101
|
Zhou D, Lee H, Rothfuss JM, Chen DL, Ponde DE, Welch MJ, Mach RH. Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET tracer for inducible nitric oxide synthase. J Med Chem 2009; 52:2443-53. [PMID: 19323559 DOI: 10.1021/jm801556h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of position-6 substituted 2-amino-4-methylpyridine analogues was synthesized and compounds 9, 18, and 20 were identified as the inhibitors with the greatest potential to serve as PET tracers for imaging inducible nitric oxide synthase (iNOS). [(18)F]9 was synthesized and evaluated in a mouse model of lipopolysaccharide (LPS)-induced iNOS activation. In vivo biodistribution studies of [(18)F]9 indicate higher tracer uptake in the lungs of the LPS-treated mice when compared to control mice. Tracer uptake at 60 min postinjection was reduced in a blocking study using a known inhibitor of iNOS. The expression of iNOS was confirmed by Western blot analysis of lung samples from the LPS-treated mice. MicroPET studies also demonstrated accumulation of radiotracer in the lungs of the LPS-treated mice. Taken collectively, these data suggest that [(18)F]9 shows favorable properties as a PET tracer to image iNOS activation with PET.
Collapse
Affiliation(s)
- Dong Zhou
- Division of Radiological Sciences, Washington University School of Medicine, Campus Box 8225, 510 South Kingshighway Boulevard, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Yokohira M, Kuno T, Yamakawa K, Hashimoto N, Ninomiya F, Suzuki S, Saoo K, Imaida K. An intratracheal instillation bioassay system for detection of lung toxicity due to fine particles in f344 rats. J Toxicol Pathol 2009; 22:1-10. [PMID: 22271973 PMCID: PMC3246015 DOI: 10.1293/tox.22.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/04/2008] [Indexed: 11/19/2022] Open
Abstract
It is an urgent priority to establish in vivo bioassays for detection
of hazards related to fine particles, which can be inhaled into deep lung tissue by
humans. In order to establish an appropriate bioassay for detection of lung damage after
particle inhalation, several experiments were performed in rats using quartz as a typical
lung toxic particle. The results of pilot experiments suggest that Days 1 and 28 after
intratracheal instillation of 2 mg of fine test particles in vehicle are most appropriate
for detection of acute and subacute inflammatory changes, respectively. Furthermore, the
BrdU incorporation on Day 1 and the iNOS level on Day 28 proved to be suitable end-point
markers for this purpose. An examination of the toxicity of a series of particles was
performed with the developed bioassay. Although some materials, including nanoparticles,
demonstrated toxicity that was too strong for sensitive assessment, a ranking order could
be clarified. The bioassay thus appears suitable for rapid hazard identification with a
possible ranking of the toxicity of various particles at single concentrations.
Collapse
Affiliation(s)
- Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Payton A, Payne D, Mankhambo LA, Banda DL, Hart CA, Ollier WER, Carrol ED. Nitric oxide synthase 2A (NOS2A) polymorphisms are not associated with invasive pneumococcal disease. BMC MEDICAL GENETICS 2009; 10:28. [PMID: 19309520 PMCID: PMC2666671 DOI: 10.1186/1471-2350-10-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Streptococcus pneumoniae (pneumococcus) is responsible for over one million deaths per year, with young children, the elderly and immunocompromised individuals being most at risk. Approximately half of East African children have been reported to be asymptomatic carriers of pneumococcus with invasive infection occurring after the disruption of the respiratory membrane which is believed to be caused by the host immune response. Racial incidence of invasive pneumococcal disease (IPD) is higher in certain populations even after adjusting for environmental factors suggesting a genetic component to disease susceptibility. The nitric oxide synthase 2A (NOS2A) gene is responsible for the production of nitric oxide under pathological conditions including host defence against bacterial infection. Nitric oxide is a modulator of apoptotic and inflammatory cascades and endothelial permeability. We hypothesised that genetic variants within this gene may predispose to disease risk and survival. METHODS A cohort of 299 children with IPD (221 meningitis, 41 pneumonia and 37 with bacteraemia) and 931 age matched controls from Malawi were used in this study. We investigated nine haplotype tagging single nucleotide polymorphisms within the NOS2A gene and compared the presence or absence of the minor alleles in cases and controls and survivors and non-survivors within the cases. RESULTS We observed no significant associations between cases and controls or with survival in either all IPD cases or in the separate analysis of meningitis cases. A near significant association was obtained for the comparison of rs8078340 in cases and controls (p-value, 0.078). However, results were unadjusted for multiple testing. CONCLUSION Our results suggest that polymorphic variation within the NOS2A gene does not influence invasive pneumococcal disease susceptibility or survival.
Collapse
Affiliation(s)
- Antony Payton
- Centre for Integrated Genomic Medical Research, Stopford building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research, Stopford building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Limangeni A Mankhambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
| | - Daniel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
| | - C Anthony Hart
- Division of Medical Microbiology, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
| | - William ER Ollier
- Centre for Integrated Genomic Medical Research, Stopford building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enitan D Carrol
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
- Division of Medical Microbiology, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK
- Division of Child Health, University of Liverpool, Alder Hey Children's NHS Foundation Trust,, Eaton Road, Liverpool, L12 2AP, UK
| |
Collapse
|
104
|
Preventive effects of curcumin on different aspiration material-induced lung injury in rats. Pediatr Surg Int 2009; 25:83-92. [PMID: 19002695 DOI: 10.1007/s00383-008-2282-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE We have studied whether curcumin protects different pulmonary aspiration material-induced lung injury in rats. MATERIALS AND METHODS The experiments were designed in 60 Sprague-Dawley rats, randomly allotted into one of six groups (n=10): normal saline (NS, control), enteral formula (Biosorb Energy Plus, BIO), hydrochloric acid (HCl), NS+curcumin-treated, BIO+curcumin-treated, and HCl+curcumin-treated. NS, BIO, HCl were injected in to the lungs. The rats received curcumin twice daily only for 7 days. Seven days later, both lungs in all groups were examined histopathologically, immunohistochemically, and biochemically. Histopathologic examination was performed according to the presence of peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, interstitial fibrosis, granuloma, and necrosis formation. Immunohistochemical assessments were examined for the activity of inducible nitric oxide synthase (iNOS) and the expression of surfactant protein D (SP-D). Malondialdehyde (MDA), hydroxyproline (HP), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity were measured in the lung tissue. RESULTS Our findings show that curcumin inhibits the inflammatory response reducing significantly (P<0.05) all histopathological parameters in different pulmonary aspiration models. Pulmonary aspiration significantly increased the tissue HP content, MDA levels and decreased the antioxidant enzyme (SOD, GSH-Px) activities. Curcumin treatment significantly decreased the elevated tissue HP content, and MDA levels and prevented inhibition of SOD, and GSH-Px enzymes in the tissues. Furthermore, our data suggest that there is a significant reduction in the activity of iNOS and a rise in the expression of SP-D in lung tissue of different pulmonary aspiration models with curcumin therapy. CONCLUSION Our findings support the use of curcumin as a potential therapeutic agent in acute lung injury.
Collapse
|
105
|
Sun L, Guo RF, Newstead MW, Standiford TJ, Macariola DR, Shanley TP. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol 2008; 41:76-84. [PMID: 19097982 DOI: 10.1165/rcmb.2008-0202oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-10 is a potent, endogenous anti-inflammatory cytokine known to decrease cytokine and keratinocyte-derived chemokine (KC) expression. Traditionally, in vivo effects of IL-10 were extrapolated from studies employing systemic antibody neutralization. As a result, divergent data regarding the protective and/or harmful roles of IL-10 have been reported. In this study, we used a lung-specific, tetracycline-inducible IL-10 overexpression-transgenic (IL-10 OE) mouse to study the effects of IL-10 overexpression on Pseudomonas aeruginosa-induced lung inflammation and corresponding survival in mice. Overexpression of IL-10 in the lung significantly increased mortality. During the early phase after infection (6-hours after infection), neutrophil recruitment as well as cytokine (TNF-alpha) and chemokine (KC) expression were significantly decreased in the IL-10 OE mice, which resulted in attenuated bacterial clearance. In contrast, overzealous production of KC and TNF-alpha intensified neutrophil infiltration and increased vascular leakage in IL-10 OE mice at the later stage of infection (24 hours after infection). Neutrophil depletion showed impaired bacterial clearance in both control and IL-10 OE mice, and further enhanced mouse mortality, whereas exogenous administration of KC reversed this finding. Our data indicate that early neutrophil recruitment is important for combating bacterial infection, and that the inhibition of neutrophil recruitment by IL-10 results in insufficient bacteria clearance in the lung, leading to excessive development of inflammation and increased mortality.
Collapse
Affiliation(s)
- Lei Sun
- Division of Critical Care Medicine, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 109 Zina Pitcher Place, 4460 BSRB, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
106
|
Grémy O, Benderitter M, Linard C. Acute and persisting Th2-like immune response after fractionated colorectal gamma-irradiation. World J Gastroenterol 2008; 14:7075-7085. [PMID: 19084914 PMCID: PMC2776837 DOI: 10.3748/wjg.14.7075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/14/2008] [Accepted: 11/21/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate if an immune imbalance may account for the development and progression of chronic radiation enteritis. We analyzed the Th1/Th2 immune response profile early and 6 mo after fractionated colorectal irradiation. METHODS A rat model of fractionated colorectal gamma-irradiation (4-Gy fractions, 3 fractions per week) was designed to investigate the effects of cumulative dose on inflammatory mediators (cytokines and chemokines) and immune response (Th1/Th2 profile and immunosuppressive mediator IL-10) during acute (early) response and 6 mo after the end of fractionated irradiation (chronic response). Analyses were performed 1 d after the cumulative doses of 16 Gy and 36 Gy and 1 d, 3 d, and 26 wk after the cumulative dose of 52 Gy. RESULTS Without causing histological damage, fractionated radiation induced elevated expression of IL-1beta, TNFalpha, MCP-1, and iNOS in distal colonic mucosa during the early post-irradiation phase. At that time, a Th2 profile was confirmed by expression of both the Th2-specific transcription factor GATA-3 and the chemokine receptor CCR4 and by suppression of the Th1 cytokine IFNgamma/IP-10 throughout the irradiation protocol. After 6 mo, despite the 2-fold reduction of iNOS and MCP-1 levels, the Th2 profile persisted, as shown by a 50% reduction in the expression of the Th1 transcription factor T-bet, the chemokine receptor CCXCR3, and the IFNgamma/STAT1 pathway. At the same time-point, the immunosuppressive IL-10/STAT3 pathway, known to regulate the Th1/Th2 balance, was expressed, in irradiated rats, at approximately half its level as compared to controls. This suppression was associated with an overexpression of SOCS3, which inhibits the feedback of the Th1 polarization and regulates IL-10 production. CONCLUSION Colorectal irradiation induces Th2 polarization, defective IL-10/STAT3 pathway activation and SOCS3 overexpression. These changes, in turn, maintain a immunological imbalance that persists in the long term.
