101
|
Suttapitugsakul S, Xiao H, Smeekens J, Wu R. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. MOLECULAR BIOSYSTEMS 2017; 13:2574-2582. [PMID: 29019370 PMCID: PMC5698164 DOI: 10.1039/c7mb00393e] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) has become an increasingly important technique to analyze proteins. In popular bottom-up MS-based proteomics, reduction and alkylation are routine steps to facilitate peptide identification. However, incomplete reactions and side reactions may occur, which compromise the experimental results. In this work, we systematically evaluated the reduction step with commonly used reagents, i.e., dithiothreitol, 2-mercaptoethanol, tris(2-carboxyethyl)phosphine, or tris(3-hydroxypropyl)phosphine, and alkylation with iodoacetamide, acrylamide, N-ethylmaleimide, or 4-vinylpyridine. By using digested peptides from a yeast whole-cell lysate, the number of proteins and peptides identified were very similar using four different reducing reagents. The results from four alkylating reagents, however, were dramatically different with iodoacetamide giving the highest number of peptides with alkylated cysteine and the lowest number of peptides with incomplete cysteine alkylation and side reactions. Alkylation conditions with iodoacetamide were further optimized. To identify more peptides with cysteine, thiopropyl-sepharose 6B resins were used to enrich them, and the optimal conditions were employed for the reduction and alkylation. The enrichment resulted in over three times more cysteine-containing peptides than without enrichment. Systematic evaluation of the reduction and alkylation with different reagents can aid in a better design of bottom-up proteomic experiments.
Collapse
Affiliation(s)
- Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|
102
|
Heterodimerization of the prostaglandin E2 receptor EP2 and the calcitonin receptor CTR. PLoS One 2017; 12:e0187711. [PMID: 29095955 PMCID: PMC5667882 DOI: 10.1371/journal.pone.0187711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been found to form heterodimers and modulate or fine-tune the functions of GPCRs. However, the involvement of GPCR heterodimerization and its functional consequences in gonadal tissues, including granulosa cells, have been poorly investigated, mainly due to the lack of efficient method for identification of novel GPCR heterodimers. In this paper, we identified a novel GPCR heterodimer between prostaglandin E2 (PGE2) receptor 2 (EP2) and calcitonin (CT) receptor (CTR). High-resolution liquid chromatography (LC)-tandem mass spectrometry (MS/MS) of protease-digested EP2-coimmunoprecipitates detected protein fragments of CTR in an ovarian granulosa cell line, OV3121. Western blotting of EP2- and CTR-coimmunoprecipitates detected a specific band for EP2-CTR heterodimer. Specific heterodimerization between EP2 and CTR was also observed by fluorescence resonance energy transfer analysis in HEK293MSR cells expressing cyan- and yellow-fluorescent protein-fused EP2 and CTR, respectively. Collectively, these results provided evidence for heterodimerization between EP2 and CTR. Moreover, Ca2+ mobilization by CT was approximately 40% less potent in HEK293MSR cells expressing an EP2-CTR heterodimer, whereas cAMP production by EP2 or CT was not significantly altered compared with cells expressing EP2- or CTR alone. These functional analyses verified that CTR-mediated Ca2+ mobilization is specifically decreased via heterodimerization with EP2. Altogether, the present study suggests that a novel GPCR heterodimer, EP2-CTR, is involved in some functional regulation, and paves the way for investigation of novel biological roles of CTR and EP2 in various tissues.
Collapse
|
103
|
Liu Q, Remmelzwaal S, Heck AJR, Akhmanova A, Liu F. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Sci Rep 2017; 7:13453. [PMID: 29044157 PMCID: PMC5647383 DOI: 10.1038/s41598-017-13663-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/25/2017] [Indexed: 10/27/2022] Open
Abstract
Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding interfaces of two protein assemblies: the complex formed by MICAL3, ELKS and Rab8A, which is involved in exocytosis, and the complex of SLAIN2, CLASP2 and ch-TOG, which controls microtubule dynamics. We found that XL-MS provides valuable information to efficiently guide the design of protein fragments that are essential for protein interaction. However, we also observed a number of cross-links between polypeptide regions that were dispensable for complex formation, especially among intrinsically disordered sequences. Collectively, our results indicate that XL-MS, which renders distance restrains of linked residue pairs, accelerates the characterization of protein binding regions in combination with other biochemical approaches.
