101
|
Jiang S, Liu X, Liu J, Ye D, Duan Y, Li K, Yin Z, Huang Y. Flexible Metamaterial Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200070. [PMID: 35325478 DOI: 10.1002/adma.202200070] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, extensive efforts have been made on utilizing advanced materials and structures to improve the properties and functionalities of flexible electronics. While the conventional ways are approaching their natural limits, a revolutionary strategy, namely metamaterials, is emerging toward engineering structural materials to break the existing fetters. Metamaterials exhibit supernatural physical behaviors, in aspects of mechanical, optical, thermal, acoustic, and electronic properties that are inaccessible in natural materials, such as tunable stiffness or Poisson's ratio, manipulating electromagnetic or elastic waves, and topological and programmable morphability. These salient merits motivate metamaterials as a brand-new research direction and have inspired extensive innovative applications in flexible electronics. Here, such a groundbreaking interdisciplinary field is first coined as "flexible metamaterial electronics," focusing on enhancing and innovating functionalities of flexible electronics via the design of metamaterials. Herein, the latest progress and trends in this infant field are reviewed while highlighting their potential value. First, a brief overview starts with introducing the combination of metamaterials and flexible electronics. Then, the developed applications are discussed, such as self-adaptive deformability, ultrahigh sensitivity, and multidisciplinary functionality, followed by the discussion of potential prospects. Finally, the challenges and opportunities facing flexible metamaterial electronics to advance this cutting-edge field are summarized.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuejun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianpeng Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongqing Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
102
|
Qin C, Yue Z, Wallace GG, Chen J. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions. ACS APPLIED BIO MATERIALS 2022; 5:5041-5056. [PMID: 36260917 DOI: 10.1021/acsabm.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Electrochemistry has become a powerful strategy to modulate cellular behavior and biological activity by manipulating electrical signals. Subsequent electrical stimulus-responsive conducting polymers (CPs) have advanced traditional wired electrochemical stimulation (ES) systems and developed wireless cell stimulation systems due to their electroconductivity, biocompatibility, stability, and flexibility. Bipolar electrochemistry (BPE), i.e., wireless electrochemistry, offers an effective pathway to modify wired ES systems into a desirable contactless mode, turning out a potential technique to offer fundamental insights into neural cell stimulation and neural network formation. This review commences with a brief discussion of the BPE technique and also the advantages of a bipolar electrochemical stimulation (BPES) system compared to traditional wired ES systems and other wireless ES systems. Then, the BPES system is elucidated through four aspects: the benefits of BPES, the key factors to establish BPES platforms for cell stimulation, the limits/barriers to overcome for current rigid materials in particular metals-based systems, and a brief overview of the concept proved by CPs-based systems. Furthermore, how to refine the existing BPES system from materials/devices modification that combine CP compositions with 3D fabrication/bioprinting technologies is elaborately discussed as well. Finally, the review ends together with future research directions, picturing the potential of BPES system in biomedical applications.
Collapse
Affiliation(s)
- Chunyan Qin
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, New South Wales2519, Australia
| |
Collapse
|
103
|
Edmunds JL, Sonmezoglu S, Maharbiz MM. Piezoelectric-based optical modulator for miniaturized wireless medical implants. OPTICS EXPRESS 2022; 30:43664-43677. [PMID: 36523060 DOI: 10.1364/oe.474832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Optical links for medical implants have recently been explored as an attractive option primarily because it provides a route to ultrasmall wireless implant systems. Existing devices for optical communication either are not CMOS compatible, require large bias voltages to operate, or consume substantial amounts of power. Here, we present a high-Q CMOS-compatible electro-optic modulator that enables establishing an optical data uplink to implants. The modulator acts as a pF-scale capacitor, requires no bias voltage, and operates at CMOS voltages of down to 0.5V. We believe this technology would provide a path towards the realization of millimeter (mm)- and sub-mm scale wireless implants for use in bio-sensing applications.
Collapse
|
104
|
Wu P, Chen P, Xu C, Wang Q, Zhang F, Yang K, Jiang W, Feng J, Luo Z. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. NANO ENERGY 2022; 102:107707. [DOI: 10.1016/j.nanoen.2022.107707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
105
|
Cuenca-Ortolá I, Martínez-Rojas B, Moreno-Manzano V, García Castelló M, Monleón Pradas M, Martínez-Ramos C, Más Estellés J. A Strategy for Magnetic and Electric Stimulation to Enhance Proliferation and Differentiation of NPCs Seeded over PLA Electrospun Membranes. Biomedicines 2022; 10:2736. [PMID: 36359255 PMCID: PMC9687775 DOI: 10.3390/biomedicines10112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 09/30/2023] Open
Abstract
Neural progenitor cells (NPCs) have been shown to serve as an efficient therapeutic strategy in different cell therapy approaches, including spinal cord injury treatment. Despite the reported beneficial effects of NPC transplantation, the low survival and differentiation rates constrain important limitations. Herein, a new methodology has been developed to overcome both limitations by applying a combination of wireless electrical and magnetic stimulation to NPCs seeded on aligned poly(lactic acid) nanofibrous scaffolds for in vitro cell conditioning prior transplantation. Two stimulation patterns were tested and compared, continuous (long stimulus applied once a day) and intermittent (short stimulus applied three times a day). The results show that applied continuous stimulation promotes NPC proliferation and preferential differentiation into oligodendrocytic and neuronal lineages. A neural-like phenotypic induction was observed when compared to unstimulated NPCs. In contrast, intermittent stimulation patterns did not affect NPC proliferation and differentiation to oligodendrocytes or astrocytes morphology with a detrimental effect on neuronal differentiation. This study provides a new approach of using a combination of electric and magnetic stimulation to induce proliferation and further neuronal differentiation, which would improve therapy outcomes in disorders such as spinal cord injury.
Collapse
Affiliation(s)
- Irene Cuenca-Ortolá
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Beatriz Martínez-Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marcos García Castelló
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
- Unitat Predepartamental de Medicina, Universitat Jaume I, Avda/Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
| | - Jorge Más Estellés
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
106
|
Zhao L, Annayev M, Oralkan O, Jia Y. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:842-851. [PMID: 35671313 DOI: 10.1109/tbcas.2022.3178581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 μW-554 μW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.
Collapse
|
107
|
Benedict BC, Ghanbari MM, Muller R. Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2756-2765. [PMID: 35939455 DOI: 10.1109/tuffc.2022.3197705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Millimeter-scale implants using ultrasound (US) for power and communication have been proposed for a range of deep-tissue applications, including neural recording and stimulation. However, published implementations have shown high sensitivity to misalignment with the external US transducer. Ultrasonic beamforming using a phased array to these implants can improve tolerance to misalignment, reduce implant volume, and allow multiple implants to be operated simultaneously in different locations. This article details the design of a custom planar phased array US system, which is capable of steering and focusing US power within a 3-D volume. Analysis and simulation is performed to determine the choice of array element pitch, with special attention given to maximizing the power available at the implant while meeting FDA limits for diagnostic US. Time reversal (TR) is proposed as a computationally simple approach to beamforming that is robust despite scattering and inhomogeneity of the acoustic medium. This technique is demonstrated both in active drive and pulse-echo modes, and it is experimentally compared with other beamforming techniques by measuring energy transfer efficiency. Simultaneous power delivery to multiple implants is also demonstrated.