Collapse
|
107
|
Fontanilla R, Zagariya A, Vidyasagar D. Meconium-induced release of nitric oxide in rabbit alveolar cells. J Perinatol 2008; 28 Suppl 3:S123-6. [PMID: 19057603 DOI: 10.1038/jp.2008.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have shown meconium-induced lung injury occurs throughout release of inflammatory cytokines. The exact mechanism of cytokine-induced apoptosis is not known. In this study we hypothesized that meconium-induced apoptosis in the lungs is mediated through the production of inducible nitric oxide (NO). We studied two groups of newborn rabbit pups: one group was instilled with meconium and other with normal saline. We measured precursors of NO in lung lavage from both groups of rabbits and NO levels were calculated accordingly. The levels of NO and NO-derivatives increased significantly in both groups. However NO expression in meconium group 2 h after meconium instillation was significantly higher than in saline-instilled group suggesting NO production plays a role in meconium-induced inflammation.
Collapse
Affiliation(s)
- R Fontanilla
- Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
108
|
Oztay F, Kandil A, Gurel E, Ustunova S, Kapucu A, Balci H, Akgun-Dar K, Demirci C. The relationship between nitric oxide and leptin in the lung of rat with streptozotocin-induced diabetes. Cell Biochem Funct 2008; 26:162-71. [PMID: 17542037 DOI: 10.1002/cbf.1418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lung structural changes and immunoreactivity of endothelial (eNOS)- and inducible nitric oxide synthase (iNOS) were investigated by light microscopy in lungs of treated and untreated diabetic rats. Diabetes was induced by a single intraperitoneal (i.p.) injection of 65 mg kg(-1) streptozotocin (STZ) in Wistar albino male rats. Diabetic rats received daily i.p. doses of dexamethasone (2 mg kg(-1)), leptin (0.5 microg kg(-1)) and intramuscular insulin (20 U kg(-1)) or a combination of these drugs for 1 week starting 4 weeks after the STZ injections. After treatment, the blood levels of glucose, leptin, insulin and nitrate/nitrite (NO(3) (-)/NO(2) (-)) were measured. Dilatation of alveoli and alveolar ducts, partial alveolar wall thickening and increased eNOS- and iNOS characterized the diabetic rat lungs. High blood glucose and nitrate/nitrite levels as well as low insulin and leptin levels were also present. Treatment with insulin, dexamethasone and a combination of these drugs resulted in improvement of the structural and immunohistochemical abnormalities. The most effective treatment was insulin therapy. Leptin administration resulted in increased relative amounts of extracellular material, which led to noticeable respiratory efficiency in the diabetic rat lungs. All treatments except leptin lowered blood glucose levels. The combination of insulin and dexamethasone increased blood leptin and insulin, while the remaining diabetic rats had blood with low leptin and insulin concentrations. These results suggest that therapy with insulin plus dexamethasone but not therapy with leptin is beneficial for diabetics.
Collapse
Affiliation(s)
- Fusun Oztay
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Giebelen IAJ, Leendertse M, Dessing MC, Meijers JCM, Levi M, Draing C, von Aulock S, van der Poll T. Endogenous β-Adrenergic Receptors Inhibit Lipopolysaccharide-Induced Pulmonary Cytokine Release and Coagulation. Am J Respir Cell Mol Biol 2008; 39:373-9. [DOI: 10.1165/rcmb.2007-0439oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
110
|
Vandenbroucke E, Mehta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008; 1123:134-45. [PMID: 18375586 DOI: 10.1196/annals.1420.016] [Citation(s) in RCA: 445] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endothelium is a semi-permeable barrier that regulates the flux of liquid and solutes, including plasma proteins, between the blood and surrounding tissue. The permeability of the vascular barrier can be modified in response to specific stimuli acting on endothelial cells. Transport across the endothelium can occur via two different pathways: through the endothelial cell (transcellular) or between adjacent cells, through interendothelial junctions (paracellular). This review focuses on the regulation of the paracellular pathway. The paracellular pathway is composed of adhesive junctions between endothelial cells, both tight junctions and adherens junctions. The actin cytoskeleton is bound to each junction and controls the integrity of each through actin remodeling. These interendothelial junctions can be disassembled or assembled to either increase or decrease paracellular permeability. Mediators, such as thrombin, TNF-alpha, and LPS, stimulate their respective receptor on endothelial cells to initiate signaling that increases cytosolic Ca2+ and activates myosin light chain kinase (MLCK), as well as monomeric GTPases RhoA, Rac1, and Cdc42. Ca2+ activation of MLCK and RhoA disrupts junctions, whereas Rac1 and Cdc42 promote junctional assembly. Increased endothelial permeability can be reversed with "barrier stabilizing agents," such as sphingosine-1-phosphate and cyclic adenosine monophosphate (cAMP). This review provides an overview of the mechanisms that regulate paracellular permeability.
Collapse
Affiliation(s)
- Emily Vandenbroucke
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illonois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
111
|
Guzel A, Basaran UN, Aksu B, Kanter M, Yalcin O, Aktas C, Guzel A, Karasalihoglu S. Protective effects of S-methylisothiourea sulfate on different aspiration materials-induced lung injury in rats. Int J Pediatr Otorhinolaryngol 2008; 72:1241-50. [PMID: 18573544 DOI: 10.1016/j.ijporl.2008.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the efficiency of inducible nitric oxide synthase (iNOS) specific inhibitor, S-methylisothiourea sulfate (SMT) in preventing lung injury after different pulmonary aspiration materials in rats. MATERIAL AND METHODS The experiments were performed in 80 Sprague-Dawley rats, ranging in weight from 220 to 250 g, randomly allotted into one of the eight groups (n=10): normal saline (NS, control), Biosorb Energy Plus (BIO), sucralfate (SUC), hydrochloric acid (HCl), NS+SMT treated, BIO+SMT treated, SUC+SMT treated, and HCl+SMT treated. NS, BIO, SUC, HCl were injected in to the lungs in a volume of 2 ml/kg. The rats received twice daily intraperitoneal injections of 20 mg(kg day) SMT (Sigma Chemical Co.) for 7 days. Seven days later, rats were killed, and both lungs in all groups were examined immunohistochemically and histopathologically. RESULTS Our data show that SMT inhibits the inflammatory response significantly reducing (p<0.05) peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, interstitial fibrosis, granuloma, and necrosis formation in different pulmonary aspiration models. Furthermore, our data suggest that there is a significant reduction in the activity of iNOS and arise in the expression of surfactant protein D in lung tissue of different pulmonary aspiration models with SMT therapy. CONCLUSION It was concluded that SMT treatment might be beneficial in lung injury, therefore shows potential for clinical use.
Collapse
Affiliation(s)
- Ahmet Guzel
- Trakya University Faculty of Medicine, Department of Pediatrics, 22030 Edirne, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Farley KS, Wang LF, Law C, Mehta S. Alveolar macrophage inducible nitric oxide synthase-dependent pulmonary microvascular endothelial cell septic barrier dysfunction. Microvasc Res 2008; 76:208-16. [PMID: 18708074 DOI: 10.1016/j.mvr.2008.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/24/2008] [Accepted: 07/17/2008] [Indexed: 11/29/2022]
Abstract
Inducible nitric oxide (NO) synthase (iNOS) from neutrophils and alveolar macrophages (AM) contributes to the pathophysiology of murine septic acute lung injury (ALI). It is not known if AM iNOS has a direct effect on septic pulmonary microvascular endothelial cell (PMVEC) permeability. We hypothesized that AM iNOS mediates PMVEC permeability in vitro under septic conditions through NO and peroxynitrite. 100,000 confluent PMVEC on cell-culture inserts were co-incubated with iNOS+/+ vs. iNOS-/- AM, in various ratios of AM to PMVEC. PMVEC injury was assessed by trans-PMVEC Evans Blue-labelled albumin flux in the presence or absence of cytomix (equimolar TNF-alpha, IL-1beta and IFN-gamma). Cytomix stimulation dose-dependently increased trans-PMVEC EB-albumin flux, which was exaggerated (1.4+/-0.1% vs. 0.4+/-0.1% in unstimulated PMVEC, p<0.05) in the presence of iNOS+/+, but not iNOS-/-, AM in the upper compartment. Similarly, iNOS+/+, but not iNOS-/-, AM in the lower compartment also enhanced septic trans-PMVEC albumin leak. The mechanism of iNOS-dependent septic PMVEC permeability was pursued through pharmacologic studies with inhibitors of NOS, and scavengers of NO, superoxide, and peroxynitrite, and treatment of PMVEC with the NO donor, DETA-NONOate. Septic iNOS+/+ AM-dependent trans-PMVEC albumin leak was significantly attenuated by pharmacologic iNOS inhibition (L-NAME and 1400W), and scavenging of either NO (oxyhemoglobin), superoxide (PEG-SOD), or peroxynitrite (FeTPPS). Exogenous NO (DETA-NONOate) had no effect on PMVEC permeability. These data are consistent with a direct role of AM iNOS in septic PMVEC barrier dysfunction, which is likely mediated, in part, through peroxynitrite.