Collapse
Affiliation(s)
- Qingyang Liu
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Sanne Remmelzwaal
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Fan Liu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, The Netherlands.
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
104
|
Hauser M, Qian C, King ST, Kauffman S, Naider F, Hettich RL, Becker JM. Identification of peptide-binding sites within BSA using rapid, laser-induced covalent cross-linking combined with high-performance mass spectrometry. J Mol Recognit 2017; 31. [PMID: 28994207 DOI: 10.1002/jmr.2680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/31/2017] [Accepted: 09/17/2017] [Indexed: 11/07/2022]
Abstract
We are developing a rapid, time-resolved method using laser-activated cross-linking to capture protein-peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding-yeast mating pheromone (α-factor) and the decapeptide human gonadotropin-releasing hormone (GnRH). Cross-linking of α-factor, using a biotinylated, photoactivatable p-benzoyl-L-phenylalanine (Bpa)-modified analog, was energy-dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA-peptide complex. The cross-linked complex was trypsinized and then interrogated with nano-LC-MS/MS to identify the peptide cross-links. Cross-linking was greatly facilitated by Bpa in the peptide, but some cross-linking occurred at higher laser powers and high concentrations of a non-Bpa-modified α-factor. This was supported by experiments using GnRH, a peptide with sequence homology to α-factor, which was likewise found to be cross-linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α-factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser-activation to facilitate cross-linking of Bpa-containing molecules to proteins. The rapid cross-linking procedure and high performance of MS/MS to identify cross-links provides a method to interrogate protein-peptide interactions in a living cell in a time-resolved manner.
Collapse
Affiliation(s)
- Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Chen Qian
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Steven T King
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Fred Naider
- Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, CUNY, New York, NY, USA
- Programs in Biochemistry and Chemistry, Graduate Center, The City University of New York, New York, NY, USA
| | - Robert L Hettich
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
105
|
Hillman ET, Readnour LR, Solomon KV. Exploiting the natural product potential of fungi with integrated -omics and synthetic biology approaches. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
106
|
Eschweiler JD, Frank AT, Ruotolo BT. Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1991-2000. [PMID: 28752478 PMCID: PMC5693686 DOI: 10.1007/s13361-017-1757-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 05/21/2023]
Abstract
Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Aaron T Frank
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
107
|
Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics 2017; 14:779-797. [DOI: 10.1080/14789450.2017.1365603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
108
|
Pedde RD, Li H, Borchers CH, Akbari M. Microfluidic-Mass Spectrometry Interfaces for Translational Proteomics. Trends Biotechnol 2017; 35:954-970. [PMID: 28755975 DOI: 10.1016/j.tibtech.2017.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
Interfacing mass spectrometry (MS) with microfluidic chips (μchip-MS) holds considerable potential to transform a clinician's toolbox, providing translatable methods for the early detection, diagnosis, monitoring, and treatment of noncommunicable diseases by streamlining and integrating laborious sample preparation workflows on high-throughput, user-friendly platforms. Overcoming the limitations of competitive immunoassays - currently the gold standard in clinical proteomics - μchip-MS can provide unprecedented access to complex proteomic assays having high sensitivity and specificity, but without the labor, costs, and complexities associated with conventional MS sample processing. This review surveys recent μchip-MS systems for clinical applications and examines their emerging role in streamlining the development and translation of MS-based proteomic assays by alleviating many of the challenges that currently inhibit widespread clinical adoption.
Collapse
Affiliation(s)
- R Daniel Pedde
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Huiyan Li
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, 3101-4464 Markham St., Victoria, BC, V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montreal, QC, H4A 3T2, Canada; Proteomics Centre, Jewish General Hospital, McGill University, 3755 Cote-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Biomedical Research (CBR), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada; Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
109
|
Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans 2017; 44:994-1004. [PMID: 27528744 DOI: 10.1042/bst20160092] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success.
Collapse
|
110
|
Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771. [PMID: 28725224 PMCID: PMC5495861 DOI: 10.3389/fimmu.2017.00771] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.