Collapse
|
108
|
An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci Rep 2022; 12:16174. [PMID: 36171230 PMCID: PMC9519918 DOI: 10.1038/s41598-022-19693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Wireless power transfer is one of the enabling technologies for powering implantable biomedical devices. Biocompatibility and CMOS compatibility of wireless power transfer devices are highly desired due to safety and footprint concerns. Toward implantable applications, this paper presents an ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducer (PMUT). The wireless power supply integrates wireless power transfer, power management and energy storage functions. The PMUT array is used as a passive wireless power receiver, followed by electrical impedance matching networks and a voltage multiplier for efficient power transmission and rectification. The output power intensity of the wireless receiver reaches 7.36 μW/mm2 with an incident ultrasound power below the FDA safety limit. The output power of the wireless power supply reaches 18.8 μW and a 100-μF capacitor is fully charged to 3.19 V after power management, which are sufficient to power many low-power implantable biomedical devices such as for neural electrical stimulation, biosensors and intrabody communication applications. The wireless power supply is implemented in a PCB with a diameter of 1 cm. With biocompatibility and CMOS compatibility of AlN thin film compared to commonly used PZT, the proposed solution paves the way for safer and ultraminiaturized wireless power supplies with further development incorporating all the functions on a monolithic chip in the future.
Collapse
|
109
|
Takeuchi M, Tokutake K, Watanabe K, Ito N, Aoyama T, Saeki S, Kurimoto S, Hirata H, Hasegawa Y. A Wirelessly Powered 4-Channel Neurostimulator for Reconstructing Walking Trajectory. SENSORS (BASEL, SWITZERLAND) 2022; 22:7198. [PMID: 36236295 PMCID: PMC9572656 DOI: 10.3390/s22197198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A wirelessly powered four-channel neurostimulator was developed for applying selective Functional Electrical Stimulation (FES) to four peripheral nerves to control the ankle and knee joints of a rat. The power of the neurostimulator was wirelessly supplied from a transmitter device, and the four nerves were connected to the receiver device, which controlled the ankle and knee joints in the rat. The receiver device had functions to detect the frequency of the transmitter signal from the transmitter coil. The stimulation site of the nerves was selected according to the frequency of the transmitter signal. The rat toe position was controlled by changing the angles of the ankle and knee joints. The joint angles were controlled by the stimulation current applied to each nerve independently. The stimulation currents were adjusted by the Proportional Integral Differential (PID) and feed-forward control method through a visual feedback control system, and the walking trajectory of a rat's hind leg was reconstructed. This study contributes to controlling the multiple joints of a leg and reconstructing functional motions such as walking using the robotic control technology.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Katsuhiro Tokutake
- Department of Human Enhancement and Hand Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Keita Watanabe
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Naoyuki Ito
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Tadayoshi Aoyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Sota Saeki
- Department of Human Enhancement and Hand Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Shigeru Kurimoto
- Department of Human Enhancement and Hand Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Hirata
- Department of Human Enhancement and Hand Surgery, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
110
|
Huang Y, Cui Y, Deng H, Wang J, Hong R, Hu S, Hou H, Dong Y, Wang H, Chen J, Li L, Xie Y, Sun P, Fu X, Yin L, Xiong W, Shi SH, Luo M, Wang S, Li X, Sheng X. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2022; 7:486-498. [PMID: 36065014 DOI: 10.1038/s41551-022-00931-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.
Collapse
Affiliation(s)
- Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yuting Cui
- Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Hanjie Deng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jingjing Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Rongqi Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuhan Hu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing Hou
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanrui Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Xin Fu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Xiaojian Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
111
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
112
|
Jiang L, Wu B, Wei X, Lv X, Xue H, Lu G, Zeng Y, Xing J, Wu W, Wu J. Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication. MATERIALS HORIZONS 2022; 9:2180-2190. [PMID: 35686946 DOI: 10.1039/d2mh00437b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable medical electronics (IMEs) are now becoming increasingly prevalent for diagnostic and therapeutic purposes. Despite extensive efforts, a primary challenge for IMEs is reliable wireless power and communication to provide well-controlled, therapeutically relevant effects. Ultrasonic energy transfer and communication (UETC) employing traveling ultrasound waves to transmit energy has emerged as a promising wireless strategy for IMEs. Nevertheless, conventional UETC systems are rigid, bulky, and based on toxic lead-based piezoelectric materials, raising efficiency and safety concerns. Here, we present a novel transcutaneous UETC system based on a two-dimensional flexible lead-free piezoelectric array (f-LFPA) that hybridizes high-performance (piezoelectric coefficient d33 ≈ 503 pC N-1) (K,Na)NbO3-based eco-friendly piezo-units with soft structural components. The newly developed lead-free piezo-unit exhibits submicron ferroelectric domains and superior energy harvesting figures of merit (d33g33 ≈ 20 000 × 10-15 m2 N-1), resulting in the prepared f-LFPA demonstrating a high output voltage of 22.4 V, a power density of 0.145 W cm-2, and a signal-to-noise ratio of more than 30 dB within the FDA safety limits, while maintaining the flexibility for wide-angle receiving. Further ex vivo experiment demonstrates the adequate power supply capabilities of the f-LFPA and its possible application in future implantable eco-friendly bioelectronics for diagnostics, therapy, and real-time monitoring.
Collapse
Affiliation(s)
- Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Bo Wu
- Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, Chengdu, 610041, P. R. China.
| | - Xiaowei Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiang Lv
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Gengxi Lu
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jie Xing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Wenjuan Wu
- Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225, P. R. China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
113
|
Kim HJ, Ho JS. Wireless interfaces for brain neurotechnologies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210020. [PMID: 35658679 DOI: 10.1098/rsta.2021.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities-including radio-frequency fields, acoustic waves and light-to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
- The N.1 Institute for Health National University of Singapore, Queenstown, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Queenstown, Singapore
| |
Collapse
|
114
|
Yang Y, Hu X, Liu Y, Ouyang B, Zhang J, Jin H, Yu Z, Liu R, Li Z, Jiang L, Lin X, Xu B. An implantable ultrasound-powered device for the treatment of brain cancer using electromagnetic fields. SCIENCE ADVANCES 2022; 8:eabm5023. [PMID: 35867783 PMCID: PMC9307245 DOI: 10.1126/sciadv.abm5023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Brain tumors have been proved challenging to treat. Here, we present a promising alternative by developing an implantable ultrasound-powered tumor treating device (UP-TTD) that electromagnetically disrupts the rapid division of cancer cells without any adverse effects on normal neurons, thereby safely inhibiting brain cancer recurrence. In vitro and in vivo experiments confirmed the significant therapeutic effect of the UP-TTD, with ~58% inhibition on growth rate of clinical tumor cells and ~78% reduction of cancer area in tumor-bearing rats. This UP-TTD is wireless ultrasound-powered, chip-sized, lightweight, and easy to operate on complex surfaces, with a largely boosting therapeutic efficiency and reducing energy consumption. Meanwhile, various treatment parameters could be tuned from the UP-TTD without increasing its size or adding circuits on the integrated chip. The tuning process was simulated and discussed, showing an excellent agreement with the experimental data. The encouraging results of the UP-TTD raise the possibility of a new modality for brain cancer treatment.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Xiaoping Hu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Yuxin Liu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Bin Ouyang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Jiaxi Zhang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Huawei Jin
- The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd., Yuexiu District, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenhua Yu
- The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd., Yuexiu District, Guangzhou, Guangdong 510080, P.R. China
| | - Ruiwei Liu
- School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong 510725, P.R. China
| | - Zhe Li
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Lelun Jiang
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Xudong Lin
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
| | - Bingzhe Xu
- Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China
- Corresponding author.
