101
|
Matsumine H, Numakura K, Tsunoda S, Wang H, Matsumine R, Climov M, Giatsidis G, Sukhatme VP, Orgill DP. Adipose-derived aldehyde dehydrogenase-expressing cells promote dermal regenerative potential with collagen-glycosaminoglycan scaffold. Wound Repair Regen 2017; 25:109-119. [DOI: 10.1111/wrr.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hajime Matsumine
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Kazuyuki Numakura
- The Department of Pathology, Brigham and Women's Hospital; Harvard Medical School
| | - Satoshi Tsunoda
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Huan Wang
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Rui Matsumine
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Mihail Climov
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Giorgio Giatsidis
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| | - Vikas P. Sukhatme
- Division of Interdisciplinary Medicine and Biotechnology; Beth Israel Deaconess Medical Center, Harvard Medical School; Boston Massachusetts
| | - Dennis P. Orgill
- The Division of Plastic Surgery, Brigham and Women's Hospital; Harvard Medical School
| |
Collapse
|
102
|
Spiekman M, van Dongen JA, Willemsen JC, Hoppe DL, van der Lei B, Harmsen MC. The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment. J Tissue Eng Regen Med 2017; 11:3220-3235. [PMID: 28156060 PMCID: PMC5724515 DOI: 10.1002/term.2213] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022]
Abstract
Lipofilling or lipografting is a novel and promising treatment method for reduction or prevention of dermal scars after injury. Ample anecdotal evidence from case reports supports the scar‐reducing properties of adipose tissue grafts. However, only a few properly controlled and designed clinical trials have been conducted thus far on this topic. Also, the underlying mechanism by which lipofilling improves scar aspect and reduces neuropathic scar pain remains largely undiscovered. Adipose‐derived stromal or stem cells (ADSC) are often described to be responsible for this therapeutic effect of lipofilling. We review the recent literature and discuss anticipated mechanisms that govern anti‐scarring capacity of adipose tissue and its ADSC. Both clinical and animal studies clearly demonstrated that lipofilling and ADSC influence processes associated with wound healing, including extracellular matrix remodelling, angiogenesis and modulation of inflammation in dermal scars. However, randomized clinical trials, providing sufficient level of evidence for lipofilling and/or ADSC as an anti‐scarring treatment, are lacking yet warranted in the near future. © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd
Collapse
Affiliation(s)
- Maroesjka Spiekman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joep C Willemsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Delia L Hoppe
- Department of Plastic and Reconstructive Microsurgery/Handsurgery, Charité University Medicine, Ernst Von Bergmann Clinic, Potsdam, Germany
| | - Berend van der Lei
- Department of Plastic Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
103
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
104
|
Yang G, Rothrauff BB, Lin H, Yu S, Tuan RS. Tendon-Derived Extracellular Matrix Enhances Transforming Growth Factor-β3-Induced Tenogenic Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng Part A 2017; 23:166-176. [PMID: 27809678 DOI: 10.1089/ten.tea.2015.0498] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of the limited and unsatisfactory outcomes of clinical tendon repair, tissue engineering approaches using adult mesenchymal stem cells are being considered a promising alternative strategy to heal tendon injuries. Successful and functional tendon tissue engineering depends on harnessing the biochemical cues presented by the native tendon extracellular matrix (ECM) and the embedded tissue-specific biofactors. In this study, we have prepared and characterized the biological activities of a soluble extract of decellularized tendon ECM (tECM) on adult adipose-derived stem cells (ASCs), on the basis of histological, biochemical, and gene expression analyses. The results showed that tECM enhances the proliferation and transforming growth factor (TGF)-β3-induced tenogenesis of ASCs in both plate and scaffold cultures in vitro, and modulates matrix deposition of ASCs seeded in scaffolds. These findings suggest that combining tendon ECM extract with TGF-β3 treatment is a possible alternative approach to induce tenogenesis for ASCs.
Collapse
Affiliation(s)
- Guang Yang
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh Swanson School of Engineering , Pittsburgh, Pennsylvania
| | - Benjamin B Rothrauff
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hang Lin
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Shuting Yu
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,5 School of Medicine, Tsinghua University , Beijing, China
| | - Rocky S Tuan
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh Swanson School of Engineering , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
105
|
Costa CRM, Feitosa MLT, Bezerra DO, Carvalho YKP, Olivindo RFG, Fernando PB, Silva GC, Silva MLG, Ambrósio CE, Conde Júnior AM, Argolo Neto NM, Costa Silva LM, Carvalho MAM. Labeling of adipose-derived stem cells with quantum dots provides stable and long-term fluorescent signal for ex vivo cell tracking. In Vitro Cell Dev Biol Anim 2016; 53:363-370. [DOI: 10.1007/s11626-016-0121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
|
106
|
Sá da Bandeira D, Casamitjana J, Crisan M. Pericytes, integral components of adult hematopoietic stem cell niches. Pharmacol Ther 2016; 171:104-113. [PMID: 27908803 DOI: 10.1016/j.pharmthera.2016.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.