Collapse
Affiliation(s)
- K S Farley
- Centre for Critical Illness Research, Division of Respirology, Lawson Health Research Institute, London Health Sciences Center, London, Ontario, Canada
| | | | | | | |
Collapse
|
113
|
Feng Q, Ren Y, Wang Y, Ma H, Xu J, Zhou C, Yin Z, Luo L. Anti-inflammatory effect of SQC-beta-CD on lipopolysaccharide-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:51-58. [PMID: 18495394 DOI: 10.1016/j.jep.2008.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/21/2007] [Accepted: 03/06/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Shuang-Qing-Cao (SQC) is a folk Chinese medicinal formula. The therapeutic effects of inclusion complexation of SQC extract in beta-cyclodextrin (SQC-beta-CD) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) were studied in mice. MATERIALS AND METHODS Two protocols were designed for administration of SQC-beta-CD (10 and 20 mg/kg body weight) or DEX (2 mg/kg). According to Protocol A we intraperitoneally injected diluent (saline with 0.5% Tween 80), SQC-beta-CD or DEX respectively into mice 30 min and 3h after LPS challenge. Alternatively, in Protocol B we administered diluent, SQC-beta-CD or DEX 3h before and 30 min after LPS challenge. RESULTS The histological results showed that SQC-beta-CD (20 mg/kg) protected mice from LPS-induced ALI such as oedema, haemorrhage, blood vessel and alveolar structural damage. Furthermore, SQC-beta-CD inhibited LPS-increased pulmonary MPO activity and migration of polymorphonuclear neutrophils (PMNs) into bronchoalveolar lavage fluid (BALF). Immunohistochemical experiment demonstrated that SQC-beta-CD decreased inducible nitric oxide synthase (iNOS) expression in lung 24h after LPS administration. Consequently, SQC-beta-CD prevented LPS-induced nitric oxide (NO) release in BALF. CONCLUSIONS The results indicated that SQC-beta-CD is greatly effective in inhibiting ALI. The present study indicated that SQC-beta-CD acted as a potential therapeutic reagent for treating ALI.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Shelton JL, Wang L, Cepinskas G, Inculet R, Mehta S. Human neutrophil-pulmonary microvascular endothelial cell interactions in vitro: differential effects of nitric oxide vs. peroxynitrite. Microvasc Res 2008; 76:80-8. [PMID: 18616952 DOI: 10.1016/j.mvr.2008.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/19/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Sepsis-induced acute lung injury is characterized by activation and injury of pulmonary microvascular endothelial cells (PMVEC), increased neutrophil-PMVEC adhesion and migration, and trans-PMVEC high-protein edema. Inducible NO synthase (iNOS) inhibits septic murine neutrophil migration in vivo and in vitro. The effects of NO in human neutrophil-PMVEC interactions are not known. We isolated human PMVEC using magnetic bead-bound anti-PECAM antibody. Confluent PMVEC at passage 3-4 were co-cultured with human neutrophils for assessment of neutrophil-PMVEC adhesion, and trans-PMVEC neutrophil migration and Evans-Blue dye-labeled albumin leak. Two NO donors (spermine-NONOate, S-nitroso-N-acetylpenicillamine) attenuated both cytomix-enhanced neutrophil-PMVEC adhesion by 64+/-14% (p<0.01) and 32+/-3% (p<0.05), respectively, and cytomix-induced trans-PMVEC neutrophil migration by 85+/-16% (p<0.01) and 43+/-5% (p<0.01), respectively. Correspondingly, iNOS inhibition with 1400W enhanced cytomix-stimulated neutrophil migration by 52+/-3% (p<0.01), but had no effect on neutrophil-PMVEC adhesion. Conversely, a peroxynitrite donor (SIN-1) increased both neutrophil-PMVEC adhesion (38+/-2% vs. 14+/-1% control, p<0.01) and trans-PMVEC neutrophil migration; with both effects were completely inhibited by scavenging of NO, superoxide, or peroxynitrite (p<0.05 for each). Scavenging of peroxynitrite also eliminated cytomix-induced neutrophil adhesion and migration. Blocking CD18-dependent neutrophil adhesion prevented cytomix-stimulated trans-PMVEC EB-albumin leak (p<0.05), while inhibiting neutrophil migration paradoxically enhanced cytomix-stimulated EB-albumin leak (11+/-1% vs. 7+/-0.5%, p<0.01). FMLP-induced neutrophil migration had no effect on trans-PMVEC EB-albumin leak. In summary, we report differential effects, including the inhibitory action of NO and stimulatory effect of ONOO(-) on human neutrophil-PMVEC adhesion and trans-PMVEC migration under cytomix stimulation. Moreover, neutrophil-PMVEC adhesion, but not trans-PMVEC migration, contributes to human PMVEC barrier dysfunction.
Collapse
Affiliation(s)
- Jennifer L Shelton
- Department of Medicine, Division of Respirology, London Health Sciences Center, Centre for Critical Illness Research, Lawson Health Research Institute University of Western Ontario, London, Ontario Canada
| | | | | | | | | |
Collapse
|
115
|
Ramnath RD, Ng SW, Guglielmotti A, Bhatia M. Role of MCP-1 in endotoxemia and sepsis. Int Immunopharmacol 2008; 8:810-818. [PMID: 18442784 DOI: 10.1016/j.intimp.2008.01.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/22/2022]
Abstract
Sepsis is a complex clinical syndrome resulting from a harmful host inflammatory response to infection. Similarly, lipopolysaccharide (LPS) induced endotoxemia is marked by the activation of inflammatory responses, which can lead to shock, multiple organ damage and even death. Inflammatory mediator, chemokines are known to play an important role in the pathogenesis of sepsis and endotoxemia. Monocyte chemoattractant protein (MCP)-1, a prototype of CC chemokines, is a potent chemoattractant and a regulatory mediator involved in a variety of inflammatory diseases. The objective of this study is to investigate the role of MCP-1, by using bindarit, a blocker of MCP-1 synthesis, in murine models of sepsis and endotoxemia. Treatment with bindarit both prophylactically and therapeutically significantly (P<0.05) reduced MCP-1 levels in the lungs and liver in both sepsis and endotoxemia. In addition, prophylactic and therapeutic treatment with bindarit significantly (P<0.05) protected mice against sepsis and endotoxemia, as evidenced by the attenuation in lung and liver myeloperoxidase (MPO) activity, an indicator of neutrophil recruitment. The protective effect of bindarit was further confirmed by histological examination of lung and liver sections. Treatment with bindarit reduced lung and liver injury as indicated by decreased thickening of alveolar and neutrophil infiltration in CLP-induced sepsis and LPS-induced endotoxemia. Considering these results, we propose that anti-MCP-1 strategies may be of potential therapeutic value in the treatment of sepsis and endotoxemia.
Collapse
|
116
|
Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. Pulmonary complications in diabetes mellitus. Chron Respir Dis 2008; 5:101-8. [DOI: 10.1177/1479972307086313] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clear decrements in lung function have been reported in patients with diabetes over the past two decades, and many reports have suggested plausible pathophysiological mechanisms. However, there are no reports of functional limitations of activities of daily living ascribable to pulmonary disease in patients with diabetes. This review attempts to summarize the available information from the present literature, to describe the nature of the lung dysfunction in diabetes and the emerging clinical implications of such dysfunction.
Collapse
Affiliation(s)
- A Kaparianos
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece
| | - E Argyropoulou
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece
| | - F Sampsonas
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece
| | - K Karkoulias
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece
| | - M Tsiamita
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece
| | - K Spiropoulos
- Division of Pneumonology, Internal Medicine Department, Medical School of Patras, Regional University Hospital, Patras, Greece,
| |
Collapse
|
117
|
Trujillo G, O'Connor EC, Kunkel SL, Hogaboam CM. A novel mechanism for CCR4 in the regulation of macrophage activation in bleomycin-induced pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1209-21. [PMID: 18403600 DOI: 10.2353/ajpath.2008.070832] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage polarization into M1 or M2 phenotypes dictates the nature, duration, and severity of an inflammatory response. The objective of this study was to examine the role of CC chemokine receptor 4 (CCR4) in macrophage polarization during pulmonary oxidative injury in wild-type [WT (CCR4(+/+))] and CCR4-deficient (CCR4(-/-)) mice. Intrapulmonary administration of bleomycin sulfate provoked lethal inflammatory and fibrotic responses in WT (CCR4(+/+)) mice, but such responses were absent in CCR4(-/-) mice. Transcript and protein analyses of alveolar and bone marrow-derived macrophages showed that cells isolated from CCR4(-/-) mice did not exhibit CCL17-dependent M1 activation in response to bleomycin. Instead, CCR4(-/-) macrophages showed an M2 phenotype characterized by significantly elevated expression of arginase 1 and FIZZ1 (found in inflammatory zone 1), particularly during the peak of pulmonary inflammation. Compared with WT (CCR4(+/+)) mice, CCR4(-/-) mice exhibited a significant increase in the expression of the nonsignaling CC chemokine scavenging receptor D6 in whole lung samples and isolated macrophages. Thus, these results demonstrate that CCL17-dependent activation of CCR4 in macrophages plays a central role in free radical-induced pulmonary injury and repair.
Collapse
Affiliation(s)
- Glenda Trujillo
- Immunology Program, Department of Pathology, University of Michigan, 4071 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
118
|
Kim HA, Kim SH, Ko HM, Choi JH, Kim KJ, Oh SH, Cho KO, Choi IW, Im SY. Nitric oxide plays a key role in the platelet-activating factor-induced enhancement of resistance against systemic candidiasis. Immunology 2008; 124:428-35. [PMID: 18397269 DOI: 10.1111/j.1365-2567.2007.02795.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Platelet-activating factor (PAF) has been demonstrated to augment resistance against Candida albicans infection. In this study, the role of nitric oxide (NO) in PAF-induced resistance in the kidneys was investigated. Pretreatment of the C. albicans-infected mice with PAF resulted in strong expression of messenger RNA (mRNA) and the protein synthesis of inducible nitric oxide synthase (iNOS). These PAF effects were inhibited to a significant degree by pretreatment with the nuclear factor-kappaB inhibitor, pyrrolidinedithiocarbamate. Pretreatment with PAF protected the mice from death caused by C. albicans infection and reduced the growth of fungus in the kidneys. The protective activity of PAF was abrogated by pretreatment with the iNOS inhibitor, aminoguanidine, and in the iNOS(-/-) mice. The PAF markedly increased the infiltration of neutrophils, but not macrophages, and also enhanced the mRNA expression levels of the CXC chemokine, keratinocyte-derived chemokine, in C. albicans-infected kidneys. These effects of PAF were attenuated in the aminoguanidine-treated mice and the iNOS(-/-) mice. These data show that NO plays an important role in PAF-induced protection against C. albicans.