| |
Collapse
|
115
|
Jiang L, Chen H, Zeng Y, Tan Z, Wu J, Xing J, Zhu J. Potassium Sodium Niobate-Based Lead-Free High-Frequency Ultrasonic Transducers for Multifunctional Acoustic Tweezers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30979-30990. [PMID: 35767379 DOI: 10.1021/acsami.2c05687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic transducers may need to operate in direct contact with the human body, especially with the skin or closer to blood vessels. Eco-friendly lead-free materials and devices are therefore being vigorously developed for biosafety considerations. This work presents high-performance potassium sodium niobate [(K,Na)NbO3, KNN]-based lead-free ceramics with composition-driven multiphase coexistence and their application on high-frequency ultrasonic transducers for multifunctional acoustic tweezers. A high piezoelectric constant d33 value of 332 pC/N, a good Curie temperature TC value of 348 °C, and improved in situ temperature stability were obtained in the piezoceramics via the construction multiple phases near room temperature and domain engineering. One to three piezocomposites were further fabricated based on the synthesized ceramics for higher electromechanical coupling properties. Lead-free high-frequency transducers as multifunctional acoustic tweezers for precise and selective manipulation of microparticles were designed and manufactured with a high center frequency of 23.4 MHz and a broad -6 dB bandwidth of 75.4%. Additionally, a stable transducer performance was obtained over a test temperature range of 23-60 °C, indicating good thermal stability in environments with fluctuating temperatures. Research on lead-free high-frequency transducers for ultrasound imaging and precise and selective manipulation of microparticles demonstrates their broad potential in fields such as medical therapy and diagnosis.
Collapse
Affiliation(s)
- Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Hao Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Yushun Zeng
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jie Xing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jianguo Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| |
Collapse
|
116
|
Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022; 13:3853. [PMID: 35788594 PMCID: PMC9253314 DOI: 10.1038/s41467-022-31599-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/22/2022] [Indexed: 12/29/2022] Open
Abstract
Electronic visual prostheses, or biomimetic eyes, have shown the feasibility of restoring functional vision in the blind through electrical pulses to initiate neural responses artificially. However, existing visual prostheses predominantly use wired connections or electromagnetic waves for powering and data telemetry, which raises safety concerns or couples inefficiently to miniaturized implant units. Here, we present a flexible ultrasound-induced retinal stimulating piezo-array that can offer an alternative wireless artificial retinal prosthesis approach for evoking visual percepts in blind individuals. The device integrates a two-dimensional piezo-array with 32-pixel stimulating electrodes in a flexible printed circuit board. Each piezo-element can be ultrasonically and individually activated, thus, spatially reconfigurable electronic patterns can be dynamically applied via programmable ultrasound beamlines. As a proof of concept, we demonstrate the ultrasound-induced pattern reconstruction in ex vivo murine retinal tissue, showing the potential of this approach to restore functional, life-enhancing vision in people living with blindness.
Collapse
|
117
|
Zhang Y, Muthuraman P, Andino-Pavlovsky V, Uguz I, Elloian J, Shepard KL. Augmented ultrasonography with implanted CMOS electronic motes. Nat Commun 2022; 13:3521. [PMID: 35725979 PMCID: PMC9209459 DOI: 10.1038/s41467-022-31166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Modern clinical practice benefits significantly from imaging technologies and much effort is directed toward making this imaging more informative through the addition of contrast agents or reporters. Here, we report the design of a battery-less integrated circuit mote acting as an electronic reporter during medical ultrasound imaging. When implanted within the field-of-view of a brightness-mode (B-mode) ultrasound imager, this mote transmits information from its location through backscattered acoustic energy which is captured within the ultrasound image itself. We prototype and characterize the operation of such motes in vitro and in vivo. Performing with a static power consumption of less than 57 pW, the motes operate at duty cycles for receiving acoustic energy as low as 50 ppm. Motes within the same field-of-view during imaging have demonstrated signal-to-noise ratios of more than 19.1 dB at depths of up to 40 mm in lossy phantom. Physiological information acquired through such motes, which is beyond what is measurable with endogenous ultrasound backscatter and which is biogeographically located within an image, has the potential to provide an augmented ultrasonography.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.,School of Integrated Circuits, Peking University, Beijing, P. R. China
| | - Prashant Muthuraman
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Ilke Uguz
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jeffrey Elloian
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
118
|
Becerra-Fajardo L, Krob MO, Minguillon J, Rodrigues C, Welsch C, Tudela-Pi M, Comerma A, Oliveira Barroso F, Schneider A, Ivorra A. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics. J Neuroeng Rehabil 2022; 19:57. [PMID: 35672857 PMCID: PMC9171952 DOI: 10.1186/s12984-022-01033-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Implantable neuroprostheses consisting of a central electronic unit wired to electrodes benefit thousands of patients worldwide. However, they present limitations that restrict their use. Those limitations, which are more adverse in motor neuroprostheses, mostly arise from their bulkiness and the need to perform complex surgical implantation procedures. Alternatively, it has been proposed the development of distributed networks of intramuscular wireless microsensors and microstimulators that communicate with external systems for analyzing neuromuscular activity and performing stimulation or controlling external devices. This paradigm requires the development of miniaturized implants that can be wirelessly powered and operated by an external system. To accomplish this, we propose a wireless power transfer (WPT) and communications approach based on volume conduction of innocuous high frequency (HF) current bursts. The currents are applied through external textile electrodes and are collected by the wireless devices through two electrodes for powering and bidirectional digital communications. As these devices do not require bulky components for obtaining power, they may have a flexible threadlike conformation, facilitating deep implantation by injection. METHODS We report the design and evaluation of advanced prototypes based on the above approach. The system consists of an external unit, floating semi-implantable devices for sensing and stimulation, and a bidirectional communications protocol. The devices are intended for their future use in acute human trials to demonstrate the distributed paradigm. The technology is assayed in vitro using an agar phantom, and in vivo in hindlimbs of anesthetized rabbits. RESULTS The semi-implantable devices were able to power and bidirectionally communicate with the external unit. Using 13 commands modulated in innocuous 3 MHz HF current bursts, the external unit configured the sensing and stimulation parameters, and controlled their execution. Raw EMG was successfully acquired by the wireless devices at 1 ksps. CONCLUSIONS The demonstrated approach overcomes key limitations of existing neuroprostheses, paving the way to the development of distributed flexible threadlike sensors and stimulators. To the best of our knowledge, these devices are the first based on WPT by volume conduction that can work as EMG sensors and as electrical stimulators in a network of wireless devices.
Collapse
Affiliation(s)
- Laura Becerra-Fajardo
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain.
| | - Marc Oliver Krob
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Germany
| | - Jesus Minguillon
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
- Research Centre for Information and Communications Technologies, University of Granada, 18014, Granada, Spain
- Department of Signal Theory, Telematics and Communications, University of Granada, 18014, Granada, Spain
| | - Camila Rodrigues
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002, Madrid, Spain
- Electronics, Automation and Communications Department, ICAI School of Engineering, Comillas Pontifical University, 28015, Madrid, Spain
| | - Christine Welsch
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Germany
| | - Marc Tudela-Pi
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Albert Comerma
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002, Madrid, Spain
| | - Andreas Schneider
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280, Sulzbach, Germany
| | - Antoni Ivorra
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
- Serra Húnter Fellow Programme, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
119
|
Silverå Ejneby M, Jakešová M, Ferrero JJ, Migliaccio L, Sahalianov I, Zhao Z, Berggren M, Khodagholy D, Đerek V, Gelinas JN, Głowacki ED. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat Biomed Eng 2022; 6:741-753. [PMID: 34916610 DOI: 10.1038/s41551-021-00817-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm3 thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-μs pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves.
