Shaw JG, Schlund C, Payne W, Creighton J, Stauffer SR, Waterson AG, Tansey WP, Fesik SW. Discovery of WD Repeat-Containing Protein 5 (WDR5)-MYC Inhibitors Using Fragment-Based Methods and Structure-Based Design. J Med Chem 2020; 63:4315-4333. [PMID: 32223236 DOI: 10.1021/acs.jmedchem.0c00224] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The frequent deregulation of MYC and its elevated expression via multiple mechanisms drives cells to a tumorigenic state. Indeed, MYC is overexpressed in up to ∼50% of human cancers and is considered a highly validated anticancer target. Recently, we discovered that WD repeat-containing protein 5 (WDR5) binds to MYC and is a critical cofactor required for the recruitment of MYC to its target genes and reported the first small molecule inhibitors of the WDR5-MYC interaction using structure-based design. These compounds display high binding affinity, but have poor physicochemical properties and are hence not suitable for in vivo studies. Herein, we conducted an NMR-based fragment screening to identify additional chemical matter and, using a structure-based approach, we merged a fragment hit with the previously reported sulfonamide series. Compounds in this series can disrupt the WDR5-MYC interaction in cells, and as a consequence, we observed a reduction of MYC localization to chromatin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Shaun R Stauffer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alex G Waterson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | | | - Stephen W Fesik
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
140
|
Bryan AF, Wang J, Howard GC, Guarnaccia AD, Woodley CM, Aho ER, Rellinger EJ, Matlock BK, Flaherty DK, Lorey SL, Chung DH, Fesik SW, Liu Q, Weissmiller AM, Tansey WP. WDR5 is a conserved regulator of protein synthesis gene expression. Nucleic Acids Res 2020; 48:2924-2941. [PMID: 31996893 PMCID: PMC7102967 DOI: 10.1093/nar/gkaa051] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
WDR5 is a highly-conserved nuclear protein that performs multiple scaffolding functions in the context of chromatin. WDR5 is also a promising target for pharmacological inhibition in cancer, with small molecule inhibitors of an arginine-binding pocket of WDR5 (the 'WIN' site) showing efficacy against a range of cancer cell lines in vitro. Efforts to understand WDR5, or establish the mechanism of action of WIN site inhibitors, however, are stymied by its many functions in the nucleus, and a lack of knowledge of the conserved gene networks-if any-that are under its control. Here, we have performed comparative genomic analyses to identify the conserved sites of WDR5 binding to chromatin, and the conserved genes regulated by WDR5, across a diverse panel of cancer cell lines. We show that a specific cohort of protein synthesis genes (PSGs) are invariantly bound by WDR5, demonstrate that the WIN site anchors WDR5 to chromatin at these sites, and establish that PSGs are bona fide, acute, and persistent targets of WIN site blockade. Together, these data reveal that WDR5 plays a predominant transcriptional role in biomass accumulation and provide further evidence that WIN site inhibitors act to repress gene networks linked to protein synthesis homeostasis.
Collapse
Affiliation(s)
- Audra F Bryan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Erin R Aho
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Eric J Rellinger
- Department of Pediatric General and Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Dai H Chung
- Department of Pediatric General and Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
141
|
Stewart-Morgan KR, Petryk N, Groth A. Chromatin replication and epigenetic cell memory. Nat Cell Biol 2020; 22:361-371. [PMID: 32231312 DOI: 10.1038/s41556-020-0487-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Propagation of the chromatin landscape across cell divisions is central to epigenetic cell memory. Mechanistic analysis of the interplay between DNA replication, the cell cycle, and the epigenome has provided insights into replication-coupled chromatin assembly and post-replicative chromatin maintenance. These breakthroughs are critical for defining how proliferation impacts the epigenome during cell identity changes in development and disease. Here we review these findings in the broader context of epigenetic inheritance across mitotic cell division.
Collapse
Affiliation(s)
- Kathleen R Stewart-Morgan
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Epigenetics and Cell Fate, UMR7216 CNRS, University of Paris, Paris, France
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark. .,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
142
|
Parrot C, Kurbegovic A, Yao G, Couillard M, Côté O, Trudel M. c-Myc is a regulator of the PKD1 gene and PC1-induced pathogenesis. Hum Mol Genet 2020; 28:751-763. [PMID: 30388220 DOI: 10.1093/hmg/ddy379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common monogenic disorders mainly associated with PKD1/PC1 mutations. We show herein that renal regulation in Pc1 dosage-reduced and -increased mouse models converge toward stimulation of c-Myc expression along with β-catenin, delineating c-Myc as a key Pkd1 node in cystogenesis. Enhanced renal c-Myc-induced ADPKD in SBM transgenic mice lead conversely to striking upregulation of Pkd1/Pc1 expression and β-catenin activation, lending credence for reciprocal crosstalk between c-Myc and Pc1. In adult SBM kidneys, c-Myc is strongly enriched on Pkd1 promoter with RNA pol II, consistent with Pkd1 upregulation during cystogenesis. Similar c-Myc direct binding at birth uncovers an equivalent role on Pkd1 regulation during renal developmental program. Concurrent with enriched c-Myc binding, recruitment of active chromatin modifying co-factors by c-Myc at the Pkd1 regulatory region probably opens chromatin to stimulate transcription. A similar transcriptional activation by c-Myc is also likely operant on endogenous human PKD1 gene from our transactivation analysis in response to human c-MYC upregulation. Genetic ablation of c-Myc in Pc1-reduced and -increased mouse models significantly attenuates cyst growth, proliferation and PKD progression. Our study determined a dual role for c-Myc, as a major contributor in Pc1-induced cystogenesis and in a feed-forward regulatory Pkd1-c-Myc loop mechanism that may also prevail in human ADPKD.