Collapse
Affiliation(s)
- Han-A Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hauser B, Matejovic M, Radermacher P. Nitric oxide, leukocytes and microvascular permeability: causality or bystanders? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:104. [PMID: 18226179 PMCID: PMC2374610 DOI: 10.1186/cc6214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increased microvascular permeability resulting in tissue edema is a hallmark of sepsis-related microcirculatory failure, and leukocyte–endothelium interaction is thought to assume major importance in this context. However, the role of nitric oxide (NO) in the interplay of inflammation, leukocyte–endothelium interaction and increased microcirculatory permeability is still a matter of debate. Hollenberg et al. now report, in the previous issue of Critical Care, that neither genetic deletion nor pharmacologic blockade of the inducible isoform of the NO synthase (iNOS) affected the sepsis-related aggravation of leukocyte rolling and adhesion, whereas iNOS inhibition attenuated microvascular permeability. The authors conclude that excess NO resulting from iNOS activation is important in modulating vascular permeability during sepsis, but that this effect is independent of its action on leukocytes.
Collapse
|
120
|
van Zoelen MAD, de Vos AF, Larosa GJ, Draing C, von Aulock S, van der Poll T. Intrapulmonary delivery of ethyl pyruvate attenuates lipopolysaccharide- and lipoteichoic acid-induced lung inflammation in vivo. Shock 2007; 28:570-5. [PMID: 17577142 DOI: 10.1097/shk.0b013e31804d40be] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ethyl pyruvate (EP) is a stable pyruvate derivative that has been shown to exert anti-inflammatory effects in various models of systemic inflammation including endotoxemia. We here sought to determine the local effects of EP, after intrapulmonary delivery, in models of lung inflammation induced by instillation via the airways of either lipopolysaccharide (LPS, a constituent of the gram-negative bacterial cell wall) or lipoteichoic acid (LTA, a component of the gram-positive bacterial cell wall). For this, we first established that EP dose dependently reduced the responsiveness of mouse MH-S alveolar macrophages and mouse MLE-15 and MLE-12 respiratory epithelial cells to stimulation with LPS or LTA in vitro. We then showed that intranasal administration of EP dose dependently inhibited tumor necrosis factor alpha release in bronchoalveolar lavage fluid of mice challenged with either LPS or LTA via the airways. Moreover, EP reduced the recruitment of neutrophils into the bronchoalveolar space after either LPS or LTA administration. These data suggest that intrapulmonary delivery of EP diminishes lung inflammation induced by LPS or LTA, at least in part by targeting alveolar macrophages and respiratory epithelial cells.
Collapse
|
121
|
Koch A, Boehm O, Zacharowski PA, Loer SA, Weimann J, Rensing H, Foster SJ, Schmidt R, Berkels R, Reingruber S, Zacharowski K. Inducible nitric oxide synthase and heme oxygenase-1 in the lung during lipopolysaccharide tolerance and cross tolerance. Crit Care Med 2007; 35:2775-84. [PMID: 17901834 DOI: 10.1097/01.ccm.0000288122.24212.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Pretreatment with low-dose lipopolysaccharide protects cells/organs against a subsequent lethal Gram-negative (lipopolysaccharide tolerance) or Gram-positive (cross tolerance) stimulus. We determined whether this occurs in the rat lung. The involvement of inducible nitric oxide synthase and heme oxygenase-1 was evaluated. DESIGN Laboratory study. SETTING University hospital laboratory. SUBJECTS Anesthetized male Wistar rats. INTERVENTIONS To test the hypothesis, rats received saline or lipopolysaccharide (1 mg/kg). At 2, 4, 8, 16, or 24 hrs later, blood samples and lung tissue were taken to determine messenger RNA, protein concentration, and activity of inducible nitric oxide synthase and heme oxygenase-1. In additional experiments, rats were challenged with lipopolysaccharide (1 mg/kg) and subjected to Gram-negative (lipopolysaccharide) or Gram-positive (lipoteichoic acid and peptidoglycan) shock 24 hrs later. These studies were carried out in the presence and absence of inducible nitric oxide synthase or heme oxygenase-1 inhibitors (1400W or tin protoporphyrin IX). Following 6 hrs of shock, lung tissue was taken to determine lung damage and heme oxygenase-1 concentration and activity. MEASUREMENTS AND MAIN RESULTS In the rat lung, lipopolysaccharide (1 mg/kg) induced a significant increase in inducible nitric oxide synthase protein at 8 hrs with a corresponding increase in plasma nitrate/nitrite at 8-16 hrs. Simultaneously, heme oxygenase-1 messenger RNA transcripts were observed at 8-16 hrs, and maximal expression of the protein followed (24 hrs). Pretreatment with low-dose lipopolysaccharide reduced myeloperoxidase activity (neutrophil infiltration) and wet-dry ratio (pulmonary edema) in the lungs of animals subjected to Gram-negative or Gram-positive shock, demonstrating tolerance. Pretreatment with low-dose lipopolysaccharide and the selective inducible nitric oxide synthase inhibitor 1400W reduced heme oxygenase-1 protein expression, and lung protection was abolished. Tin protoporphyrin IX did not affect heme oxygenase-1 expression, but heme oxygenase activity and lung protection were significantly reduced. CONCLUSIONS We propose that nitric oxide (most likely inducible nitric oxide synthase derived) regulates the induction of heme oxygenase-1 in the lung, which in turn plays an important part in pulmonary protection during lipopolysaccharide tolerance and cross tolerance.
Collapse
Affiliation(s)
- Alexander Koch
- Molecular Cardioprotection and Inflammation Group, Department of Anesthesia, Bristol University, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Inducible nitric oxide synthase and heme oxygenase-1 in the lung during lipopolysaccharide tolerance and cross tolerance. Crit Care Med 2007. [DOI: 10.1097/00003246-200712000-00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
123
|
Abstract
The role of oxidative stress has been well appreciated in the development of sepsis-induced acute lung injury (ALI). Oxidative stress in sepsis-induced ALI is believed to be initiated by products of activated lung macrophages and infiltrated neutrophils, promptly propagating to lung epithelial and endothelial cells. This leads to tissue damage and organ dysfunction. On stimulation, neutrophils (PMNs) enable their migration machinery. The lung undergoes changes favoring adhesion and transmigration of PMNs, resulting in PMN accumulation in lung, which is a characteristic of sepsis-induced ALI. Oxidative stress turns on the redox-sensitive transcription factors (NF-kappaB, AP-1), resulting in a large output of proinflammatory cytokines and chemokines, which further aggravate inflammation and oxidative stress. During the process, transcription factor nuclear factor-erythroid 2-p45-related factor 2 (Nrf2) and heme oxygenase (HO) appear to play the counterbalancing roles to limit the propagation of oxidative stress and inflammatory responses in lung. Many antioxidants have been tested to treat sepsis-induced ALI in animal models and in patients with sepsis. However, the results are inconclusive. In this article, we focus on the current understanding of the pathogenesis of sepsis-induced ALI and novel antioxidant strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Ren-Feng Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA.
| | | |
Collapse
|
124
|
Meyer S, Z'graggen BR, Blumenthal S, Borgeat A, Ganter MT, Reyes L, Booy C, Neff TA, Spahn DR, Beck-Schimmer B. Hypoxia attenuates effector-target cell interaction in the airway and pulmonary vascular compartment. Clin Exp Immunol 2007; 150:358-67. [PMID: 17892511 PMCID: PMC2219348 DOI: 10.1111/j.1365-2249.2007.03495.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leucocyte infiltration is known to play an important role in hypoxia-induced tissue damage. However, little information is available about hypoxia and interaction of effector (neutrophils) with target cells (alveolar epithelial cells, AEC; rat pulmonary artery endothelial cells, RPAEC). The goal of this study was to elucidate hypoxia-induced changes of effector-target cell interaction. AEC and RPAEC were exposed to 5% oxygen for 2-6 h. Intercellular adhesion molecule-1 (ICAM-1) expression was determined and cell adherence as well as cytotoxicity assays were performed. Nitric oxide and heat shock protein 70 (HSP70) production was assessed in target cells. Under hypoxic conditions enhanced ICAM-1 production was found in both cell types. This resulted in an increase of adherent neutrophils to AEC and RPAEC. The death rate of hypoxia-exposed target cells decreased significantly in comparison to control cells. Nitric oxide (NO) concentration was enhanced, as was production of HSP70 in AEC. Blocking NO production in target cells resulted in increased cytotoxicity in AEC and RPAEC. This study shows for the first time that target cells are more resistant to effector cells under hypoxia, suggesting hypoxia-induced cell protection. An underlying mechanism for this phenomenon might be the protective effect of increased levels of NO in target cells.
Collapse
Affiliation(s)
- S Meyer
- Institute of Anaesthesiology, and Institute of Physiology and Center for Intergrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Shelton JL, Wang L, Cepinskas G, Sandig M, Scott JA, North ML, Inculet R, Mehta S. Inducible NO synthase (iNOS) in human neutrophils but not pulmonary microvascular endothelial cells (PMVEC) mediates septic protein leak in vitro. Microvasc Res 2007; 74:23-31. [PMID: 17451752 DOI: 10.1016/j.mvr.2007.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/21/2007] [Accepted: 02/28/2007] [Indexed: 01/29/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is characterized by injury of the pulmonary microvascular endothelial cells (PMVEC) leading to high-protein pulmonary edema. Inducible NO synthase (iNOS) mediates trans-PMVEC protein leak in septic mice in vivo and in murine PMVEC under septic conditions in vitro, but the role of iNOS in human PMVEC protein leak has not been addressed. We hypothesized that iNOS in human neutrophils, but not human PMVEC, mediates septic trans-PMVEC protein leak in vitro. We isolated human PMVEC from lung tissue using magnetic bead-bound anti-PECAM antibody and assessed Evans blue albumin leak across human PMVEC monolayers under septic conditions in the presence/absence of human neutrophils. PMVEC were used at passages 3-4, seeded on 3 mum Transwell inserts and grown to confluence. Cytomix-stimulated trans-PMVEC albumin leak was not attenuated by pre-treatment with 1400 W, a selective iNOS inhibitor, or l-NAME, a non-selective NOS inhibitor. In neutrophil-PMVEC co-culture, basal unstimulated trans-EB-albumin leak was 0.6+/-0.3%, which was increased by cytomix stimulation to 11.5+/-4.4%, p<0.01. Cytomix-stimulated EB-albumin leak in neutrophil-PMVEC co-cultures was inhibited by pre-treatment with 1400 W (3.8+/-1.0%, p<0.05) or l-NAME (4.0+/-1.1%, p<0.05). Pre-treatment of neutrophil-PMVEC co-cultures with PEG-SOD (superoxide scavenger) and FeTPPS (peroxynitrite scavenger) also significantly attenuated neutrophil-dependent cytomix-stimulated leak (4.7+/-3.0%, p<0.05; 0.5+/-1.0%, p<0.01, respectively). In conclusion, trans-human PMVEC albumin leak under septic conditions is dependent on iNOS activity specifically in neutrophils, but not in PMVEC themselves. Septic neutrophil-dependent trans-PMVEC albumin leak may be mediated by peroxynitrite.