Collapse
Affiliation(s)
- Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Marie Jakešová
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ludovico Migliaccio
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ihor Sahalianov
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Vedran Đerek
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA. .,Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
120
|
Prominski A, Shi J, Li P, Yue J, Lin Y, Park J, Tian B, Rotenberg MY. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. NATURE MATERIALS 2022; 21:647-655. [PMID: 35618824 DOI: 10.1038/s41563-022-01249-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Homo- and heterojunctions play essential roles in semiconductor-based devices such as field-effect transistors, solar cells, photodetectors and light-emitting diodes. Semiconductor junctions have been recently used to optically trigger biological modulation via photovoltaic or photoelectrochemical mechanisms. The creation of heterojunctions typically involves materials with different doping or composition, which leads to high cost, complex fabrications and potential side effects at biointerfaces. Here we show that a porosity-based heterojunction, a largely overlooked system in materials science, can yield an efficient photoelectrochemical response from the semiconductor surface. Using self-limiting stain etching, we create a nanoporous/non-porous, soft-hard heterojunction in p-type silicon within seconds under ambient conditions. Upon surface oxidation, the heterojunction yields a strong photoelectrochemical response in saline. Without any interconnects or metal modifications, the heterojunction enables efficient non-genetic optoelectronic stimulation of isolated rat hearts ex vivo and sciatic nerves in vivo with optical power comparable to optogenetics, and with near-infrared capabilities.
Collapse
Affiliation(s)
- Aleksander Prominski
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Pengju Li
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yiliang Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jihun Park
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The James Franck Institute, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The James Franck Institute, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
121
|
Gil B, Lo B, Yang GZ, Anastasova S. Smart implanted access port catheter for therapy intervention with pH and lactate biosensors. Mater Today Bio 2022; 15:100298. [PMID: 35634169 PMCID: PMC9133618 DOI: 10.1016/j.mtbio.2022.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 10/29/2022] Open
Abstract
Totally implanted access ports (TIAP) are widely used with oncology patients requiring long term central venous access for the delivery of chemotherapeutic agents, infusions, transfusions, blood sample collection and parenteral nutrition. Such devices offer a significant improvement to the quality of life for patients and reduced complication rates, particularly infection, in contrast to the classical central venous catheters. Nevertheless, infections do occur, with biofilm formation bringing difficulties to the treatment of infection-related complications that can ultimately lead to the explantation of the device. A smart TIAP device that is sensor-enabled to detect infection prior to extensive biofilm formation would reduce the cases for potential device explantation, whereas biomarkers detection within body fluids such as pH or lactate would provide vital information regarding metabolic processes occurring inside the body. In this paper, we propose a novel batteryless and wireless device suitable for the interrogation of such markers in an embodiment model of an TIAP, with miniature biochemical sensing needles. Device readings can be carried out by a smartphone equipped with Near Field Communication (NFC) interface at relative short distances off-body, while providing radiofrequency energy harvesting capability to the TIAP, useful for assessing patient's health and potential port infection on demand.
Collapse
Affiliation(s)
- Bruno Gil
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Benny Lo
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Salzitsa Anastasova
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
122
|
Habibagahi I, Omidbeigi M, Hadaya J, Lyu H, Jang J, Ardell JL, Bari AA, Babakhani A. Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs. Sci Rep 2022; 12:8184. [PMID: 35581302 PMCID: PMC9114380 DOI: 10.1038/s41598-022-11850-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Neuromodulation of peripheral nerves has been clinically used for a wide range of indications. Wireless and batteryless stimulators offer important capabilities such as no need for reoperation, and extended life compared to their wired counterparts. However, there are challenging trade-offs between the device size and its operating range, which can limit their use. This study aimed to examine the functionality of newly designed wirelessly powered and controlled implants in vagus nerve stimulation for pigs. The implant used near field inductive coupling at 13.56 MHz industrial, scientific, and medical band to harvest power from an external coil. The circular implant had a diameter of 13 mm and weighed 483 mg with cuff electrodes. The efficiency of the inductive link and robustness to distance and misalignment were optimized. As a result, the specific absorption rate was orders of magnitude lower than the safety limit, and the stimulation can be performed using only 0.1 W of external power. For the first time, wireless and batteryless VNS with more than 5 cm operation range was demonstrated in pigs. A total of 84 vagus nerve stimulations (10 s each) have been performed in three adult pigs. In a quantitative comparison of the effectiveness of VNS devices, the efficiency of systems on reducing heart rate was similar in both conventional (75%) and wireless (78.5%) systems. The pulse width and frequency of the stimulation were swept on both systems, and the response for physiological markers was drawn. The results were easily reproducible, and methods used in this study can serve as a basis for future wirelessly powered implants.
Collapse
Affiliation(s)
- Iman Habibagahi
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| | - Mahmoud Omidbeigi
- Department of Neurosurgery, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA.,Molecular, Cellular and Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Hongming Lyu
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Jaeeun Jang
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A Bari
- Department of Neurosurgery, University of California at Los Angeles, Los Angeles, CA, USA
| | - Aydin Babakhani
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
123
|
Li J, Ma Y, Zhang T, Shung KK, Zhu B. Recent Advancements in Ultrasound Transducer: From Material Strategies to Biomedical Applications. BME FRONTIERS 2022; 2022:9764501. [PMID: 37850168 PMCID: PMC10521713 DOI: 10.34133/2022/9764501] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/06/2022] [Indexed: 10/19/2023] Open
Abstract
Ultrasound is extensively studied for biomedical engineering applications. As the core part of the ultrasonic system, the ultrasound transducer plays a significant role. For the purpose of meeting the requirement of precision medicine, the main challenge for the development of ultrasound transducer is to further enhance its performance. In this article, an overview of recent developments in ultrasound transducer technologies that use a variety of material strategies and device designs based on both the piezoelectric and photoacoustic mechanisms is provided. Practical applications are also presented, including ultrasound imaging, ultrasound therapy, particle/cell manipulation, drug delivery, and nerve stimulation. Finally, perspectives and opportunities are also highlighted.
Collapse
Affiliation(s)
- Jiapu Li
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuqing Ma
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Tao Zhang
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - K. Kirk Shung
- NIH Resource Center for Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Benpeng Zhu
- Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China, 430074
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
124
|
Vasan A, Allein F, Duque M, Magaram U, Boechler N, Chalasani SH, Friend J. Microscale concert hall acoustics to produce uniform ultrasound stimulation for targeted sonogenetics in hsTRPA1-transfected cells. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100135. [PMID: 36060550 PMCID: PMC9431988 DOI: 10.1002/anbr.202100135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The field of ultrasound neuromodulation has rapidly developed over the past decade, a consequence of the discovery of strain-sensitive structures in the membrane and organelles of cells extending into the brain, heart, and other organs. Notably, clinical trials are underway for treating epilepsy using focused ultrasound to elicit an organized local electrical response. A key limitation to this approach is the formation of standing waves within the skull. In standing acoustic waves, the maximum ultrasound intensity spatially varies from near zero to double the mean in one half a wavelength, and has lead to localized tissue damage and disruption of normal brain function while attempting to evoke a broader response. This phenomenon also produces a large spatial variation in the actual ultrasound exposure in tissue, leading to heterogeneous results and challenges with interpreting these effects. One approach to overcome this limitation is presented herein: transducer-mounted diffusers that result in spatiotemporally incoherent ultrasound. Herein, we numerically and experimentally quantified the effect of a diffuser in an enclosed domain, and show that adding the diffuser leads to a two-fold increase in ultrasound responsiveness of hsTRPA1 transfected HEK cells. Furthermore, we demonstrate the diffuser allow us to produce an uniform spatial distribution of pressure in the rodent skull. Collectively, we propose that our approach leads to a means to deliver uniform ultrasound into irregular cavities for sonogenetics.