Collapse
Affiliation(s)
- Camila Parrot
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Almira Kurbegovic
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Guanhan Yao
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Martin Couillard
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Olivier Côté
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| | - Marie Trudel
- Institut de recherches cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de L'Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
143
|
Abstract
Targeting the function of MYC oncoproteins holds the promise of achieving conceptually new and effective anticancer therapies that can be applied to a broad range of tumors. The nature of the target however—a broadly, possibly universally acting transcription factor that has no enzymatic activity and is largely unstructured unless complexed with partner proteins—has so far defied the development of clinically applicable MYC-directed therapies. At the same time, lingering questions about exactly which functions of MYC proteins account for their pervasive oncogenic role in human tumors and need to be targeted have prevented the development of effective therapies using surrogate targets that act in critical MYC-dependent pathways. In this review, we therefore argue that rigorous testing of critical oncogenic functions and protein/protein interactions and new chemical approaches to target them are necessary to successfully eradicate MYC-driven tumors.
Collapse
Affiliation(s)
- Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, 97074 Würzburg, Germany;,
| |
Collapse
|
144
|
Oh E, Mark KG, Mocciaro A, Watson ER, Prabu JR, Cha DD, Kampmann M, Gamarra N, Zhou CY, Rape M. Gene expression and cell identity controlled by anaphase-promoting complex. Nature 2020; 579:136-140. [PMID: 32076268 PMCID: PMC7402266 DOI: 10.1038/s41586-020-2034-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/01/2020] [Indexed: 01/08/2023]
Abstract
Metazoan development requires robust proliferation of progenitor cells, whose identities are established by tightly controlled transcriptional networks 1. As gene expression is globally inhibited during mitosis, the transcriptional programs defining cell identity must be restarted in each cell cycle 2-5, yet how this is accomplished is poorly understood. Here, we identified a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters 6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites (TSS) during mitosis. This allows APC/C to decorate histones with K11/K48-branched ubiquitin chains that recruit p97/VCP and the proteasome and ensure rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and transcription re-initiation are thus controlled by the same regulator, APC/C, which provides a robust mechanism to maintain cell identity through cell division.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kevin G Mark
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Annamaria Mocciaro
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Berkeley Lights, Emeryville, CA, USA
| | - Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denny D Cha
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Coral Y Zhou
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
145
|
Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 2020; 21:255-267. [PMID: 32071436 DOI: 10.1038/s41580-020-0215-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
146
|
Tian J, Teuscher KB, Aho ER, Alvarado JR, Mills JJ, Meyers KM, Gogliotti RD, Han C, Macdonald JD, Sai J, Shaw JG, Sensintaffar JL, Zhao B, Rietz TA, Thomas LR, Payne WG, Moore WJ, Stott GM, Kondo J, Inoue M, Coffey RJ, Tansey WP, Stauffer SR, Lee T, Fesik SW. Discovery and Structure-Based Optimization of Potent and Selective WD Repeat Domain 5 (WDR5) Inhibitors Containing a Dihydroisoquinolinone Bicyclic Core. J Med Chem 2020; 63:656-675. [PMID: 31858797 PMCID: PMC6986559 DOI: 10.1021/acs.jmedchem.9b01608] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
WD repeat domain 5 (WDR5) is a member of the WD40-repeat protein family that plays a critical role in multiple chromatin-centric processes. Overexpression of WDR5 correlates with a poor clinical outcome in many human cancers, and WDR5 itself has emerged as an attractive target for therapy. Most drug-discovery efforts center on the WIN site of WDR5 that is responsible for the recruitment of WDR5 to chromatin. Here, we describe discovery of a novel WDR5 WIN site antagonists containing a dihydroisoquinolinone bicyclic core using a structure-based design. These compounds exhibit picomolar binding affinity and selective concentration-dependent antiproliferative activities in sensitive MLL-fusion cell lines. Furthermore, these WDR5 WIN site binders inhibit proliferation in MYC-driven cancer cells and reduce MYC recruitment to chromatin at MYC/WDR5 co-bound genes. Thus, these molecules are useful probes to study the implication of WDR5 inhibition in cancers and serve as a potential starting point toward the discovery of anti-WDR5 therapeutics.