Collapse
Affiliation(s)
- Jennifer L Shelton
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, Department of Medicine, London Health Sciences Center-Victoria Hospital, University of Western Ontario, 800 Commissioner's Road, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Itoh T, Obata H, Murakami S, Hamada K, Kangawa K, Kimura H, Nagaya N. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L446-52. [PMID: 17557801 DOI: 10.1152/ajplung.00412.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.
Collapse
Affiliation(s)
- Takefumi Itoh
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
127
|
Okuma T, Terasaki Y, Sakashita N, Kaikita K, Kobayashi H, Hayasaki T, Kuziel WA, Baba H, Takeya M. MCP-1/CCR2 signalling pathway regulates hyperoxia-induced acute lung injury via nitric oxide production. Int J Exp Pathol 2007; 87:475-83. [PMID: 17222215 PMCID: PMC2517387 DOI: 10.1111/j.1365-2613.2006.00502.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To clarify the role of the monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) signalling pathway in hyperoxia-induced acute lung injury, CCR2-deficient (CCR2-/-) and wild-type (CCR2+/+) mice were exposed to 85% O(2) for up to 6 days. At day 3, body weight significantly decreased and total protein concentration in bronchoalveolar lavage fluid (BALF) was higher in CCR2-/- mice compared with CCR2+/+ mice. Cumulative survivals were significantly lower in CCR2-/- mice than in CCR2+/+ mice. However, the two groups showed no significant differences in both histological changes and number of macrophages in BALF. Real-time reverse transcriptase-polymerase chain reaction revealed increased mRNA levels of MCP-1, interleukin-1beta thioredoxin-1, and inducible nitric oxide synthase (iNOS) in lung tissues in CCR2-/- mice compared with CCR2+/+ mice. Increased iNOS mRNA levels in alveolar macrophages exposed to 85% O(2) for 48 h in vivo or in vitro were significantly higher in CCR2-/- mice than in CCR2+/+ mice. These results suggest that the MCP-1/CCR2 signalling pathway is protective against hyperoxia-induced tissue injury by suppressing induction of iNOS and consequent production of reactive oxygen species by activated alveolar macrophages.
Collapse
Affiliation(s)
- Toshiyuki Okuma
- Department of Cell Pathology, Kumamoto UniversityKumamoto, Japan
- Department of Gastroenterological Surgery, Kumamoto UniversityKumamoto, Japan
| | | | - Naomi Sakashita
- Department of Cell Pathology, Kumamoto UniversityKumamoto, Japan
| | - Koichi Kaikita
- Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto UniversityKumamoto, Japan
| | | | - Takanori Hayasaki
- Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto UniversityKumamoto, Japan
| | - William A Kuziel
- Department of Autoimmune and Inflammatory Diseases, PDL BioPharmaFremont, CA, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto UniversityKumamoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
128
|
Arndt PG, Young SK, Poch KR, Nick JA, Falk S, Schrier RW, Worthen GS. Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin II-regulated pathways. THE JOURNAL OF IMMUNOLOGY 2007; 177:7233-41. [PMID: 17082641 DOI: 10.4049/jimmunol.177.10.7233] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recruitment of neutrophils to the lung is a sentinel event in acute lung inflammation. Identifying mechanisms that regulate neutrophil recruitment to the lung may result in strategies to limit lung damage and improve clinical outcomes. Recently, the renin angiotensin system (RAS) has been shown to regulate neutrophil influx in acute inflammatory models of cardiac, neurologic, and gastrointestinal disease. As a role for the RAS in LPS-induced acute lung inflammation has not been described, we undertook this study to examine the possibility that the RAS regulates neutrophil recruitment to the lung after LPS exposure. Pretreatment of mice with the angiotensin-converting enzyme (ACE) inhibitor enalapril, but not the anti-hypertensive hydralazine, decreased pulmonary neutrophil recruitment after exposure to LPS. We hypothesize that inhibition of LPS-induced neutrophil accumulation to the lung with enalapril occurred through both an increase in bradykinin, and a decrease in angiotensin II (ATII), mediated signaling. Bradykinin receptor blockade reversed the inhibitory effect of enalapril on neutrophil recruitment. Similarly, pretreatment with bradykinin receptor agonists inhibited IL-8-induced neutrophil chemotaxis and LPS-induced neutrophil recruitment to the lung. Inhibition of ATII-mediated signaling, with the ATII receptor 1a inhibitor losartan, decreased LPS-induced pulmonary neutrophil recruitment, and this was suggested to occur through decreased PAI-1 levels. LPS-induced PAI-1 levels were diminished in animals pretreated with losartan and in those deficient for the ATII receptor 1a. Taken together, these results suggest that ACE regulates LPS-induced pulmonary neutrophil recruitment via modulation of both bradykinin- and ATII-mediated pathways, each regulating neutrophil recruitment by separate, but distinct, mechanisms.
Collapse
Affiliation(s)
- Patrick G Arndt
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Marriott HM, Hellewell PG, Cross SS, Ince PG, Whyte MKB, Dockrell DH. Decreased Alveolar Macrophage Apoptosis Is Associated with Increased Pulmonary Inflammation in a Murine Model of Pneumococcal Pneumonia. THE JOURNAL OF IMMUNOLOGY 2006; 177:6480-8. [PMID: 17056580 PMCID: PMC7611733 DOI: 10.4049/jimmunol.177.9.6480] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | - David H. Dockrell
- Corresponding Author: David H. Dockrell, Division of Genomic Medicine, F-Floor, University of Sheffield, Beech Hill Road, Sheffield. S10 2RX, UK. Phone: +44 114 2724072 Fax: +44 114 2713892
| |
Collapse
|
130
|
Reale M, De Lutiis MA, Patruno A, Speranza L, Felaco M, Grilli A, Macrì MA, Comani S, Conti P, Di Luzio S. Modulation of MCP-1 and iNOS by 50-Hz sinusoidal electromagnetic field. Nitric Oxide 2006; 15:50-7. [PMID: 16455275 DOI: 10.1016/j.niox.2005.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 11/14/2005] [Accepted: 11/29/2005] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate whether overnight exposure to 1 mT-50 Hz extremely low-frequency sinusoidal electromagnetic field (EMF) affects the expression and production of inducible nitric oxide synthase (iNOS) and monocyte chemotactic protein-1 (MCP-1) in human monocytes. RT-PCR and Western blot analysis demonstrate that EMF exposure affects the expression of iNOS and MCP-1 in cultured human mononuclear cells at the mRNA level and protein synthesis. Interestingly, the effects of EMF exposure clearly differed with respect to the potentiation and inhibition of iNOS and MCP-1 expression. Whereas iNOS was down-regulated both at the mRNA level and at the protein level, MCP-1 was up-regulated. These results provide helpful information regarding the EMF-mediated modulation of the inflammatory response in vivo. However, additional studies are necessary to demonstrate that EMF acts as a nonpharmacological inhibitor of NO and inducer of MCP-1 in some diseases where the balance of MCP-1 and NO may be important.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Oncology and Neuroscience, Universita degli Studi G.D'Annunzio, Chieti, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Shibata T, Nagata K, Kobayashi Y. A suppressive role of nitric oxide in MIP-2 production by macrophages upon coculturing with apoptotic cells. J Leukoc Biol 2006; 80:744-52. [PMID: 16855064 DOI: 10.1189/jlb.0106012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macrophages phagocytose apoptotic cells without causing neutrophil infiltration in vivo under physiological conditions. Our recent study, however, showed that macrophages produce IL-8 or MIP-2, a murine IL-8 homologue, upon coculturing with apoptotic cells, indicating that there must be unknown mechanisms for preventing IL-8 or MIP-2 production. As activated macrophages produce NO to regulate inflammation, we examined the NO production by macrophages upon coculturing with apoptotic or necrotic cells and explored the role of NO in MIP-2 production. NO was produced on coculturing with early apoptotic cells much more significantly than with late apoptotic or necrotic cells. On the contrary, MIP-2 was produced on coculturing with late apoptotic or necrotic cells much more significantly than with early apoptotic cells. N(G)-Nitro-L-arginine methyl ester, an inhibitor of NO synthase, or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a scavenger of NO, augmented MIP-2 production on coculturing with early apoptotic cells. The addition of N-ethylethanamine:1,1-diethyl-2-hydroxy-2-nitrosohydrazine [1:1], a donor of NO, conversely, caused suppression of MIP-2 production on coculturing with late apoptotic cells. These results suggest an important role of NO for preventing MIP-2 production by macrophages upon coculturing with early apoptotic cells.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | | | | |
Collapse
|
132
|
Zachariadis O, Cassidy JP, Brady J, Mahon BP. gammadelta T cells regulate the early inflammatory response to bordetella pertussis infection in the murine respiratory tract. Infect Immun 2006; 74:1837-45. [PMID: 16495558 PMCID: PMC1418642 DOI: 10.1128/iai.74.3.1837-1845.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of gammadelta T cells in the regulation of pulmonary inflammation following Bordetella pertussis infection was investigated. Using a well-characterized murine aerosol challenge model, inflammatory events in mice with targeted disruption of the T-cell receptor delta-chain gene (gammadelta TCR-/- mice) were compared with those in wild-type animals. Early following challenge with B. pertussis, gammadelta TCR-/- mice exhibited greater pulmonary inflammation, as measured by intra-alveolar albumin leakage and lesion histomorphometry, yet had lower contemporaneous bacterial lung loads. The larger numbers of neutrophils and macrophages and the greater concentration of the neutrophil marker myeloperoxidase in bronchoalveolar lavage fluid from gammadelta TCR-/- mice at this time suggested that differences in lung injury were mediated through increased leukocyte trafficking into infected alveoli. Furthermore, flow cytometric analysis found the pattern of recruitment of natural killer (NK) and NK receptor+ T cells into airspaces differed between the two mouse types over the same time period. Taken together, these findings suggest a regulatory influence for gammadelta T cells over the early pulmonary inflammatory response to bacterial infection. The absence of gammadelta T cells also influenced the subsequent adaptive immune response to specific bacterial components, as evidenced by a shift from a Th1 to a Th2 type response against the B. pertussis virulence factor filamentous hemagglutinin in gammadelta TCR-/- mice. The findings are relevant to the study of conditions such as neonatal B. pertussis infection and acute respiratory distress syndrome where gammadelta T cell dysfunction has been implicated in the inflammatory process.