Collapse
Affiliation(s)
- Els Beghein
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
111
|
Minde D, Dunker AK, Lilley KS. Time, space, and disorder in the expanding proteome universe. Proteomics 2017; 17:1600399. [PMID: 28145059 PMCID: PMC5573936 DOI: 10.1002/pmic.201600399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
Proteins are highly dynamic entities. Their myriad functions require specific structures, but proteins' dynamic nature ranges all the way from the local mobility of their amino acid constituents to mobility within and well beyond single cells. A truly comprehensive view of the dynamic structural proteome includes: (i) alternative sequences, (ii) alternative conformations, (iii) alternative interactions with a range of biomolecules, (iv) cellular localizations, (v) alternative behaviors in different cell types. While these aspects have traditionally been explored one protein at a time, we highlight recently emerging global approaches that accelerate comprehensive insights into these facets of the dynamic nature of protein structure. Computational tools that integrate and expand on multiple orthogonal data types promise to enable the transition from a disjointed list of static snapshots to a structurally explicit understanding of the dynamics of cellular mechanisms.
Collapse
Affiliation(s)
- David‐Paul Minde
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - A. Keith Dunker
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
| | - Kathryn S. Lilley
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
112
|
Luck K, Sheynkman GM, Zhang I, Vidal M. Proteome-Scale Human Interactomics. Trends Biochem Sci 2017; 42:342-354. [PMID: 28284537 DOI: 10.1016/j.tibs.2017.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/28/2023]
Abstract
Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life.
Collapse
Affiliation(s)
- Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Ivy Zhang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
113
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
114
|
Zhang X, Smits AH, van Tilburg GBA, Jansen PWTC, Makowski MM, Ovaa H, Vermeulen M. An Interaction Landscape of Ubiquitin Signaling. Mol Cell 2017; 65:941-955.e8. [PMID: 28190767 DOI: 10.1016/j.molcel.2017.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Gabrielle B A van Tilburg
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| |
Collapse
|
115
|
Leney AC, Heck AJR. Native Mass Spectrometry: What is in the Name? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:5-13. [PMID: 27909974 PMCID: PMC5174146 DOI: 10.1007/s13361-016-1545-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/11/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is nowadays one of the cornerstones of biomolecular mass spectrometry and proteomics. Advances in sample preparation and mass analyzers have enabled researchers to extract much more information from biological samples than just the molecular weight. In particular, relevant for structural biology, noncovalent protein-protein and protein-ligand complexes can now also be analyzed by MS. For these types of analyses, assemblies need to be retained in their native quaternary state in the gas phase. This initial small niche of biomolecular mass spectrometry, nowadays often referred to as "native MS," has come to maturation over the last two decades, with dozens of laboratories using it to study mostly protein assemblies, but also DNA and RNA-protein assemblies, with the goal to define structure-function relationships. In this perspective, we describe the origins of and (re)define the term native MS, portraying in detail what we meant by "native MS," when the term was coined and also describing what it does (according to us) not entail. Additionally, we describe a few examples highlighting what native MS is, showing its successes to date while illustrating the wide scope this technology has in solving complex biological questions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Aneika C Leney
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands.
- Netherlands Proteomics Center, Padualaan 8, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
116
|
Abstract
Evolutionarily conserved and pleiotropic, the translationally controlled tumor protein (TCTP) is a housekeeping protein present in eukaryotic organisms. It plays an important role in regulating many fundamental processes, such as cell proliferation, cell death, immune responses, and apoptosis. As a result of the pioneer work by Adam Telerman and Robert Amson, the critical role of TCTP in tumor reversion was revealed. Moreover, TCTP has emerged as a regulator of cell fate determination and a promising therapeutic target for cancers. The multifaceted action of TCTP depends on its ability to interact with different proteins. Through this interaction network, TCTP regulates diverse physiological and pathological processes in a context-dependent manner. Complete mapping of the entire sets of TCTP protein interactions (interactome) is essential to understand its various cellular functions and to lay the foundation for the rational design of TCTP-based therapeutic approaches. So far, the global profiling of the interacting partners of TCTP has rarely been performed, but many interactions have been identified in small-scale studies in a specific biological system. This chapter, based on information from protein interaction databases and the literature, illustrates current knowledge of the TCTP interactome.