Collapse
Affiliation(s)
- Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA 92093 USA
| | - Florian Allein
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093 USA
| | - Marc Duque
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Uri Magaram
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nicholas Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093 USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA 92093 USA
| |
Collapse
|
125
|
Fogel HP, Winfree CJ. What’s New in Peripheral Nerve Stimulation. Neurosurg Clin N Am 2022; 33:323-330. [DOI: 10.1016/j.nec.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
126
|
Zhang T, Liang H, Wang Z, Qiu C, Peng YB, Zhu X, Li J, Ge X, Xu J, Huang X, Tong J, Ou-Yang J, Yang X, Li F, Zhu B. Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. SCIENCE ADVANCES 2022; 8:eabk0159. [PMID: 35427156 PMCID: PMC9012468 DOI: 10.1126/sciadv.abk0159] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Supplying wireless power is a challenging technical problem of great importance for implantable biomedical devices. Here, we introduce a novel implantable piezoelectric ultrasound energy-harvesting device based on Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystal. The output power density of this device can reach up to 1.1 W/cm2 in vitro, which is 18 times higher than the previous record (60 mW/cm2). After being implanted in the rat brain, under 1-MHz ultrasound with a safe intensity of 212 mW/cm2, the as-developed device can produce an instantaneous effective output power of 280 μW, which can immediately activate the periaqueductal gray brain area. The rat electrophysiological experiments under anesthesia and behavioral experiments demonstrate that our wireless-powered device is well qualified for deep brain stimulation and analgesia applications. These encouraging results provide new insights into the development of implantable devices in the future.
Collapse
Affiliation(s)
- Tao Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhen Wang
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chaorui Qiu
- Electronic Materials Research Lab, Key Lab of Education Ministry/International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yuan Bo Peng
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xinyu Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiapu Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Ge
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianbo Xu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Huang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Tong
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Ou-Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofei Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Li
- Electronic Materials Research Lab, Key Lab of Education Ministry/International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
127
|
Zhao Z, Spyropoulos GD, Cea C, Gelinas JN, Khodagholy D. Ionic communication for implantable bioelectronics. SCIENCE ADVANCES 2022; 8:eabm7851. [PMID: 35385298 PMCID: PMC8985921 DOI: 10.1126/sciadv.abm7851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 05/22/2023]
Abstract
Implanted bioelectronic devices require data transmission through tissue, but ionic conductivity and inhomogeneity of this medium complicate conventional communication approaches. Here, we introduce ionic communication (IC) that uses ions to effectively propagate megahertz-range signals. We demonstrate that IC operates by generating and sensing electrical potential energy within polarizable media. IC was tuned to transmit across a range of biologically relevant tissue depths. The radius of propagation was controlled to enable multiline parallel communication, and it did not interfere with concurrent use of other bioelectronics. We created a fully implantable IC-based neural interface device that acquired and noninvasively transmitted neurophysiologic data from freely moving rodents over a period of weeks with stability sufficient for isolation of action potentials from individual neurons. IC is a biologically based data communication that establishes long-term, high-fidelity interactions across intact tissue.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jennifer N. Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
128
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
129
|
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat Biomed Eng 2022; 6:706-716. [PMID: 35361934 PMCID: PMC9213237 DOI: 10.1038/s41551-022-00873-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023]
Abstract
Implantable bioelectronic devices for the simulation of peripheral nerves could be used to treat disorders that are resistant to traditional pharmacological therapies. However, for many nerve targets, this requires invasive surgeries and the implantation of bulky devices (about a few centimetres in at least one dimension). Here we report the design and in vivo proof-of-concept testing of an endovascular wireless and battery-free millimetric implant for the stimulation of specific peripheral nerves that are difficult to reach via traditional surgeries. The device can be delivered through a percutaneous catheter and leverages magnetoelectric materials to receive data and power through tissue via a digitally programmable 1 mm × 0.8 mm system-on-a-chip. Implantation of the device directly on top of the sciatic nerve in rats and near a femoral artery in pigs (with a stimulation lead introduced into a blood vessel through a catheter) allowed for wireless stimulation of the animals’ sciatic and femoral nerves. Minimally invasive magnetoelectric implants may allow for the stimulation of nerves without the need for open surgery or the implantation of battery-powered pulse generators. An endovascular wireless and battery-free millimetric implant enables the stimulation of peripheral nerves that are difficult to reach via traditional surgeries.
Collapse
|
130
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
131
|
Nikić M, Opančar A, Hartmann F, Migliaccio L, Jakešová M, Głowacki ED, Đerek V. Micropyramid structured photo capacitive interfaces. NANOTECHNOLOGY 2022; 33:245302. [PMID: 35226885 DOI: 10.1088/1361-6528/ac5927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Optically driven electronic neuromodulation devices are a novel tool in basic research and offer new prospects in medical therapeutic applications. Optimal operation of such devices requires efficient light capture and charge generation, effective electrical communication across the device's bioelectronic interface, conformal adhesion to the target tissue, and mechanical stability of the device during the lifetime of the implant-all of which can be tuned by spatial structuring of the device. We demonstrate a 3D structured opto-bioelectronic device-an organic electrolytic photocapacitor spatially designed by depositing the active device layers on an inverted micropyramid-shaped substrate. Ultrathin, transparent, and flexible micropyramid-shaped foil was fabricated by chemical vapour deposition of parylene C on silicon moulds containing arrays of inverted micropyramids, followed by a peel-off procedure. The capacitive current delivered by the devices showed a strong dependency on the underlying spatial structure. The device performance was evaluated by numerical modelling. We propose that the developed numerical model can be used as a basis for the design of future functional 3D design of opto-bioelectronic devices and electrodes.
Collapse
Affiliation(s)
- Marta Nikić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000, Zagreb, Croatia
| | - Aleksandar Opančar
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000, Zagreb, Croatia
| | - Florian Hartmann
- Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University Linz, Altenberger Strasse 69, Linz, A-4040, Austria
- Soft Materials Lab, Linz Institute of Technology LIT, Johannes Kepler University, Altenberger Strasse 69, Linz, A-4040, Austria
| | - Ludovico Migliaccio
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Marie Jakešová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Eric Daniel Głowacki
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000, Zagreb, Croatia
| |
Collapse
|
132
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
133
|
Yu Z, Chen JC, He Y, Alrashdan FT, Avants BW, Singer A, Robinson JT, Yang K. Magnetoelectric Bio-Implants Powered and Programmed by a Single Transmitter for Coordinated Multisite Stimulation. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2022; 57:818-830. [PMID: 36275505 PMCID: PMC9581110 DOI: 10.1109/jssc.2021.3129993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This paper presents a hardware platform including stimulating implants wirelessly powered and controlled by a shared transmitter for coordinated leadless multisite stimulation. The adopted novel single-transmitter, multiple-implant structure can flexibly deploy stimuli, improve system efficiency, easily scale stimulating channel quantity and relieve efforts in device synchronization. In the proposed system, a wireless link leveraging magnetoelectric effects is co-designed with a robust and efficient system-on-chip to enable reliable operation and individual programming of every implant. Each implant integrates a 0.8-mm2 chip, a 6-mm2 magnetoelectric film, and an energy storage capacitor within a 6.2-mm3 size. Magnetoelectric power transfer is capable of safely transmitting milliwatt power to devices placed several centimeters away from the transmitter coil, maintaining good efficiency with size constraints and tolerating 60-degree, 1.5-cm misalignment in angular and lateral movement. The SoC robustly operates with 2-V source amplitude variations that spans a 40-mm transmitter-implant distance change, realizes individual addressability through physical unclonable function IDs, and achieves 90% efficiency for 1.5-to-3.5-V stimulation with fully programmable stimulation parameters.