Collapse
Affiliation(s)
- O Zachariadis
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
133
|
Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, Biswal S. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 2006; 116:984-95. [PMID: 16585964 PMCID: PMC1421348 DOI: 10.1172/jci25790] [Citation(s) in RCA: 834] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 01/31/2006] [Indexed: 01/07/2023] Open
Abstract
Host genetic factors that regulate innate immunity determine susceptibility to sepsis. Disruption of nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that regulates redox balance and stress response, dramatically increased the mortality of mice in response to endotoxin- and cecal ligation and puncture-induced septic shock. LPS as well as TNF-alpha stimulus resulted in greater lung inflammation in Nrf2-deficient mice. Temporal analysis of pulmonary global gene expression after LPS challenge revealed augmented expression of large numbers of proinflammatory genes associated with the innate immune response at as early as 30 minutes in lungs of Nrf2-deficient mice, indicating severe immune dysregulation. The expression profile indicated that Nrf2 has a global influence on both MyD88-dependent and -independent signaling. Nrf2-deficient mouse embryonic fibroblasts showed greater activation of NF-kappaB and interferon regulatory factor 3 in response to LPS and polyinosinic-polycytidylic acid [poly(I:C)] stimulus, corroborating the effect of Nrf2 on MyD88-dependent and -independent signaling. Nrf2's regulation of cellular glutathione and other antioxidants is critical for optimal NF-kappaB activation in response to LPS and TNF-alpha. Our study reveals Nrf2 as a novel modifier gene of sepsis that determines survival by mounting an appropriate innate immune response.
Collapse
Affiliation(s)
- Rajesh K Thimmulappa
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Kenyon NJ, Last MS, Eiserich JP, Morrissey BM, Temple LM, Last JA. Differentiation of the roles of NO from airway epithelium and inflammatory cells in ozone-induced lung inflammation. Toxicol Appl Pharmacol 2006; 215:250-9. [PMID: 16643973 PMCID: PMC1594585 DOI: 10.1016/j.taap.2006.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
Mice lacking inducible nitric oxide synthase (NOS2-/-) are more susceptible to ozone-induced lung inflammation and injury than their isogenic wild-type (NOS2+/+) counterparts, demonstrating an apparent protective effect for NOS2 in murine lungs. We hypothesized that nitric oxide (NO) generated from either NOS2 in the airway epithelial cells or the bone-marrow-derived inflammatory cells was responsible for the protective effect of NOS2. To test this hypothesis, we prepared chimeric mice by killing their endogenous bone marrow cells by whole body irradiation followed by bone marrow transplantation from a heterologous donor mouse. We exposed C57BL/6 (NOS2+/+), NOS2-/-, and chimeric NOS2 mice (NOS2-/+, NOS2+/-) to 1 ppm of ozone for 3 consecutive nights. NOS2-/- mice were more severely injured after exposure to ozone than C57BL/6 mice, including a more robust inflammatory cell influx (4.14 x 10(5) +/- 2.19 x 10(5) vs. 2.78 x 10(5) +/- 1.36 x 10(5) cells respectively; P = 0.036) and greater oxidation of total protein sulfhydryls (R-SH) in their blood plasma. Chimeric NOS2-/+ mice, which had bone marrow from NOS2-/- mice transplanted into C57BL/6 recipients, had a significantly greater response to ozone (increased numbers of neutrophils in lung lavage and decreased concentrations of exhaled NO) as compared to the reciprocal chimeric strain (NOS2+/-). We conclude that NOS2 has a protective effect against acute lung injury caused by ozone inhalation, which may be mediated, in part, by NO generated by NOS2 from inflammatory cells, predominantly neutrophils, recruited into the lung.
Collapse
Affiliation(s)
| | | | - Jason P. Eiserich
- Nephrology, and
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, 95616-8723
| | | | | | - Jerold A. Last
- Divisions of Pulmonary and Critical Care Medicine and
- Address for Correspondence: Jerold A. Last, Center for Comparative Respiratory Biology and Medicine, Genome and Biomedical Sciences Facility, 451 East Health Sciences Drive, Room 6517, Davis, CA 95616-8723, , Phone: (530) 752-6230, FAX: (530) 752-8632
| |
Collapse
|
135
|
Puneet P, Hegde A, Ng SW, Lau HY, Lu J, Moochhala SM, Bhatia M. Preprotachykinin-A gene products are key mediators of lung injury in polymicrobial sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:3813-3820. [PMID: 16517752 DOI: 10.4049/jimmunol.176.6.3813] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Preprotachykinin-A (PPT-A) gene products substance P and neurokinin-A have been shown to play an important role in neurogenic inflammation. To investigate the role of PPT-A gene products in lung injury in sepsis, polymicrobial sepsis was induced by cecal ligation and puncture in PPT-A gene-deficient mice (PPT-A(-/-)) and the wild-type control mice (PPT-A(+/+)). PPT-A gene deletion significantly protected against mortality, delayed the onset of lethality, and improved the long-term survival following cecal ligation and puncture-induced sepsis. PPT-A(-/-) mice also had significantly attenuated inflammation and damage in the lungs. The data suggest that deletion of the PPT-A gene may have contributed to the disruption in recruitment of inflammatory cells resulting in protection against tissue damage, as in these mice the sepsis-associated increase in chemokine levels is significantly attenuated.
Collapse
Affiliation(s)
- Padmam Puneet
- Department of Pharmacology, National University of Singapore, 18 Medical Drive, Singapore 117597
| | | | | | | | | | | | | |
Collapse
|
136
|
Shelton JL, Wang L, Cepinskas G, Sandig M, Inculet R, McCormack DG, Mehta S. Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions. Microvasc Res 2006; 71:40-7. [PMID: 16376951 DOI: 10.1016/j.mvr.2005.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 09/02/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Human pulmonary microvascular endothelial cell (HPMVEC) injury is central to the pathophysiology of human lung injury. However, septic HPMVEC barrier dysfunction and the contribution of neutrophils have not been directly addressed in vitro. Instead, human EC responses are often extrapolated from studies of human umbilical vein EC (HUVEC). We hypothesized that HUVEC was not a good model for investigating HPMVEC barrier function under septic conditions. HPMVEC was isolated from lung tissue resected from lung cancer patients using magnetic bead-bound anti-PECAM-1 antibody. In confluent monolayers in 3-mum cell-culture inserts, we assessed trans-EC Evans-Blue (EB)-conjugated albumin leak under basal, unstimulated conditions and following stimulation with either lipopolysaccharide or a mixture of equal concentrations of TNF-alpha, IL-1beta and IFN-gamma (cytomix). Basal EB-albumin leak was significantly lower across HPMVEC than HUVEC (0.64 +/- 0.06% vs. 1.13 +/- 0.10%, respectively, P < 0.001). Lipopolysaccharide and cytomix increased leak across both HPMVEC and HUVEC in a dose-dependent manner, with a similar increase relative to basal leak in both cell types. The presence of neutrophils markedly and dose-dependently enhanced cytomix-induced EB-albumin leak across HPMVEC (P < 0.01), but had no effect on EB-albumin leak across HUVEC. Both cytomix and lipopolysaccharide-induced albumin leak was not associated with a loss of cell viability. In conclusion, HPMVEC barrier dysfunction under septic conditions is dramatically enhanced by neutrophil presence, and HUVEC is not a suitable model for studying HPMVEC septic barrier responses. The direct study of HPMVEC septic responses will lead to a better understanding of human lung injury.
Collapse
Affiliation(s)
- Jennifer L Shelton
- Division of Respirology, Department of Medicine, Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, University of Western Ontario, South Street Campus, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
137
|
Mehta S. The effects of nitric oxide in acute lung injury. Vascul Pharmacol 2005; 43:390-403. [PMID: 16256443 DOI: 10.1016/j.vph.2005.08.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Acute lung injury (ALI) is a common clinical problem associated with significant morbidity and mortality. Ongoing clinical and basic research and a greater understanding of the pathophysiology of ALI have not been translated into new anti-inflammatory therapeutic options for patients with ALI, or into a significant improvement in the outcome of ALI. In both animal models and humans with ALI, there is increased endogenous production of nitric oxide (NO) due to enhanced expression and activity of inducible NO synthase (iNOS). This increased presence of iNOS and NO in ALI contributes importantly to the pathophysiology of ALI. However, inhibition of total NO production or selective inhibition of iNOS has not been effective in the treatment of ALI. We have recently suggested that there may be differential effects of NO derived from different cell populations in ALI. This concept of cell-source-specific effects of NO in ALI has potential therapeutic relevance, as targeted iNOS inhibition specifically to key individual cells may be an effective therapeutic approach in patients with ALI. In this paper, we will explore the potential role for endogenous iNOS-derived NO in ALI. We will review the evidence for increased iNOS expression and NO production, the effects of non-selective NOS inhibition, the effects of selective inhibition or deficiency of iNOS, and this concept of cell-source-specific effects of iNOS in both animal models and human ALI.