Collapse
Affiliation(s)
- D Sá da Bandeira
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - J Casamitjana
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - M Crisan
- BHF Centre for Cardiovascular Science, MRC Scottish Centre for Regenerative Medicine, The Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
107
|
de Souza LEB, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal Stem Cells and Pericytes: To What Extent Are They Related? Stem Cells Dev 2016; 25:1843-1852. [PMID: 27702398 DOI: 10.1089/scd.2016.0109] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were initially identified as progenitors of skeletal tissues within mammalian bone marrow and cells with similar properties were also obtained from other tissues such as adipose and dental pulp. Although MSCs have been extensively investigated, their native behavior and in vivo identity remain poorly defined. Uncovering the in vivo identity of MSCs has been challenging due to the lack of exclusive cell markers, cellular alterations caused by culture methods, and extensive focus on in vitro properties for characterization. Although MSC site of origin influences their functional properties, these mesenchymal progenitors can be found in the perivascular space in virtually all organs from where they were obtained. However, the precise identity of MSCs within the vascular wall is highly controversial. The recurrent concept that MSCs correspond to pericytes in vivo has been supported mainly by their perivascular localization and expression of some molecular markers. However, this view has been a subject of controversy, in part, due to the application of loose criteria to define pericytes and due to the lack of a marker able to unequivocally identify these cells. Furthermore, recent evidences indicate that subpopulations of MSCs can be found at extravascular sites such as the endosteum. In this opinion review, we bring together the advances and pitfalls on the search for the in vivo identity of MSCs and highlight the recent evidences that suggest that perivascular MSCs are adventitial cells, acting as precursors of pericytes and other stromal cells during tissue homeostasis.
Collapse
Affiliation(s)
- Lucas Eduardo Botelho de Souza
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Tathiane Maistro Malta
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil .,3 Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | - Simone Kashima Haddad
- 2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- 1 Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil .,2 National Institute of Science and Technology for Stem Cell and Cell Therapy , Ribeirão Preto, Brazil
| |
Collapse
|
108
|
van Dongen JA, Stevens HP, Parvizi M, van der Lei B, Harmsen MC. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair Regen 2016; 24:994-1003. [PMID: 27717133 DOI: 10.1111/wrr.12482] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/03/2016] [Indexed: 12/27/2022]
Abstract
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obtained by dissociation of adipose tissue, either enzymatically or mechanical. Enzymatic dissociation procedures are time-consuming and expensive. Therefore, we developed a new inexpensive mechanical dissociation procedure to obtain the stromal vascular fraction from adipose tissue in a time sparing way, which is directly available for therapeutic injection. This mechanical dissociation procedure is denoted as the fractionation of adipose tissue (FAT) procedure. The FAT procedure was performed in eleven patients. The composition of the FAT-stromal vascular fraction was characterized by immunohistochemistry. Adipose derived stromal cells isolated from the FAT-stromal vascular fraction were compared with adipose derived stromal cells isolated from nondissociated adipose tissue (control) for their CD-surface marker expression, differentiation and colony forming unit capacity. Case reports demonstrated the therapeutic effect of the FAT-stromal vascular fraction. The FAT-stromal vascular fraction is an enrichment of extracellular matrix containing a microvasculature and culturable adipose derived stromal cells. Adipose derived stromal cells isolated from FAT-stromal vascular fraction did not differ from adipose derived stromal cells isolated from the control group in CD-surface marker expression, differentiation and colony forming unit capacity. The FAT procedure is a rapid effective mechanical dissociation procedure to generate FAT-stromal vascular fraction ready for injection with all its therapeutic components of adipose tissue: it contains culturable adipose derived stromal cells embedded in their natural supportive extracellular matrix together with the microvasculature.
Collapse
Affiliation(s)
- Joris A van Dongen
- Plastic Surgery Department, Bergman Clinics, Rijswijk, The Netherlands.,Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands.,Department of Plastic Surgery, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
| | | | - Mojtaba Parvizi
- Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
| | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands.,Plastic Surgery Department, Bergman Clinics, Heerenveen and Zwolle, The Netherlands
| | - Martin C Harmsen
- Department of Pathology & Medical Biology, University of Groningen and University Medical Centre of Groningen, Groningen, The Netherlands
| |
Collapse
|
109
|
Wang L, Lin G, Lee YC, Reed-Maldonado AB, Sanford MT, Wang G, Li H, Banie L, Xin Z, Lue TF. Transgenic animal model for studying the mechanism of obesity-associated stress urinary incontinence. BJU Int 2016; 119:317-324. [PMID: 27649937 DOI: 10.1111/bju.13661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To study and compare the function and structure of the urethral sphincter in female Zucker lean (ZL) and Zucker fatty (ZF) rats and to assess the viability of ZF fats as a model for female obesity-associated stress urinary incontinence (SUI). MATERIALS AND METHODS Two study arms were created: a ZL arm including 16-week-old female ZL rats (ZUC-Leprfa 186; n = 12) and a ZF arm including 16-week-old female ZF rats (ZUC-Leprfa 185; n = 12). I.p. insulin tolerance testing was carried out before functional study. Metabolic cages, conscious cystometry and leak point pressure (LPP) assessments were conducted. Urethral tissues were harvested for immunofluorescence staining to check intramyocellular lipid (IMCL) and sphincter muscle (smooth muscle and striated muscle) composition. RESULTS The ZF rats had insulin resistance, a greater voiding frequency and lower LPP compared with ZL rats (P < 0.05), with more IMCL deposition localized in the urethral striated muscle fibres of the ZF rats (P < 0.05). The thickness of the striated muscle layer and the ratio of striated muscle to smooth muscle were lower in ZF than in ZL rats. CONCLUSION Obesity impairs urethral sphincter function via IMCL deposition and leads to atrophy and distortion of urethral striated muscle. The ZF rats could be a consistent and reliable animal model in which to study obesity-associated SUI.