Collapse
Affiliation(s)
- Jianhua Tian
- Chemical Synthesis Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Erin R. Aho
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Joseph R. Alvarado
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jonathan J. Mills
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Kenneth M. Meyers
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Rocco D. Gogliotti
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Changho Han
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jonathan D. Macdonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - J. Grace Shaw
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - John L. Sensintaffar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Tyson A. Rietz
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Lance R. Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William G. Payne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William J. Moore
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Robert J. Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shaun R. Stauffer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
147
|
Binang HB, Wang YS, Tewara MA, Du L, Shi S, Li N, Nsenga AGA, Wang C. Expression levels and associations of five long non-coding RNAs in gastric cancer and their clinical significance. Oncol Lett 2020; 19:2431-2445. [PMID: 32194743 PMCID: PMC7039045 DOI: 10.3892/ol.2020.11311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is a type of cancer that is commonly diagnosed worldwide due to a lack of early diagnostic, prognostic and therapeutic targets for this disease. The aim of the present study was to examine the expression levels of five long non-coding RNAs, namely PTPRG antisense RNA 1 (PTPRG-AS1), forkhead box P4 antisense RNA 1 (FOXP4-AS1), bladder cancer-associated transcript 2 (BLACAT2), ZXF2 and upregulated in colorectal cancer (UCC), to study their associations with patient characteristics and assess their prognostic efficacy, in order to determine the possibility of their application as GC biomarkers. The expression levels of long non-coding RNAs (lncRNAs) were determined by reverse transcription-quantitative PCR analysis of 61 pairs of GC tissues and adjacent healthy gastric mucosa tissues and GC cell lines. The Chi-square test was conducted to assess the associations of lncRNA expression levels with clinical characteristics of patients. The effect of UCC on GC cell proliferation was determined using in vitro functional experiments. The prognostic efficacy of FOXP4-AS1, BLACAT2 and UCC were examined in the Gene Expression Profiling Interactive Analysis database and those of PTPRG-AS1 were examined in the Kaplan Meier Plot database. Gene alteration frequencies of PTPRG-AS1 and BLACAT2 in GC were identified using the cBioPortal for Cancer Genomics. PTPRG-AS1, FOXP4-AS1, BLACAT2, ZXF2 and UCC were found to be upregulated in GC cell lines and GC tissues compared with adjacent normal tissues. PTPRG-AS1 and ZXF2 expression levels were associated with the expression status of the cell proliferation marker Ki67. UCC promoted the proliferation of GC cells in vitro and was associated with lymph node metastasis. Increased expression of FOXP4-AS1 indicated a favorable outcome in terms of disease-free survival, whereas high expression of PTPRG-AS1 was associated with poor survival rates for patients in different GC risk groups. BLACAT2 gene mutation was associated with poor disease-free survival outcome for patients with GC. The results suggest that PTPRG-AS1, FOXP4-AS1, BLACAT2, ZXF2 and UCC are potential biomarkers for the detection of GC at the molecular level and may be used as potential targets for GC therapy. The individual roles of these lncRNAs may be utilized for prognostic predictions.
Collapse
Affiliation(s)
- Helen Barong Binang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Marlvin Anemey Tewara
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ning Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ariston Gabriel Abakundana Nsenga
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
148
|
Wang F, Zhang J, Ke X, Peng W, Zhao G, Peng S, Xu J, Xu B, Cui H. WDR5-Myc axis promotes the progression of glioblastoma and neuroblastoma by transcriptional activating CARM1. Biochem Biophys Res Commun 2020; 523:699-706. [PMID: 31948749 DOI: 10.1016/j.bbrc.2019.12.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
The WD repeat domain 5 (WDR5), also known as SWD3 and BIG-3, is often overexpressed in cancers, however its molecular function in cancer remains to be elucidated. In this study, we found that WDR5 promoted the proliferation and self-renewal of glioblastoma and neuroblastoma cells. The data from databases and Western blot assay showed that CARM1 is a downstream gene of WDR5-Myc axis. In addition, we observed that WDR5 promoted the binding of Myc to CARM1 promoter by interacting with Myc and inducing histone 3 lysine 4 trimethylation (H3K4me3). Dual luciferase reporter system indicated that Myc binds to the upstream region (-520 to -515) before transcription start site (TSS) of CARM1 promoter. These findings suggest a novel regulatory model for the proliferation and tumorigenesis of glioblastoma and neuroblastoma by WDR5-Myc axis.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China
| | - Bo Xu
- School Hospital of Southwest University, Southwest University, Beibei, Chongqing, 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing, 400716, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
149
|
Thomas LR, Adams CM, Fesik SW, Eischen CM, Tansey WP. Targeting MYC through WDR5. Mol Cell Oncol 2020; 7:1709388. [PMID: 32158922 PMCID: PMC7051159 DOI: 10.1080/23723556.2019.1709388] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
The oncoprotein transcription factor MYC is overexpressed in most cancers and is responsible for hundreds of thousands of cancer deaths worldwide every year. MYC is also a highly validated - but currently undruggable - anti-cancer target. We recently showed that breaking the interaction of MYC with its chromatin co-factor WD repeat-containing protein 5 (WDR5) promotes tumor regression in mouse xenografts, laying the foundation for a new strategy to inhibit MYC in the clinic.
Collapse
Affiliation(s)
- Lance R. Thomas
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clare M. Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Christine M. Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
150
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|