Collapse
Affiliation(s)
| | | | - Yan He
- Rice University, Houston, TX 77005, USA
| | | | | | | | - Jacob T Robinson
- Rice University, Houston, TX 77005, USA; Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
134
|
A 28 nm Bulk CMOS Fully Digital BPSK Demodulator for US-Powered IMDs Downlink Communications. ELECTRONICS 2022. [DOI: 10.3390/electronics11050698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low-invasive and battery-less implantable medical devices (IMDs) have been increasingly emerging in recent years. The developed solutions in the literature often concentrate on the Bidirectional Data-Link for long-term monitoring devices. Indeed, their ability to collect data and communicate them to the external world, namely Data Up-Link, has revealed a promising solution for bioelectronic medicine. Furthermore, the capacity to control organs such as the brain, nerves, heart-beat and gastrointestinal activities, made up through the manipulation of electrical transducers, could optimise therapeutic protocols and help patients’ pain relief. These kinds of stimulations come from the modulation of a powering signal generated from an externally placed unit coupled to the implanted receivers for power/data exchanging. The established communication is also defined as a Data Down-Link. In this framework, a new solution of the Binary Phase-Shift Keying (BPSK) demodulator is presented in this paper in order to design a robust, low-area, and low-power Down-Link for ultrasound (US)-powered IMDs. The implemented system is fully digital and PLL-free, thus reducing area occupation and making it fully synthesizable. Post-layout simulation results are reported using a 28 nm Bulk CMOS technology provided by TSMC. Using a 2 MHz carrier input signal and an implant depth of 1 cm, the data rate is up to 1.33 Mbit/s with a 50% duty cycle, while the minimum average power consumption is cut-down to 3.3 μW in the typical corner.
Collapse
|
135
|
Berggren M, Głowacki ED, Simon DT, Stavrinidou E, Tybrandt K. In Vivo Organic Bioelectronics for Neuromodulation. Chem Rev 2022; 122:4826-4846. [PMID: 35050623 PMCID: PMC8874920 DOI: 10.1021/acs.chemrev.1c00390] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eric D. Głowacki
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Bioelectronics
Materials and Devices, Central European
Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech
Republic
| | - Daniel T. Simon
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
136
|
Kashani Z, Ilham SJ, Kiani M. Design and Optimization of Ultrasonic Links With Phased Arrays for Wireless Power Transmission to Biomedical Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:64-78. [PMID: 34986100 PMCID: PMC9131469 DOI: 10.1109/tbcas.2022.3140591] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ultrasound (US) is an attractive modality for wireless power transfer (WPT) to biomedical implants with millimeter (mm) dimensions. To compensate for misalignments in WPT to a mm-sized implant (or powering a network of mm-sized implants), a US transducer array should electronically be driven in a beamforming fashion (known as US phased array) to steer focused US beams at different locations. This paper presents the theory and design methodology of US WPT links with phased arrays and mm-sized receivers (Rx). For given constraints imposed by the application and fabrication, such as load (RL) and focal distance (F), the optimal geometries of a US phased array and Rx transducer, as well as the optimal operation frequency (fc) are found through an iterative design procedure to maximize the power transfer efficiency (PTE). An optimal figure of merit (FoM) related to PTE is proposed to simplify the US array design. A design example of a US link is presented and optimized for WPT to a mm-sized Rx with a linear array. In measurements, the fabricated 16-element array (10.9×9×1.7 mm3) driven by 100 V pulses at fc of 1.1 MHz with optimal delays for focusing at F = 20 mm generated a US beam with a pressure output of 0.8 MPa. The link could deliver up to 6 mW to a ∼ 1 mm3 Rx with a PTE of 0.14% (RL = 850 Ω). The beam steering capability of the array at -45o to 45o angles was also characterized.
Collapse
|
137
|
Lee DM, Rubab N, Hyun I, Kang W, Kim YJ, Kang M, Choi BO, Kim SW. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. SCIENCE ADVANCES 2022; 8:eabl8423. [PMID: 34995120 PMCID: PMC8741185 DOI: 10.1126/sciadv.abl8423] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-demand transient electronics, technologies referring subsequent material disintegration under well-defined triggering events and programmed time lines, offer exceptional clinical experiences in diagnosis, treatment, and rehabilitation. Despite potential benefits, such as the elimination of surgical device removal and reduction of long-term inimical effects, their use is limited by the nontransient conventional power supplies. Here, we report an ultrasound-mediated transient triboelectric nanogenerator (TENG) where ultrasound determines energy generation and degradation period. Our findings on finite element method simulation show that porous structures of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) play an essential role in the triggering transient process of our device under high-intensity ultrasound. Besides, the addition of polyethylene glycol improves triboelectric output performance; the voltage output increased by 58.5%, from 2.625 to 4.160 V. We successfully demonstrate the tunable transient performances by ex vivo experiment using a porcine tissue. This study provides insight into practical use of implantable TENGs based on ultrasound-triggered transient material design.
Collapse
Affiliation(s)
- Dong-Min Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Najaf Rubab
- School of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Inah Hyun
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Wooseok Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minki Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Byung Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06351, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- School of Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06351, Republic of Korea
- Corresponding author.
| |
Collapse
|
138
|
Sponheim C, Papadourakis V, Collinger JL, Downey J, Weiss J, Pentousi L, Elliott K, Hatsopoulos N. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays. J Neural Eng 2021; 18:10.1088/1741-2552/ac3eaf. [PMID: 34847547 PMCID: PMC8981395 DOI: 10.1088/1741-2552/ac3eaf] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Objective.Microelectrode arrays are standard tools for conducting chronic electrophysiological experiments, allowing researchers to simultaneously record from large numbers of neurons. Specifically, Utah electrode arrays (UEAs) have been utilized by scientists in many species, including rodents, rhesus macaques, marmosets, and human participants. The field of clinical human brain-computer interfaces currently relies on the UEA as a number of research groups have clearance from the United States Federal Drug Administration (FDA) for this device through the investigational device exemption pathway. Despite its widespread usage in systems neuroscience, few studies have comprehensively evaluated the reliability and signal quality of the Utah array over long periods of time in a large dataset.Approach.We collected and analyzed over 6000 recorded datasets from various cortical areas spanning almost nine years of experiments, totaling 17 rhesus macaques (Macaca mulatta) and 2 human subjects, and 55 separate microelectrode Utah arrays. The scale of this dataset allowed us to evaluate the average life of these arrays, based primarily on the signal-to-noise ratio of each electrode over time.Main results.Using implants in primary motor, premotor, prefrontal, and somatosensory cortices, we found that the average lifespan of available recordings from UEAs was 622 days, although we provide several examples of these UEAs lasting over 1000 days and one up to 9 years; human implants were also shown to last longer than non-human primate implants. We also found that electrode length did not affect longevity and quality, but iridium oxide metallization on the electrode tip exhibited superior yield as compared to platinum metallization.Significance.Understanding longevity and reliability of microelectrode array recordings allows researchers to set expectations and plan experiments accordingly and maximize the amount of high-quality data gathered. Our results suggest that one can expect chronic unit recordings to last at least two years, with the possibility for arrays to last the better part of a decade.