Collapse
Affiliation(s)
- Lin Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yung-Chin Lee
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Faculty of Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa T Sanford
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Huixi Li
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Zhengcheng Xin
- Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
110
|
Xin ZC, Xu YD, Lin G, Lue TF, Guo YL. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction. Asian J Androl 2016; 18:10-5. [PMID: 25926601 PMCID: PMC4736335 DOI: 10.4103/1008-682x.150040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED.
Collapse
Affiliation(s)
- Zhong-Cheng Xin
- Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, USA
| | | | | | | | | |
Collapse
|
111
|
Green J, Endale M, Auer H, Perl AKT. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity. Am J Respir Cell Mol Biol 2016; 54:532-45. [PMID: 26414960 DOI: 10.1165/rcmb.2015-0095oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.
Collapse
Affiliation(s)
- Jenna Green
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Mehari Endale
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | - Herbert Auer
- 2 Functional GenOmics Consulting, Palleja, Spain
| | - Anne-Karina T Perl
- 1 Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
112
|
Vezzani B, Pierantozzi E, Sorrentino V. Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells Dev 2016; 25:1549-1558. [PMID: 27549576 DOI: 10.1089/scd.2016.0177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pericytes (PCs) have been recognized for a long time only as structural cells of the blood vessels. The identification of tight contacts with endothelial cells and the ability to interact with surrounding cells through paracrine signaling revealed additional functions of PCs in maintaining the homeostasis of the perivascular environment. PCs got the front page, in the late 1990s, after the identification and characterization of a new embryonic cell population, the mesoangioblasts, from which PCs present in the adult organism are thought to derive. From these studies, it was clear that PCs were also endowed with multipotent mesodermal abilities. Furthermore, their ability to cross the vascular wall and to reconstitute skeletal muscle tissue after systemic injection opened the way to a number of studies aimed to develop therapeutic protocols for a cell therapy of muscular dystrophy. This has resulted in a major effort to characterize pericytic cell populations from skeletal muscle and other adult tissues. Additional studies also addressed their relationship with other cells of the perivascular compartment and with mesenchymal stem cells. These data have provided initial evidence that PCs from different adult tissues might be endowed with distinctive differentiation abilities. This would suggest that the multipotent mesenchymal ability of PCs might be restrained within different tissues, likely depending on the specific cell renewal and repair requirements of each tissue. This review presents current knowledge on human PCs and highlights recent data on the differentiation properties of PCs isolated from different adult tissues.
Collapse
Affiliation(s)
- Bianca Vezzani
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|
113
|
Shukla S, Tavakkoli F, Singh V, Sangwan VS. Mesenchymal stem cell therapy for corneal diseases. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1215906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Fatemeh Tavakkoli
- Prof. Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
| | - Virender Singh Sangwan
- Prof. Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, Tej Kohli Cornea Institute, L.V. Prasad Eye Institute, Hyderabad, India
- Srujana-Center for Innovation, Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
114
|
Rydén M. On the origin of human adipocytes and the contribution of bone marrow-derived cells. Adipocyte 2016; 5:312-7. [PMID: 27617752 DOI: 10.1080/21623945.2015.1134403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
In the last decade, results in both animal models and humans have demonstrated that white adipocytes are generated over the entire life-span. This adds to the plasticity of adipose tissue and alterations in adipocyte turnover are linked to metabolic dysfunction. Adipocytes are derived from precursors present primarily in the perivascular areas of adipose tissue but their precise origin remains unclear. The multipotent differentiation capacity of bone marrow-derived cells (BMDC) has prompted the suggestion that BMDC may contribute to different cell tissue pools, including adipocytes. However, data in murine transplantation models have been conflicting and it has been a matter of debate whether BMDC actually differentiate into adipocytes or just fuse with resident fat cells. To resolve this controversy in humans, we recently performed a study in 65 subjects that had undergone bone marrow transplantation. Using a set of newly developed assays including single cell genome-wide analyses of mature adipocytes, we demonstrated that bone marrow contributes with approximately 10 % to the adipocyte pool. This proportion was more than doubled in obesity, suggesting that BMDC may constitute a reserve pool for adipogenesis, particularly upon weight gain. This commentary discusses the possible relevance of these and other recent findings for human pathophysiology.