Collapse
Affiliation(s)
- Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
117
|
Wu Q, Jiao F, Gao F, Xia C, Lv Y, Yu Q, Zhang Y, Qian X. Development and application of immobilized surfactant in mass spectrometry-based proteomics. RSC Adv 2017. [DOI: 10.1039/c7ra08874d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The synthesis process of Fe3O4@TMOS, a surfactant for the pretreatment of complex biological samples.
Collapse
Affiliation(s)
- Qiong Wu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- State Key Laboratory of Proteomics
| | - Fenglong Jiao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Chaoshuang Xia
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yayao Lv
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Qian Yu
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Xiaohong Qian
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- State Key Laboratory of Proteomics
| |
Collapse
|
118
|
Mardakheh FK, Sailem HZ, Kümper S, Tape CJ, McCully RR, Paul A, Anjomani-Virmouni S, Jørgensen C, Poulogiannis G, Marshall CJ, Bakal C. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA). MOLECULAR BIOSYSTEMS 2016; 13:92-105. [PMID: 27824369 PMCID: PMC5315029 DOI: 10.1039/c6mb00701e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.
Collapse
Affiliation(s)
- Faraz K Mardakheh
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Heba Z Sailem
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK. and Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sandra Kümper
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Christopher J Tape
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK. and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ryan R McCully
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Angela Paul
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Sara Anjomani-Virmouni
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - George Poulogiannis
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Christopher J Marshall
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
119
|
Smits AH, Borrmann A, Roosjen M, van Hest JC, Vermeulen M. Click-MS: Tagless Protein Enrichment Using Bioorthogonal Chemistry for Quantitative Proteomics. ACS Chem Biol 2016; 11:3245-3250. [PMID: 27643597 DOI: 10.1021/acschembio.6b00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epitope-tagging is an effective tool to facilitate protein enrichment from crude cell extracts. Traditionally, N- or C-terminal fused tags are employed, which, however, can perturb protein function. Unnatural amino acids (UAAs) harboring small reactive handles can be site-specifically incorporated into proteins, thus serving as a potential alternative for conventional protein tags. Here, we introduce Click-MS, which combines the power of site-specific UAA incorporation, bioorthogonal chemistry, and quantitative mass spectrometry-based proteomics to specifically enrich a single protein of interest from crude mammalian cell extracts. By genetic encoding of p-azido-l-phenylalanine, the protein of interest can be selectively captured using copper-free click chemistry. We use Click-MS to enrich proteins that function in different cellular compartments, and we identify protein-protein interactions, showing the great potential of Click-MS for interaction proteomics workflows.
Collapse
Affiliation(s)
- Arne H. Smits
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Annika Borrmann
- Department
of Bio-organic Chemistry, Faculty of Science, Institute for Molecules
and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mark Roosjen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department
of Bio-organic Chemistry, Faculty of Science, Institute for Molecules
and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jan C.M. van Hest
- Department
of Bio-organic Chemistry, Faculty of Science, Institute for Molecules
and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
120
|
Tsiatsiani L, Giansanti P, Scheltema RA, van den Toorn H, Overall CM, Altelaar AFM, Heck AJR. Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) n and (X) nK/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics. J Proteome Res 2016; 16:852-861. [PMID: 28111955 DOI: 10.1021/acs.jproteome.6b00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A key step in shotgun proteomics is the digestion of proteins into peptides amenable for mass spectrometry. Tryptic peptides can be readily sequenced and identified by collision-induced dissociation (CID) or higher-energy collisional dissociation (HCD) because the fragmentation rules are well-understood. Here, we investigate LysargiNase, a perfect trypsin mirror protease, because it cleaves equally specific at arginine and lysine residues, albeit at the N-terminal end. LysargiNase peptides are therefore practically tryptic-like in length and sequence except that following ESI, the two protons are now both positioned at the N-terminus. Here, we compare side-by-side the chromatographic separation properties, gas-phase fragmentation characteristics, and (phospho)proteome sequence coverage of tryptic (i.e., (X)nK/R) and LysargiNase (i.e., K/R(X)n) peptides using primarily electron-transfer dissociation (ETD) and, for comparison, HCD. We find that tryptic and LysargiNase peptides fragment nearly as mirror images. For LysargiNase predominantly N-terminal peptide ions (c-ions (ETD) and b-ions (HCD)) are formed, whereas for trypsin, C-terminal fragment ions dominate (z-ions (ETD) and y-ions (HCD)) in a homologous mixture of complementary ions. Especially during ETD, LysargiNase peptides fragment into low-complexity but information-rich sequence ladders. Trypsin and LysargiNase chart distinct parts of the proteome, and therefore, the combined use of these enzymes will benefit a more in-depth and reliable analysis of (phospho)proteomes.