Collapse
Affiliation(s)
- Caleb Sponheim
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | | | - Jennifer L. Collinger
- Rehab Neural Engineering Labs, Departments of Physical Medicine and Rehabilitation and Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - John Downey
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Jeffrey Weiss
- Rehab Neural Engineering Labs, Departments of Physical Medicine and Rehabilitation and Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Lida Pentousi
- Department of Neuroscience Physiology and Pharmacology, University College London, United Kingdom
| | - Kaisa Elliott
- University of Minnesota Medical School, Duluth Campus
| | - Nicholas Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| |
Collapse
|
139
|
Khalifa A, Lee S, Molnar AC, Cash S. Injectable wireless microdevices: challenges and opportunities. Bioelectron Med 2021; 7:19. [PMID: 34937565 PMCID: PMC8697496 DOI: 10.1186/s42234-021-00080-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
In the past three decades, we have witnessed unprecedented progress in wireless implantable medical devices that can monitor physiological parameters and interface with the nervous system. These devices are beginning to transform healthcare. To provide an even more stable, safe, effective, and distributed interface, a new class of implantable devices is being developed; injectable wireless microdevices. Thanks to recent advances in micro/nanofabrication techniques and powering/communication methodologies, some wireless implantable devices are now on the scale of dust (< 0.5 mm), enabling their full injection with minimal insertion damage. Here we review state-of-the-art fully injectable microdevices, discuss their injection techniques, and address the current challenges and opportunities for future developments.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sunwoo Lee
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | | | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
140
|
Hong JW, Yoon C, Jo K, Won JH, Park S. Recent advances in recording and modulation technologies for next-generation neural interfaces. iScience 2021; 24:103550. [PMID: 34917907 PMCID: PMC8666678 DOI: 10.1016/j.isci.2021.103550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Along with the advancement in neural engineering techniques, unprecedented progress in the development of neural interfaces has been made over the past few decades. However, despite these achievements, there is still room for further improvements especially toward the possibility of monitoring and modulating neural activities with high resolution and specificity in our daily lives. In an effort of taking a step toward the next-generation neural interfaces, we want to highlight the recent progress in neural technologies. We will cover a wide scope of such developments ranging from novel platforms for highly specific recording and modulation to system integration for practical applications of novel interfaces.
Collapse
Affiliation(s)
- Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chanwoong Yoon
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghyun Jo
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon Hee Won
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjun Park
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute of Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
141
|
Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The long-segment peripheral nerve injury (PNI) represents a global medical challenge, leading to incomplete nerve tissue recovery and unsatisfactory functional reconstruction. However, the current electrical stimulation (ES) apparatuses fail perfect nerve repair due to their inability of the variable synchronous self-regulated function with physiological states. It is urgent to develop an implantable ES platform with physiologically adaptive function to provide instantaneous and nerve-preferred ES. Here, a physiologically self-regulated electrical signal is generated by integrating a novel tribo/piezoelectric hybrid nanogenerator with a nanoporous nerve guide conduit to construct a fully implantable neural electrical stimulation (FI-NES) system. The optimal neural ES parameters completely originate from the body itself and are highly self-responsive to different physiological states. The morphological evaluation, representative protein expression level, and functional reconstruction of the regenerated nerves are conducted to assess the PNI recovery process. Evidence shows that the recovery effect of 15 mm length nerve defects under the guidance of the FI-NES system is significantly close to the autograft. The designed FI-NES system provides an effective method for long-term accelerating the recovery of PNI in vivo and is also appropriate for other tissue injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
| | - Lijuan Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chengteng Lai
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Qi Wu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fengyu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
142
|
Yang X, McGlynn E, Das R, Paşca SP, Cui B, Heidari H. Nanotechnology Enables Novel Modalities for Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103208. [PMID: 34668249 PMCID: PMC8712412 DOI: 10.1002/adma.202103208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Indexed: 05/18/2023]
Abstract
Neuromodulation is of great importance both as a fundamental neuroscience research tool for analyzing and understanding the brain function, and as a therapeutic avenue for treating brain disorders. Here, an overview of conceptual and technical progress in developing neuromodulation strategies is provided, and it is suggested that recent advances in nanotechnology are enabling novel neuromodulation modalities with less invasiveness, improved biointerfaces, deeper penetration, and higher spatiotemporal precision. The use of nanotechnology and the employment of versatile nanomaterials and nanoscale devices with tailored physical properties have led to considerable research progress. To conclude, an outlook discussing current challenges and future directions for next-generation neuromodulation modalities is presented.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCA94305USA
- Stanford Brain OrganogenesisWu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Eve McGlynn
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Rupam Das
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Sergiu P. Paşca
- Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCA94305USA
- Stanford Brain OrganogenesisWu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
| | - Bianxiao Cui
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCA94305USA
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
143
|
Missey F, Botzanowski B, Migliaccio L, Acerbo E, Głowacki ED, Williamson A. Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex. J Neural Eng 2021; 18. [PMID: 34749345 DOI: 10.1088/1741-2552/ac37a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Collapse
Affiliation(s)
- Florian Missey
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
144
|
Rapeaux AB, Constandinou TG. Implantable brain machine interfaces: first-in-human studies, technology challenges and trends. Curr Opin Biotechnol 2021; 72:102-111. [PMID: 34749248 DOI: 10.1016/j.copbio.2021.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/29/2022]
Abstract
Implantable brain machine interfaces (BMIs) are now on a trajectory to go mainstream, wherein what was once considered last resort will progressively become elective at earlier stages in disease treatment. First-in-human successes have demonstrated the ability to decode highly dexterous motor skills such as handwriting, and speech from human cortical activity. These have been used for cursor and prosthesis control, direct-to-text communication and speech synthesis. Along with these breakthrough studies, technology advancements have enabled the observation of more channels of neural activity through new concepts for centralised/distributed implant architectures. This is complemented by research in flexible substrates, packaging, surgical workflows and data processing. New regulatory guidance and funding has galvanised the field. This culmination of resource, efforts and capability is now attracting significant investment for BMI commercialisation. This paper reviews recent developments and describes the paradigm shift in BMI development that is leading to new innovations, insights and BMI translation.
Collapse
Affiliation(s)
- Adrien B Rapeaux
- Department of Electrical and Electronic Engineering, Imperial College London, UK; Centre for Bio-Inspired Technology, Imperial College London, UK; Care Research and Technology (CR&T) based at Imperial College London and the University of Surrey, UK Dementia Research Institute (UK DRI), UK
| | - Timothy G Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, UK; Centre for Bio-Inspired Technology, Imperial College London, UK; Care Research and Technology (CR&T) based at Imperial College London and the University of Surrey, UK Dementia Research Institute (UK DRI), UK.
| |
Collapse
|
145
|
Rabbani R, Najafiaghdam H, Ghanbari MM, Papageorgiou EP, Zhao B, Roschelle M, Stojanovic V, Muller R, Anwar M. Towards an Implantable Fluorescence Image Sensor for Real-Time Monitoring of Immune Response in Cancer Therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7399-7403. [PMID: 34892807 DOI: 10.1109/embc46164.2021.9631061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Real-time monitoring of cellular-level changes inside the body provides key information regarding disease progression and therapy assessment for critical care including cancer therapy. Current state-of-the-art oncological imaging methods impose unnecessary latencies to detect small cell foci. Invasive methods such as biopsies, on the other hand, cause disruption if deployed on a repeated basis. Therefore, they are not practical for real-time assessments of the tumor tissue. This work presents a proof-of-concept design for an implantable fluorescence lensless image sensor to address the pervasive challenge of real-time tracking of the immune response in immunotherapy. The 2.4x4.7 mm2 integrated circuit (IC) prototype consists of a 36 by 40 pixel array, a laser driver and a power management unit harvesting power and transferring 11.5 kbits/frame through a wireless ultrasound link while implanted 2 cm deep inside the body. Compared to prior art, this is the first full-fledged wireless system implementing chip-scale fluorescence microscopy to the best of our knowledge.Clinical relevance- This prototype can be used to personalize immunotherapy for the 50% of cancer patients who do not initially respond to the therapy.