Collapse
|
115
|
Huang YC, Kuo YH, Huang YH, Chen CS, Ho DR, Shi CS. The Effects of Adipose-Derived Stem Cells in a Rat Model of Tobacco-Associated Erectile Dysfunction. PLoS One 2016; 11:e0156725. [PMID: 27257818 PMCID: PMC4892668 DOI: 10.1371/journal.pone.0156725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is associated with erectile dysfunction (ED) via a number of mechanisms including vascular injury and oxidative stress in corporal tissue. Adipose derived stem cells (ADSC) have been shown to ameliorate vascular/corporal injury and oxidative stress by releasing cytokines, growth factors and antioxidants. We assessed the therapeutic effects of intracavernous injection of ADSC in a rat model of tobacco-associated ED. Thirty male rats were used in this study. Ten rats exposed to room air only served as negative controls. The remaining 20 rats were passively exposed to cigarette smoke (CS) for 12 weeks. At the 12-week time point, ADSC were isolated from paragonadal fat in all rats. Amongst the 20 CS exposed rats, 10 each were assigned to one of the two following conditions: (i) injection of phosphate buffered saline (PBS) into the corpora cavernosa (CS+PBS); or (ii) injection of autologous ADSC in PBS into the corpora cavernosa (CS+ADSC). Negative control animals received PBS injection into the corpora cavernosa (normal rats [NR] + PBS). After injections all rats were returned to their previous air versus CS exposure state. Twenty-eight days after injection, all rats were placed in a metabolic cage for 24-hour urine collection to be testing for markers of oxidative stress. After 24-hour urine collection all 30 rats also underwent erectile function testing via intracavernous pressure (ICP) testing and were then sacrificed. Corporal tissues were obtained for histological assessment and Western blotting. Mean body weight was significantly lower in CS-exposed rats than in control animals. Mean ICP, ICP /mean arterial pressure ratio, serum nitric oxide level were significantly lower in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Urine markers for oxidative stress were significantly higher in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Mean expression of corporal nNOS and histological markers for endothelial and smooth muscle cells was significantly lower, and tissue apoptotic index significantly higher, in the CS+PBS group compared to the NR+PBS and CS+ADSC groups. Our findings confirm that chronic tobacco exposure causes ultrastructural damage to the corporal tissue and increases systemic oxidative stress states. Treatment with ADSC ameliorates these adverse effects and holds promise as a potential therapy for tobacco-related ED.
Collapse
Affiliation(s)
- Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yan-Hua Huang
- Department of Occupational Therapy, School of Health and Human Services, College of Professional Studies, California State University, Dominguez Hills, Carson, CA, United States of America
| | - Chih-Shou Chen
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Dong-Ru Ho
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Sheng Shi
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
116
|
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz) 2016; 64:443-454. [PMID: 27178663 PMCID: PMC5085986 DOI: 10.1007/s00005-016-0394-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.
| | - Natalia Gurtowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Lukasz Kazmierski
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Malgorzata Maj
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
117
|
Adipose-Derived Stem Cell Delivery for Adipose Tissue Engineering: Current Status and Potential Applications in a Tissue Engineering Chamber Model. Stem Cell Rev Rep 2016; 12:484-91. [DOI: 10.1007/s12015-016-9653-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Jeon GS, Im W, Shim YM, Lee M, Kim MJ, Hong YH, Seong SY, Kim M, Sung JJ. Neuroprotective Effect of Human Adipose Stem Cell-Derived Extract in Amyotrophic Lateral Sclerosis. Neurochem Res 2016; 41:913-923. [PMID: 26646002 DOI: 10.1007/s11064-015-1774-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.
Collapse
Affiliation(s)
- Gye Sun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Mi Shim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Myung-Jin Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Ho Hong
- Department of Neurology, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Protein Metabolism Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
119
|
Peak TC, Anaissie J, Hellstrom WJG. Current Perspectives on Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2016; 4:247-256. [PMID: 27871958 DOI: 10.1016/j.sxmr.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a common sexual disorder that affects the lives of millions of male patients and their partners. Various medical and surgical therapies exist, with the most common being oral intake of phosphodiesterase 5 inhibitors. One therapeutic strategy in preclinical development to treat ED is stem cell transplantation. AIM To examine the studies that have investigated stem cells for the treatment of ED. METHODS A literature review was performed through PubMed focusing on stem cells and ED. MAIN OUTCOME MEASURES An assessment of different types of stem cells and how they may be applied therapeutically in the treatment of ED. RESULTS The stem cell types that have been investigated for the treatment of ED include bone marrow-derived mesenchymal, adipose-derived, muscle-derived, testes, urine-derived, neural crest, and endothelial progenitor. Depending on the cell type, research has demonstrated that with transplantation, stem cells exert a paracrine effect on penile tissue, and can differentiate into smooth muscle, endothelium, and neurons. CONCLUSION Multiple stem cell lines are currently being studied for their potential to treat ED. To date, stem cells have proven safe and effective in both animal and human models of ED. More research is needed to understand their full therapeutic potential.
Collapse
Affiliation(s)
- Taylor C Peak
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - James Anaissie
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA.
| |
Collapse
|
120
|
Volz AC, Huber B, Kluger PJ. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering. Differentiation 2016; 92:52-64. [PMID: 26976717 DOI: 10.1016/j.diff.2016.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/08/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated.