Collapse
Affiliation(s)
- Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, Division of Respirology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
138
|
Hayashi Y, Abe M, Murai A, Shimizu N, Okamoto I, Katsuragi T, Tanaka K. Comparison of effects of nitric oxide synthase (NOS) inhibitors on plasma nitrite/nitrate levels and tissue NOS activity in septic organs. Microbiol Immunol 2005; 49:139-47. [PMID: 15722599 DOI: 10.1111/j.1348-0421.2005.tb03713.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An excessive production of nitric oxide (NO) by NO synthase (NOS) is considered to contribute to circulatory disturbance, tissue damage, and refractory hypotention, which are often observed in septic disorders. It is anticipated that a selective inducible NOS (iNOS) inhibitor with excellent pharmacokinetics may be potentially effective as a novel and potent therapeutic intervention in sepsis. We examined whether or not a selective iNOS inhibitor shows iNOS selectivity at the tissue level, when administered systemically. The effects of four NOS inhibitors on plasma nitrite/nitrate (NOx) and tissue NOS levels were compared in major organs (lungs, liver, heart, kidneys, and brain) 6 hr after the injection of E. coli lipopolysaccharide (LPS) into male Wistar-King rats. The rats treated with the three iNOS inhibitors (N-(3-(aminomethyl)benzyl)acetamidine (1400W), (1 S, 5 S, 6 R, 7 R )-2-aza-7-chloro-3-imino-5-methylbicyclo [4.1.0] heptane hydrochloride (ONO-1714), and aminoguanidine) administered 1 hr after LPS injection, showed dose-dependent decreases in plasma NOx levels and NOS activity in the lungs. The non-selective NOS inhibitor (N(G)-methyl-L-arginine (L-NMMA)) had an effect only at the maximum dose. The differences in in vitro iNOS selectivity among these drugs did not correlate with iNOS selectivity at the tissue level. The relationship between plasma NOx levels and NOS activity in the lungs showed a linear relationship with or without the NOS inhibitors. In conclusion, the iNOS selectivity of these drugs does not seem to differ at the tissue level. Plasma NOx levels may be a useful indicator of lung NOS activity.
Collapse
Affiliation(s)
- Yuri Hayashi
- Department of Emergency & Critical Care Medicine, School of Medicine, Fukuoka University, Japan
| | | | | | | | | | | | | |
Collapse
|
139
|
Vallbracht II, Popper HH, Rieber J, Nowak F, Gallenberger S, Piper B, Helmke K. Lethal pneumonitis under leflunomide therapy. Rheumatology (Oxford) 2005; 44:1580-1. [PMID: 16118229 DOI: 10.1093/rheumatology/kei076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
140
|
Neff SB, Z'graggen BR, Neff TA, Jamnicki-Abegg M, Suter D, Schimmer RC, Booy C, Joch H, Pasch T, Ward PA, Beck-Schimmer B. Inflammatory response of tracheobronchial epithelial cells to endotoxin. Am J Physiol Lung Cell Mol Physiol 2005; 290:L86-96. [PMID: 16100285 DOI: 10.1152/ajplung.00391.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory epithelial cells play a crucial role in the inflammatory response in endotoxin-induced lung injury, an experimental model for acute lung injury. To determine the role of epithelial cells in the upper respiratory compartment in the inflammatory response to endotoxin, we exposed tracheobronchial epithelial cells (TBEC) to lipopolysaccharide (LPS). Expression of inflammatory mediators was analyzed, and the biological implications were assessed using chemotaxis and adherence assays. Epithelial cell necrosis and apoptosis were determined to identify LPS-induced cell damage. Treatment of TBEC with LPS induced enhanced protein expression of cytokines and chemokines (increases of 235-654%, P < 0.05), with increased chemotactic activity regarding neutrophil recruitment. Expression of the intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was enhanced by 52-101% (P < 0.0001). This upregulation led to increased adhesion of neutrophils, with >95% adherence to TBEC after LPS stimulation, which could be blocked by either ICAM-1 (69%) or VCAM-1 antibodies (55%) (P < 0.05). Enhanced neutrophil-induced necrosis of TBEC was observed when TBEC were exposed to LPS. Reduced neutrophil adherence by ICAM-1 or VCAM-1 antibodies resulted in significantly lower TBEC death (52 and 34%, respectively, P < 0.05). Therefore, tight adherence of neutrophils to TBEC appears to promote epithelial cell killing. In addition to indirect effector cell-induced TBEC death, direct LPS-induced cell damage was seen with increased apoptosis rate in LPS-stimulated TBEC (36% increase of caspase-3, P < 0.01). These data provide evidence that LPS induces TBEC killing in a necrosis- and apoptosis-dependent manner.
Collapse
Affiliation(s)
- Simona B Neff
- Institute of Anesthesiology, University of Zurich Medical School, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Littler CM, Wehling CA, Wick MJ, Fagan KA, Cool CD, Messing RO, Dempsey EC. Divergent contractile and structural responses of the murine PKC-epsilon null pulmonary circulation to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1083-93. [PMID: 16085670 DOI: 10.1152/ajplung.00472.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loss of PKC-epsilon limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-epsilon would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-epsilon wild-type (PKC-epsilon(+/+)), heterozygous null, and homozygous null (PKC-epsilon(-/-)) mice were exposed to normoxia or Hx for 5 wk. PKC-epsilon(-/-) mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-epsilon(+/+) mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-epsilon(+/+) mice) in both the proximal and distal PKC-epsilon(-/-) pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-epsilon(-/-) mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-epsilon(-/-) than PKC-epsilon(+/+) mice. In contrast, expression of nNOS in PKC-epsilon(+/+) mice decreased in response to chronic Hx, while lung levels in PKC-epsilon(-/-) mice remained unchanged. In summary, loss of PKC-epsilon results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-epsilon appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.
Collapse
Affiliation(s)
- C M Littler
- Cardiovascular Pulmonary Research Laboratory, B-133, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
142
|
Speyer CL, Rancilio NJ, McClintock SD, Crawford JD, Gao H, Sarma JV, Ward PA. Regulatory effects of estrogen on acute lung inflammation in mice. Am J Physiol Cell Physiol 2005; 288:C881-90. [PMID: 15761213 DOI: 10.1152/ajpcell.00467.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of estrogen in the regulation of the inflammatory response is not well defined. In this study, we investigated the effects of ovarian hormones on the acute inflammatory response in mouse lungs. Acute lung injury was induced by intratracheal instillation of bacterial lipopolysaccharide (LPS) in male, female, and ovariectomized (OVX) mice. End points of injury were polymorphonuclear neutrophil (PMN) content in bronchoalveolar lavage (BAL) fluids, myeloperoxidase activity in whole lung, and leak of albumin into the lung. After intratracheal instillation of LPS, all end points of injury were substantially increased in male and OVX mice compared with the female mice with intact ovaries. BAL fluids of all mice showed similar levels of chemokines (macrophage inflammatory protein MIP-2, KC, and monocyte chemoattractant proteins MCP-1 and MCP-3) and TNF-α, but enhanced levels of IL-1β were found in OVX and male mice. Serum levels of IL-6 and ICAM-1 levels in lung homogenates from OVX and male mice, compared with those in female mice with intact ovaries, were also enhanced after instillation of LPS. Albumin and PMN content in LPS-injured lungs were reduced to levels found in female mice after administration of estradiol in OVX mice and corresponded to reduced IL-1β, IL-6, and ICAM-1 levels. These data suggest that estrogen suppresses lung inflammatory responses in mice through an effect on vascular cell adhesion molecules and proinflammatory mediators.
Collapse
Affiliation(s)
- Cecilia L Speyer
- Dept. of Pathology, Univ. of Michigan Medical School, 1301 Catherine Road, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Yokohira M, Takeuchi H, Yamakawa K, Sao K, Ikeda M, Matsuda Y, Zeng Y, Hosokawa K, Maeta H, Imaida K. Establishment of a Bioassay System for Detection of Lung Toxicity Due to Fine Particle Instillation: Sequential Histopathological Changes with Acute and Subacute Lung Damage Due to Intratracheal Instillation of Quartz in F344 Male Rats. J Toxicol Pathol 2005. [DOI: 10.1293/tox.18.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
- 1st Department of Surgery, Faculty of Medicine, Kagawa University
| | - Hijiri Takeuchi
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
- 1st Department of Surgery, Faculty of Medicine, Kagawa University
| | - Keiko Yamakawa
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Kousuke Sao
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Mico Ikeda
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Yoko Matsuda
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Yu Zeng
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Kyoko Hosokawa
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| | - Hajime Maeta
- 1st Department of Surgery, Faculty of Medicine, Kagawa University
| | - Katsumi Imaida
- Onco-Pathology, Department of Pathology and Host-Defense, Kagawa Medical University
| |
Collapse
|
144
|
Tran DC, Brazeau DA, Fung HL. Determination of Nitric Oxide–Donor Effects on Tissue Gene Expression In Vivo Using Low‐Density Gene Arrays. Methods Enzymol 2005; 396:387-95. [PMID: 16291248 DOI: 10.1016/s0076-6879(05)96033-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gene array technology has been used to examine gene expression changes following drug treatments, including administration of nitric oxide (NO) donors. High-density arrays represent a powerful and popular method to analyze a large number of genes simultaneously. On the other hand, low-density arrays, available commercially at a lower cost, allow for the use of gene-specific primers, which reduces the risk of cross-hybridization among genes with similar sequence. For certain experiments in which the hypothesis is focused on a selected set of genes, use of low-density arrays might be more productive and cost-effective. Here, we describe our experience using low-density arrays to examine the effect of exposure to the NO-donor isobutyl nitrite on the expression of 23 cancer- and angiogenesis-related genes in mouse tissues. Detailed descriptions of data capture procedures, statistical tests, and confirmation studies using real-time quantitative (RTQ) reverse transcription polymerase chain reaction (RT-PCR) are presented. Three simple statistical methods, namely Student's t test, significant analysis of microarrays (SAM), and permutation adjusted t statistics (PATS), were applied on our gene array data, and their utilities were compared. All three methods yielded concordant results for the most significant genes, namely vascular endothelial growth factor (VEGF), VEGF receptor 3, Smad5, and Smad7. RT-PCR confirmed VEGF upregulation as observed via gene arrays. PATS appeared to be more robust than SAM in handling our small gene array data set. This statistical method, therefore, appears more suited for analyzing low-density gene array data. We conclude that low-density gene array is a useful screening method that can be performed with lower cost and less cumbersome data treatment.