Collapse
Affiliation(s)
| | | | | | | | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver V6T 1Z3, BC, Canada
| | | | | |
Collapse
|
121
|
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 2016; 40:161-180. [DOI: 10.1007/s00449-016-1690-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|
122
|
Rudashevskaya EL, Sickmann A, Markoutsa S. Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Rev Proteomics 2016; 13:951-964. [PMID: 27602509 DOI: 10.1080/14789450.2016.1233064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite the rapid evolution of proteomic methods, protein interactions and their participation in protein complexes - an important aspect of their function - has rarely been investigated on the proteome-wide level. Disease states, such as muscular dystrophy or viral infection, are induced by interference in protein-protein interactions within complexes. The purpose of this review is to describe the current methods for global complexome analysis and to critically discuss the challenges and opportunities for the application of these methods in biomedical research. Areas covered: We discuss advancements in experimental techniques and computational tools that facilitate profiling of the complexome. The main focus is on the separation of native protein complexes via size exclusion chromatography and gel electrophoresis, which has recently been combined with quantitative mass spectrometry, for a global protein-complex profiling. The development of this approach has been supported by advanced bioinformatics strategies and fast and sensitive mass spectrometers that have allowed the analysis of whole cell lysates. The application of this technique to biomedical research is assessed, and future directions are anticipated. Expert commentary: The methodology is quite new, and has already shown great potential when combined with complementary methods for detection of protein complexes.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| | - Albert Sickmann
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany.,b Medizinisches Proteom-Center , Ruhr-Universität Bochum , Bochum , Germany.,c School of Natural & Computing Sciences, Department of Chemistry , University of Aberdeen , Aberdeen , UK
| | - Stavroula Markoutsa
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| |
Collapse
|
123
|
Kloet SL, Makowski MM, Baymaz HI, van Voorthuijsen L, Karemaker ID, Santanach A, Jansen PWTC, Di Croce L, Vermeulen M. The dynamic interactome and genomic targets of Polycomb complexes during stem-cell differentiation. Nat Struct Mol Biol 2016; 23:682-690. [PMID: 27294783 PMCID: PMC4939079 DOI: 10.1038/nsmb.3248] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Although the core subunits of Polycomb group (PcG) complexes are well characterized, little is known about the dynamics of these protein complexes during cellular differentiation. We used quantitative interaction proteomics and genome-wide profiling to study PcG proteins in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We found that the stoichiometry and genome-wide binding of PRC1 and PRC2 were highly dynamic during neural differentiation. Intriguingly, we observed a downregulation and loss of PRC2 from chromatin marked with trimethylated histone H3 K27 (H3K27me3) during differentiation, whereas PRC1 was retained at these sites. Additionally, we found PRC1 at enhancer and promoter regions independently of PRC2 binding and H3K27me3. Finally, overexpression of NPC-specific PRC1 interactors in ESCs led to increased Ring1b binding to, and decreased expression of, NPC-enriched Ring1b-target genes. In summary, our integrative analyses uncovered dynamic PcG subcomplexes and their widespread colocalization with active chromatin marks during differentiation.
Collapse
Affiliation(s)
- Susan L Kloet
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - H Irem Baymaz
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Ino D Karemaker
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Alexandra Santanach
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biomedical Genetics, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands.,Cancer GenomiCs.nl (CGC.nl) Consortium, Center for Molecular Medicine, UMC Utrecht, The Netherlands
| |
Collapse
|