Collapse
Affiliation(s)
- Ann-Cathrin Volz
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Birgit Huber
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Petra J Kluger
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
121
|
Context-Dependent Development of Lymphoid Stroma from Adult CD34+ Adventitial Progenitors. Cell Rep 2016; 14:2375-88. [DOI: 10.1016/j.celrep.2016.02.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 01/31/2023] Open
|
122
|
Zhe Z, Jun D, Yang Z, Mingxi X, Ke Z, Ming Z, Zhong W, Mujun L. Bladder Acellular Matrix Grafts Seeded with Adipose-Derived Stem Cells and Incubated Intraperitoneally Promote the Regeneration of Bladder Smooth Muscle and Nerve in a Rat Model of Bladder Augmentation. Stem Cells Dev 2016; 25:405-14. [PMID: 26863067 DOI: 10.1089/scd.2015.0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to investigate the feasibility of bladder acellular matrix grafts (BAMGs) seeded with adipose-derived stem cells (ASCs) followed by intraperitoneal incubation for bladder reconstruction in a rat model of bladder augmentation, and to explore the underlying mechanism. Autologous CM-DiI-labeled ASC-seeded (experimental group) and unseeded (control group) BAMGs were incubated in the peritoneum of male rats for 2 weeks and then harvested for bladder augmentation. Histological analysis of the incubated BAMGs revealed numerous cells growing in homogeneous collagen bundles in both groups. In the control BAMGs, these cells were mesenchyme derived, while in the ASC-seeded BAMGs, myofibroblasts and mesothelial cells were found inside and on the surface of the scaffold, respectively. Immunofluorescence analysis demonstrated that some of the myofibroblasts were transdifferentiated from the ASCs after 2 weeks of intraperitoneal incubation. The greater bladder capacity was found in the experimental group than the control group both 4 and 14 weeks postoperatively. Histological analysis revealed that the entire urothelium regenerated well both in the experimental group and the control group without significant difference 4 weeks and 14 weeks postoperatively. From the quantitative data of immunohistochemical and immunofluorescence staining, the smooth muscle cells (SMCs) regenerated significantly better in the experimental group than the control group both 4 weeks and 14 weeks postoperatively. Also significantly more nerve cells were found in the experimental group 14 weeks postoperatively. At 4 weeks postoperatively, the immunofluorescence double staining revealed that some SMCs in the BAMG were transdifferentiated from the implanted ASCs, but no CM-DiI labeling of ASCs was detected 14 weeks postoperatively. Taken together, our results demonstrate that ASC-seeded and peritoneally incubated BAMGs promote not only the morphological regeneration of the bladder smooth muscle and nerve, but also the bladder capacity, which indicates their potential for bladder regeneration.
Collapse
Affiliation(s)
- Zhou Zhe
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Da Jun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhao Yang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Xu Mingxi
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ke
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Zhang Ming
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Wang Zhong
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Lu Mujun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| |
Collapse
|
123
|
Endosialin and Associated Protein Expression in Soft Tissue Sarcomas: A Potential Target for Anti-Endosialin Therapeutic Strategies. Sarcoma 2016; 2016:5213628. [PMID: 27057137 PMCID: PMC4748105 DOI: 10.1155/2016/5213628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022] Open
Abstract
Endosialin (CD248, TEM-1) is expressed in pericytes, tumor vasculature, tumor fibroblasts, and some tumor cells, including sarcomas, with limited normal tissue expression, and appears to play a key role in tumor-stromal interactions, including angiogenesis. Monoclonal antibodies targeting endosialin have entered clinical trials, including soft tissue sarcomas. We evaluated a cohort of 94 soft tissue sarcoma samples to assess the correlation between gene expression and protein expression by immunohistochemistry for endosialin and PDGFR-β, a reported interacting protein, across available diagnoses. Correlations between the expression of endosialin and 13 other genes of interest were also examined. Within cohorts of soft tissue diagnoses assembled by tissue type (liposarcoma, leiomyosarcoma, undifferentiated sarcoma, and other), endosialin expression was significantly correlated with a better outcome. Endosialin expression was highest in liposarcomas and lowest in leiomyosarcomas. A robust correlation between protein and gene expression data for both endosialin and PDGFR-β was observed. Endosialin expression positively correlated with PDGFR-β and heparin sulphate proteoglycan 2 and negatively correlated with carbonic anhydrase IX. Endosialin likely interacts with a network of extracellular and hypoxia activated proteins in sarcomas and other tumor types. Since expression does vary across histologic groups, endosialin may represent a selective target in soft tissue sarcomas.
Collapse
|
124
|
Behaviour of telocytes during physiopathological activation. Semin Cell Dev Biol 2016; 55:50-61. [PMID: 26826526 DOI: 10.1016/j.semcdb.2016.01.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 12/30/2022]
Abstract
We consider CD34+ stromal cells/telocytes (CD34+ SC/TCs) in normal and pathological conditions. These cells are involved in organisation and control of the extracellular matrix, structural support, creation of microenvironments, intercellular communication, neurotransmission, immunomodulation and immunosurveillance, inhibition of apoptosis, and control, regulation and source of other cell types. CD34+ SC/TCs are widely reported in the origin of interstitial cells of Cajal and in regeneration in the heart, skeletal muscle, skin, respiratory tree, liver, urinary system and the eye. In addition, we contribute CD34+ SC/TC hyperplasia associated with several processes, including neurogenous hyperplasia (neuroma of the appendix), hyperplasia of Leydig cells in undescended testes (Cryptorchidism), peripheral areas of inflammatory/repair processes (pericicatricial tissue and transitional zones between diseased segments in Crohn's disease and normal bowel), benign tumours (neurofibromas, Antoni-B zones of neurilemmomas, granular cell tumours, and melanocytic nevi) and in some lesions with myxoid, oedematous and degenerative changes (Reinke's oedema, myxomatous mitral valve degeneration, thyroid-associated ophthalmopathy and basophilic degenerative changes of the collagen in the dermis). We pay particular attention to the role of CD34+ SC/TCs during repair through granulation tissue, including morphologic changes, loss of CD34 expression and gain of αSMA expression with myofibroblast transformation, and interactions with pericytes, endothelial and inflammatory cells. Finally, we consider CD34 or αSMA expression in stromal cells of malignant epithelial tumours, and the role of CD34+ SC/TCs in the origin of carcinoma-associated fibroblasts (CAFs) and myofibroblasts. In conclusion, CD34+ SC/TCs play an important role in the maintenance and modulation of tissue homeostasis and in morphogenesis/renewal/repair.