Collapse
Affiliation(s)
- Doanh C Tran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260-1200, USA
| | | | | |
Collapse
|
145
|
Speyer CL, Gao H, Rancilio NJ, Neff TA, Huffnagle GB, Sarma JV, Ward PA. Novel chemokine responsiveness and mobilization of neutrophils during sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:2187-96. [PMID: 15579460 PMCID: PMC1618724 DOI: 10.1016/s0002-9440(10)63268-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2004] [Indexed: 01/09/2023]
Abstract
Blood neutrophils (PMN) are usually unresponsive to CC chemokines such as monacyte chemotactic protein-1 and macrophage inflammatory protein-1 alpha. In rodents, the lung buildup of PMN as determined by myeloperoxidase (MPO) activity after airway instillation of bacterial lipopolysaccharide (LPS) was independent of MCP-1 and MIP-1 alpha. In striking contrast, during sepsis following cecal ligation and puncture (CLP), blood PMN demonstrated mRNA for CC chemokine receptors. Furthermore, PMN from CLP, but not from sham rodents, bound MCP-1 and MIP-1 alpha and responded chemotactically in vitro to both MCP-1 and MIP-1 alpha. In CCR2(-/-) mice or WT mice treated in vivo with antibodies to either MCP-1 or MIP-1 alpha, MPO activity was greatly attenuated in CLP animals. In CLP mice, increased serum IL-6 levels were found to be dependent on CCR2, MCP-1, and MIP-1 alpha. When PMN from CLP rodents were incubated in vitro with either MCP-1 or MIP-1 alpha, release of IL-6 was also shown. These findings suggest that sepsis fundamentally alters the trafficking of PMN into the lung in a manner that now engages functional responses to CC chemokines.
Collapse
Affiliation(s)
- Cecilia L Speyer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Hildebrandt GC, Corrion LA, Olkiewicz KM, Lu B, Lowler K, Duffner UA, Moore BB, Kuziel WA, Liu C, Cooke KR. Blockade of CXCR3 receptor:ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. THE JOURNAL OF IMMUNOLOGY 2004; 173:2050-9. [PMID: 15265940 DOI: 10.4049/jimmunol.173.3.2050] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication after allogeneic stem cell transplantation (allo-SCT) that responds poorly to standard immunosuppressive therapy. The pathophysiology of IPS involves the secretion of inflammatory cytokines including IFN-gamma and TNF-alpha along with the recruitment of donor T cells to the lung. CXCR3 is a chemokine receptor that is expressed on activated Th1/Tc1 T cell subsets and the expression of its ligands CXCL9 (monokine induced by IFN-gamma (Mig)) and CXCL10 (IFN-gamma-inducible protein 10 (IP-10)) can be induced in a variety of cell types by IFN-gamma alone or in combination with TNF-alpha. We used a lethally irradiated murine SCT model (B6 --> bm1) to evaluate the role of CXCR3 receptor:ligand interactions in the development of IPS. We found that Mig and IP-10 protein levels were significantly elevated in the bronchoalveolar lavage fluid of allo-SCT recipients compared with syngeneic controls and correlated with the infiltration of IFN-gamma-secreting CXCR3(+) donor T cells into the lung. The in vivo neutralization of either Mig or IP-10 significantly reduced the severity of IPS compared with control-treated animals, and an additive effect was observed when both ligands were blocked simultaneously. Complementary experiments using CXCR3(-/-) mice as SCT donors also resulted in a significant decrease in IPS. These data demonstrate that interactions involving CXCR3 and its primary ligands Mig and IP-10 significantly contribute to donor T cell recruitment to the lung after allo-SCT. Therefore, approaches focusing on the abrogation of these interactions may prove successful in preventing or treating lung injury that occurs in this setting.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells
- Bronchoalveolar Lavage Fluid/cytology
- Cells, Cultured/immunology
- Chemokine CXCL10
- Chemokine CXCL9
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte/drug effects
- Crosses, Genetic
- Female
- Hematopoietic Stem Cell Transplantation/adverse effects
- Interferon-gamma/biosynthesis
- Interferon-gamma/blood
- Ligands
- Lung/pathology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Pneumonia/etiology
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/prevention & control
- Receptors, CCR5/deficiency
- Receptors, CCR5/genetics
- Receptors, CXCR3
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Spleen/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Transplantation, Homologous/adverse effects
- Tumor Necrosis Factor-alpha/analysis
Collapse
Affiliation(s)
- Gerhard C Hildebrandt
- Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
McCluskie K, Birrell MA, Wong S, Belvisi MG. Nitric oxide as a noninvasive biomarker of lipopolysaccharide-induced airway inflammation: possible role in lung neutrophilia. J Pharmacol Exp Ther 2004; 311:625-33. [PMID: 15226380 DOI: 10.1124/jpet.104.068890] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipopolysaccharide (LPS) is known to generate nitric oxide (NO) in the airway through the activation of nitric-oxide synthase (NOS). The functional consequences of this on the inflammatory response are not clear, with conflicting data published. In the clinic, exhaled NO (ex-NO) is used as a noninvasive biomarker to assess the extent of airway inflammation. It is proposed that monitoring levels of ex-NO could be a useful guide to determining the effectiveness of disease modifying therapies. The aim was, using pharmacological tools, to determine the role of NO in an aerosolized LPS-driven animal model of airway inflammation by assessment of ex-NO, neutrophilia, and inflammatory biomarkers, using a nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME), and a selective inducible NOS (iNOS) inhibitor, N-3 (aminomethyl)benzyl)acetamidine (1400W). Real-time mRNA analysis of the lung tissue indicated an increased gene expression of iNOS following LPS challenge with minimal impact on constitutive NOS isoforms. LPS induced an increase in ex-NO, which appeared to correlate with the increase in iNOS gene expression and airway neutrophilia. Treatment with l-NAME and 1400W resulted in comparable reductions in ex-NO, a reduction in airway neutrophilia, but had little impact on a range of inflammatory biomarkers. This study indicates that the LPS-induced rise in ex-NO is due to enhanced iNOS activity and that NO has a role in airway neutrophilia. Additionally, it appears using ex-NO as a guide to monitoring airway inflammation may have some use, but data should be interpreted with caution when assessing therapies that may directly impact on NO formation.
Collapse
Affiliation(s)
- Kerryn McCluskie
- Head Respiratory Pharmacology Group, Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK
| | | | | | | |
Collapse
|
148
|
Fleming SD, Monestier M, Tsokos GC. Accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:4230-5. [PMID: 15356174 DOI: 10.4049/jimmunol.173.6.4230] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural Abs have been implicated in initiating mesenteric ischemia/reperfusion (I/R)-induced tissue injury. Autoantibodies have affinity and self-Ag recognition patterns similar to natural Abs. We considered that autoimmunity-prone mice that express high titers of autoantibodies should have enhanced I/R-induced injury. Five-month-old B6.MRL/lpr mice displayed accelerated and enhanced intestinal I/R-induced damage compared with 2-mo-old B6.MRL/lpr and age-matched C57BL/6 mice. Similarly, older autoimmune mice had accelerated remote organ (lung) damage. Infusion of serum IgG derived from 5-mo-old but not 2-mo-old B6.MRL/lpr into I/R resistant Rag-1-/- mice rendered them susceptible to local and remote organ injury. Injection of monoclonal IgG anti-DNA and anti-histone Abs into Rag-1-/- mice effectively reconstituted tissue injury. These data show that like natural Abs, autoantibodies, such as anti-dsDNA and anti-histone Abs, can instigate I/R injury and suggest that they are involved in the development of tissue damage in patients with systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sherry D Fleming
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | |
Collapse
|
149
|
Fernández N, Jancar S, Sánchez Crespo M. Blood and endothelium in immune complex-mediated tissue injury. Trends Pharmacol Sci 2004; 25:512-7. [PMID: 15380934 DOI: 10.1016/j.tips.2004.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antigen-antibody complexes can be formed both intravascularly and perivascularly and damage tissues by inducing inflammatory mechanisms. Recent studies have characterized a definite sequence of steps involved in these inflammatory mechanisms, and identified the predominance of particular chemical mediator(s) in each step. The lesions associated with this type of inflammation are characterized by the early development of plasma leakage, followed by the recruitment of polymorphonuclear leukocytes mediated by chemokines generated by FcgammaR-dependent mechanisms. The development of these lesions is modulated by endothelial cell-derived paracrine mediators, and activation of the coagulation system can ensue. The activation of platelets and coagulation, if not properly counterbalanced by fibrinolysis, might be a major factor for the late development of fibrotic changes and organ remodeling.
Collapse
Affiliation(s)
- Nieves Fernández
- IBGM, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005-Valladolid, Spain
| | | | | |
Collapse
|
150
|
Warner RL, Winter HC, Speyer CL, Varani J, Oldstein IJ, Murphy HS, Johnson KJ. Marasmius oreades lectin induces renal thrombotic microangiopathic lesions. Exp Mol Pathol 2004; 77:77-84. [PMID: 15351229 DOI: 10.1016/j.yexmp.2004.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Indexed: 10/26/2022]
Abstract
The present studies demonstrate that infusion of a type B specific lectin derived from the mushroom Marasmius oreades (MOA) into mice binds selectively to the glomerular endothelial cells via surface carbohydrate moieties resulting in cell injury and death associated with platelet-fibrin thrombi. This selective MOA binding to the endothelial cells can be abrogated by a sugar specific for the carbohydrate sequence. Hemolytic-Uremic Syndrome (HUS) and the closely associated Thrombotic Thrombocytopenic Purpura (TTP) are diseases associated with widespread microvascular injury in various organs. Clinically, these diseases are associated with microangiopathic hemolytic anemia and thrombocytopenia. The kidney glomerulus is a primary target of this microvascular injury. There are many underlying etiologies including bacterial toxins. Experimentally, such toxins injure endothelial cells in vitro but in vivo studies have failed to reproduce the characteristic renal pathology. We suggest that MOA-induced glomerular microangiopathic injury could be used to study the pathophysiology of endothelial cell injury as related to glomerular microangiopathic injury.
Collapse
Affiliation(s)
- Roscoe L Warner
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|