Collapse
|
146
|
Sonmezoglu S, Darvishian A, Shen K, Bustamante MJ, Kandala A, Maharbiz MM. A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3362-3370. [PMID: 34197320 DOI: 10.1109/tuffc.2021.3093867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acoustic links for implantable medical devices (implants) have gained attention primarily because they provide a route to wireless deep-tissue systems. The miniaturization of the implants is a key research goal in these efforts, nominally because smaller implants result in less acute tissue damage. Implant size in most acoustic systems is limited by the piezoelectric bulk crystal used for power harvesting and data communication. Further miniaturization of the piezocrystal can degrade system power transfer efficiency and data transfer reliability. Here, we present a new method for packaging the implant piezocrystal; the method maximizes power transfer efficiency ( η ) from the acoustic power at the piezo surface to the power delivered to the electrical load and information transfer across the acoustic link. Our method relies on placing piezo-to-substrate anchors to the piezo regions where the vibrational displacement of the mode of interest is zero. To evaluate our method, we investigated packaged 1×1×1 mm3 piezocrystals assembled with different sized anchors. Our results show that reducing the anchor size decreases anchor loss and thus improves piezo quality factor (Q). We also demonstrate that this method improves system electromechanical coupling. A strongly coupled, high-Q piezo with properly sized and located anchors is demonstrated to achieve significantly higher η and superior data transfer capability at resonance. Overall, this work provides an analysis and generic method for packaging the implant piezocrystal that enables the design of efficient acoustic power and data links, which provides a path toward the further miniaturization of ultrasonic implants to submillimeter scales.
Collapse
|
147
|
Jiang L, Lu G, Yang Y, Xu Y, Qi F, Li J, Zhu B, Chen Y. Multichannel Piezo-Ultrasound Implant with Hybrid Waterborne Acoustic Metastructure for Selective Wireless Energy Transfer at Megahertz Frequencies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104251. [PMID: 34480501 DOI: 10.1002/adma.202104251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound energy transfer (UET) is developed and integrated into various bioelectronics with diagnostic, therapeutic, and monitoring capabilities. However, existing UET platforms generally enable one function at a time due to the single ultrasound channel architecture, limiting the full potential of bioelectronics that requires multicontrol modes. Here, a multichannel piezo-ultrasound implant (MC-PUI) is presented that integrates a hybrid waterborne acoustic metastructure (HWAM), multiple piezo-harvesters, and a miniaturized circuit with electronic components for selective wireless control via ultrasound frequency switching. The HWAM that utilizes both a 3D-printed air-diffraction matrix and a half-lambda Fabry-Perot resonator is optimized to provide the advantage of ultrasound selectivity at megahertz frequencies. Complying with U.S. Food and Drug Administration regulations, frequency-controlled multifunctional operations, such as wireless charging (≈11.08 µW) at 3.3 MHz and high-sensitivity wireless switch/control (threshold ≈0.55 MPa) of micro-light-emitting diode/motor at 1 MHz, are demonstrated ex vivo using porcine tissue and in vivo in a rat. The developed MC-PUI enhances UET versatility and opens up a new pathway for wireless implant design.
Collapse
Affiliation(s)
- Laiming Jiang
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gengxi Lu
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yang Yang
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Yang Xu
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fangjie Qi
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jiapu Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
148
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
149
|
Jin P, Fu J, Wang F, Zhang Y, Wang P, Liu X, Jiao Y, Li H, Chen Y, Ma Y, Feng X. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. SCIENCE ADVANCES 2021; 7:eabg2507. [PMID: 34586839 PMCID: PMC8480923 DOI: 10.1126/sciadv.abg2507] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/06/2021] [Indexed: 05/02/2023]
Abstract
The use of implantable medical devices, including cardiac pacemakers and brain pacemakers, is becoming increasingly prevalent. However, surgically replacing batteries owing to their limited lifetime is a drawback of those devices. Such an operation poses a risk to patients—a problem that, to date, has not yet been solved. Furthermore, current devices are large and rigid, potentially causing patient discomfort after implantation. To address this problem, we developed a thin, battery-free, flexible, implantable system based on flexible electronic technology that can not only achieve wireless recharging and communication simultaneously via ultrasound but also perform many current device functions, including in vivo physiological monitoring and cardiac pacing. To prove this, an animal experiment was conducted involving creating a cardiac arrest model and powering the system by ultrasound. The results showed that it automatically detected abnormal heartbeats and responded by electrically stimulating the heart, demonstrating the device’s potential clinical utility for emergent treatment.
Collapse
Affiliation(s)
- Peng Jin
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ji Fu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Peng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yang Jiao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of THU Jiaxing, Zhejiang 314000, China
- Qiantang Science and Technology Innovation Center, Hangzhou 310016, China
| | - Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
150
|
Lamont C, Grego T, Nanbakhsh K, Shah Idil A, Giagka V, Vanhoestenberghe A, Cogan S, Donaldson N. Silicone encapsulation of thin-film SiO x, SiO xN yand SiC for modern electronic medical implants: a comparative long-term ageing study. J Neural Eng 2021; 18:055003. [PMID: 33752188 PMCID: PMC8208634 DOI: 10.1088/1741-2552/abf0d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Objective.Ensuring the longevity of implantable devices is critical for their clinical usefulness. This is commonly achieved by hermetically sealing the sensitive electronics in a water impermeable housing, however, this method limits miniaturisation. Alternatively, silicone encapsulation has demonstrated long-term protection of implanted thick-film electronic devices. However, much of the current conformal packaging research is focused on more rigid coatings, such as parylene, liquid crystal polymers and novel inorganic layers. Here, we consider the potential of silicone to protect implants using thin-film technology with features 33 times smaller than thick-film counterparts.Approach.Aluminium interdigitated comb structures under plasma-enhanced chemical vapour deposited passivation (SiOx, SiOxNy, SiOxNy+ SiC) were encapsulated in medical grade silicones, with a total of six passivation/silicone combinations. Samples were aged in phosphate-buffered saline at 67 ∘C for up to 694 days under a continuous ±5 V biphasic waveform. Periodic electrochemical impedance spectroscopy measurements monitored for leakage currents and degradation of the metal traces. Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, focused-ion-beam and scanning-electron- microscopy were employed to determine any encapsulation material changes.Main results.No silicone delamination, passivation dissolution, or metal corrosion was observed during ageing. Impedances greater than 100 GΩ were maintained between the aluminium tracks for silicone encapsulation over SiOxNyand SiC passivations. For these samples the only observed failure mode was open-circuit wire bonds. In contrast, progressive hydration of the SiOxcaused its resistance to decrease by an order of magnitude.Significance.These results demonstrate silicone encapsulation offers excellent protection to thin-film conducting tracks when combined with appropriate inorganic thin films. This conclusion corresponds to previous reliability studies of silicone encapsulation in aqueous environments, but with a larger sample size. Therefore, we believe silicone encapsulation to be a realistic means of providing long-term protection for the circuits of implanted electronic medical devices.
Collapse
Affiliation(s)
- C Lamont
- Implanted Devices Group, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom,Author to whom any correspondence should be addressed
| | - T Grego
- Implanted Devices Group, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | - K Nanbakhsh
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - A Shah Idil
- Implanted Devices Group, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | - V Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands,
Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Micro-integration IZM, Berlin, Germany
| | - A Vanhoestenberghe
- Implanted Devices Group, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom,
Institute of Orthopaedics and Musculoskeletal Science, RNOH Trust, University College London, Stanmore, United Kingdom
| | - S Cogan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - N Donaldson
- Implanted Devices Group, Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| |
Collapse
|