Collapse
|
125
|
Matic I, Antunovic M, Brkic S, Josipovic P, Mihalic KC, Karlak I, Ivkovic A, Marijanovic I. Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation. Open Access Maced J Med Sci 2016; 4:9-16. [PMID: 27275321 PMCID: PMC4884261 DOI: 10.3889/oamjms.2016.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022] Open
Abstract
AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs). METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry. RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein. CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.
Collapse
Affiliation(s)
- Igor Matic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Maja Antunovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sime Brkic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Pavle Josipovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Katarina Caput Mihalic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivan Karlak
- Department of Traumatology, University Hospital Sestre Milosrdnice, Zagreb, Croatia
| | | | - Inga Marijanovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
126
|
|
127
|
Uzbas F, May ID, Parisi AM, Thompson SK, Kaya A, Perkins AD, Memili E. Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev Rep 2016; 11:298-308. [PMID: 25504377 DOI: 10.1007/s12015-014-9578-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine.
Collapse
Affiliation(s)
- F Uzbas
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, München, 85764, Germany
| | | | | | | | | | | | | |
Collapse
|
128
|
Díaz-Flores L, Gutiérrez R, González-Gómez M, Díaz-Flores L, Valladares F, Rancel N, Sáez FJ, Madrid JF. Telocyte Behaviour During Inflammation, Repair and Tumour Stroma Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:177-191. [PMID: 27796888 DOI: 10.1007/978-981-10-1061-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we outline the role of human CD34+ stromal cells/telocytes (CD34+ SC/TCs) as progenitor cells during repair. The in vivo activation phenomena of CD34+ SC/TCs in this process include increased size; separation from the neighbouring structures (mainly of the vascular walls); association with inflammatory cells, predominantly macrophages; development of the organelles of synthesis (rough endoplasmic reticulum and Golgi apparatus); cell proliferation with presence of mitosis and high proliferative index (transit-amplifying cells); and fibroblastic and myofibroblastic differentiation. A procedure to study these tissue-resident cells, comparison of their behaviour in vivo and in vitro and different behaviour depending on location, time, type of injury (including tumour stroma) and greater or lesser proximity to the injury are also considered.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain.
| | - R Gutiérrez
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - M González-Gómez
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - L Díaz-Flores
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - F Valladares
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - N Rancel
- Department of Anatomy, Pathology, Histology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - F J Sáez
- Department of Cell Biology and Histology, UFI11/44, School of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - J F Madrid
- Department of Cell Biology and Histology, School of Medicine, Regional Campus of International Excellence, "Campus Mare Nostrum" University of Murcia, Murcia, Spain
| |
Collapse
|
129
|
Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 2015; 6:362. [PMID: 26696897 PMCID: PMC4667069 DOI: 10.3389/fphys.2015.00362] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies?
Collapse
Affiliation(s)
| | | | - Günter Lepperdinger
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University SalzburgSalzburg, Austria
| |
Collapse
|
130
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
131
|
Jumabay M, Boström KI. Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 2015; 7:1202-1214. [PMID: 26640620 PMCID: PMC4663373 DOI: 10.4252/wjsc.v7.i10.1202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.
Collapse
|
132
|
König MA, Canepa DD, Cadosch D, Casanova E, Heinzelmann M, Rittirsch D, Plecko M, Hemmi S, Simmen HP, Cinelli P, Wanner GA. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects. Cytotherapy 2015; 18:41-52. [PMID: 26563474 DOI: 10.1016/j.jcyt.2015.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/22/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Fractures with a critical size bone defect (e.g., open fracture with segmental bone loss) are associated with high rates of delayed union and non-union. The prevention and treatment of these complications remain a serious issue in trauma and orthopaedic surgery. Autologous cancellous bone grafting is a well-established and widely used technique. However, it has drawbacks related to availability, increased morbidity and insufficient efficacy. Mesenchymal stromal cells can potentially be used to improve fracture healing. In particular, human fat tissue has been identified as a good source of multilineage adipose-derived stem cells, which can be differentiated into osteoblasts. The main issue is that mesenchymal stromal cells are a heterogeneous population of progenitors and lineage-committed cells harboring a broad range of regenerative properties. This heterogeneity is also mirrored in the differentiation potential of these cells. In the present study, we sought to test the possibility to enrich defined subpopulations of stem/progenitor cells for direct therapeutic application without requiring an in vitro expansion. METHODS We enriched a CD146+NG2+CD45- population of pericytes from freshly isolated stromal vascular fraction from mouse fat tissue and tested their osteogenic differentiation capacity in vitro and in vivo in a mouse model for critical size bone injury. RESULTS Our results confirm the ability of enriched CD146+NG2+CD45- cells to efficiently generate osteoblasts in vitro, to colonize cancellous bone scaffolds and to successfully contribute to regeneration of large bone defects in vivo. CONCLUSIONS This study represents proof of principle for the direct use of enriched populations of cells with stem/progenitor identity for therapeutic applications.
Collapse
Affiliation(s)
- Matthias A König
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Daisy D Canepa
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Dieter Cadosch
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Elisa Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | | | - Daniel Rittirsch
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Michael Plecko
- Trauma Hospital Graz, Göstinger Strasse 24, A-8020 Graz, Austria
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Hans-Peter Simmen
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Guido A Wanner
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
133
|
Driesen T, Schuler D, Schmetter R, Heiss C, Kelm M, Fischer JW, Freudenberger T. A systematic approach to assess locoregional differences in angiogenesis. Histochem Cell Biol 2015; 145:213-25. [PMID: 26526138 DOI: 10.1007/s00418-015-1379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Skeletal muscle tissue differs with regard to the abundance of glycolytic and oxidative fiber types. In this context, capillary density has been described to be higher in muscle tissue with more oxidative metabolism as compared to that one with more glycolytic metabolism, and the highest abundance of capillaries has been found in boneward-oriented moieties of skeletal muscle tissue. Importantly, capillary formation is often analyzed as a measure for angiogenesis, a process that describes neo-vessel formation emanating from preexisting vessels, occurring, i.e., after arterial occlusion. However, a standardized way for investigation of calf muscle capillarization after surgically induced unilateral hind limb ischemia in mice, especially considering these locoregional differences, has not been provided so far. In this manuscript, a novel, methodical approach for reliable analysis of capillary density was established using anatomic-morphological reference points, and a software-assisted way of capillary density analysis is described. Thus, the systematic approach provided conscientiously considers intra-layer differences in capillary formation and therefore guarantees for a robust, standardized analysis of capillary density as a measure for angiogenesis. The significance of the methodology is further supported by the observation that capillary density in the calf muscle layers analyzed negatively correlates with distal lower limb perfusion measured in vivo.
Collapse
Affiliation(s)
- T Driesen
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - D Schuler
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - R Schmetter
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - C Heiss
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - M Kelm
- Klinik für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - J W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - T Freudenberger
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
134
|
Fast isolation and expansion of multipotent cells from adipose tissue based on chitosan-selected primary culture. Biomaterials 2015; 65:154-62. [DOI: 10.1016/j.biomaterials.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/23/2022]
|
135
|
Navarro A, Marín S, Riol N, Carbonell-Uberos F, Miñana MD. Fibroblast-Negative CD34-Negative Cells from Human Adipose Tissue Contain Mesodermal Precursors for Endothelial and Mesenchymal Cells. Stem Cells Dev 2015; 24:2280-96. [DOI: 10.1089/scd.2015.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Amparo Navarro
- Regenerative Medicine Laboratory, Fundación Hospital General Universitario, Valencia, Spain
| | - Severiano Marín
- Department of Plastic and Reconstructive Surgery, Consorcio Hospital General Universitario, Valencia, Spain
| | - Nicasia Riol
- Immunohematology Service, Centro de Transfusiones, Valencia, Spain
| | | | - María Dolores Miñana
- Regenerative Medicine Laboratory, Fundación Hospital General Universitario, Valencia, Spain
| |
Collapse
|
136
|
Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. CELL REGENERATION (LONDON, ENGLAND) 2015; 4:7. [PMID: 26435835 PMCID: PMC4591586 DOI: 10.1186/s13619-015-0020-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/23/2015] [Indexed: 02/07/2023]
Abstract
In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including the adipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials. SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices (cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control is required. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed. These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations, and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used. Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide an overview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which are patented, published, or already on the market.
Collapse
Affiliation(s)
- Eleni Oberbauer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Carolin Steffenhagen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Wurzer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
137
|
Rydén M, Uzunel M, Hård JL, Borgström E, Mold JE, Arner E, Mejhert N, Andersson DP, Widlund Y, Hassan M, Jones CV, Spalding KL, Svahn BM, Ahmadian A, Frisén J, Bernard S, Mattsson J, Arner P. Transplanted Bone Marrow-Derived Cells Contribute to Human Adipogenesis. Cell Metab 2015; 22:408-17. [PMID: 26190649 DOI: 10.1016/j.cmet.2015.06.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 06/14/2015] [Indexed: 11/25/2022]
Abstract
Because human white adipocytes display a high turnover throughout adulthood, a continuous supply of precursor cells is required to maintain adipogenesis. Bone marrow (BM)-derived progenitor cells may contribute to mammalian adipogenesis; however, results in animal models are conflicting. Here we demonstrate in 65 subjects who underwent allogeneic BM or peripheral blood stem cell (PBSC) transplantation that, over the entire lifespan, BM/PBSC-derived progenitor cells contribute ∼10% to the subcutaneous adipocyte population. While this is independent of gender, age, and different transplantation-related parameters, body fat mass exerts a strong influence, with up to 2.5-fold increased donor cell contribution in obese individuals. Exome and whole-genome sequencing of single adipocytes suggests that BM/PBSC-derived progenitors contribute to adipose tissue via both differentiation and cell fusion. Thus, at least in the setting of transplantation, BM serves as a reservoir for adipocyte progenitors, particularly in obese subjects.
Collapse
Affiliation(s)
- Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden.
| | - Mehmet Uzunel
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Joanna L Hård
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Borgström
- Science for Life Laboratory, Division of Gene Technology, Royal Institute of Technology (KTH), School of Biotechnology, 171 65 Stockholm, Sweden
| | - Jeff E Mold
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Erik Arner
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Yvonne Widlund
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Moustapha Hassan
- Department of Laboratory Medicine (H5), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Christina V Jones
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Britt-Marie Svahn
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Afshin Ahmadian
- Science for Life Laboratory, Division of Gene Technology, Royal Institute of Technology (KTH), School of Biotechnology, 171 65 Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology (C5), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Samuel Bernard
- Institut Camille Jordan, CNRS UMR 5208, University of Lyon, 69622 Villeurbanne, France
| | - Jonas Mattsson
- Department of Clinical Immunology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
138
|
Zwierzina ME, Ejaz A, Bitsche M, Blumer MJF, Mitterberger MC, Mattesich M, Amann A, Kaiser A, Pechriggl EJ, Hörl S, Rostek U, Pierer G, Fritsch H, Zwerschke W. Characterization of DLK1(PREF1)+/CD34+ cells in vascular stroma of human white adipose tissue. Stem Cell Res 2015; 15:403-18. [PMID: 26342195 DOI: 10.1016/j.scr.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
Sorting of native (unpermeabilized) SVF-cells from human subcutaneous (s)WAT for cell surface staining (cs) of DLK1 and CD34 identified three main populations: ~10% stained cs-DLK1+/cs-CD34-, ~20% cs-DLK1+/cs-CD34+dim and ~45% cs-DLK1-/cs-CD34+. FACS analysis after permeabilization showed that all these cells stained positive for intracellular DLK1, while CD34 was undetectable in cs-DLK1+/cs-CD34- cells. Permeabilized cs-DLK1-/cs-CD34+ cells were positive for the pericyte marker α-SMA and the mesenchymal markers CD90 and CD105, albeit CD105 staining was dim (cs-DLK1-/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45-/CD31-). Only these cells showed proliferative and adipogenic capacity. Cs-DLK1+/cs-CD34- and cs-DLK1+/cs-CD34+dim cells were also α-SMA+ but expressed CD31, had a mixed hematopoietic and mesenchymal phenotype, and could neither proliferate nor differentiate into adipocytes. Histological analysis of sWAT detected DLK1+/CD34+ and DLK1+/CD90+ cells mainly in the outer ring of vessel-associated stroma and at capillaries. DLK1+/α-SMA+ cells were localized in the CD34- perivascular ring and in adventitial vascular stroma. All these DLK1+ cells possess a spindle-shaped morphology with extremely long processes. DLK1+/CD34+ cells were also detected in vessel endothelium. Additionally, we show that sWAT contains significantly more DLK1+ cells than visceral (v)WAT. We conclude that sWAT has more DKL1+ cells than vWAT and contains different DLK1/CD34 populations, and only cs-DLK1-/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45-/CD31- cells in the adventitial vascular stroma exhibit proliferative and adipogenic capacity.
Collapse
Affiliation(s)
- Marit E Zwierzina
- Division for Clinical and Functional Anatomy, Department for Anatomy, Histology and Embryology, Medical University of Innsbruck, Austria
| | - Asim Ejaz
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Mario Bitsche
- Division for Clinical and Functional Anatomy, Department for Anatomy, Histology and Embryology, Medical University of Innsbruck, Austria
| | - Michael J F Blumer
- Division for Clinical and Functional Anatomy, Department for Anatomy, Histology and Embryology, Medical University of Innsbruck, Austria
| | - Maria C Mitterberger
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Arno Amann
- Department of Internal Medicine V, Medical University of Innsbruck, Austria
| | - Andreas Kaiser
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Division for Clinical and Functional Anatomy, Department for Anatomy, Histology and Embryology, Medical University of Innsbruck, Austria
| | - Susanne Hörl
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Ursula Rostek
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Helga Fritsch
- Division for Clinical and Functional Anatomy, Department for Anatomy, Histology and Embryology, Medical University of Innsbruck, Austria
| | - Werner Zwerschke
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research, University of Innsbruck, Austria.
| |
Collapse
|
139
|
Roman A, Páll E, Mihu CM, Petruţiu AS, Barbu-Tudoran L, Câmpian RS, Florea A, Georgiu C. Tracing CD34+ Stromal Fibroblasts in Palatal Mucosa and Periodontal Granulation Tissue as a Possible Cell Reservoir for Periodontal Regeneration. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:837-848. [PMID: 26040442 DOI: 10.1017/s1431927615000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present research was to trace CD34+ stromal fibroblastic cells (CD34+ SFCs) in the palatal connective tissue harvested for muco-gingival surgical procedures and in granulation tissues from periodontal pockets using immunohistochemical and transmission electron microscopy. Immunohistochemical analysis targeted the presence of three antigens: CD31, α-smooth muscle actin (α-SMA), and CD34. In the palate, CD31 staining revealed a colored inner ring of the vessels representing the endothelium, α-SMA+ was located in the medial layer of the vasculature, and CD34 was intensely expressed by endothelial cells and artery adventitial cells (considered to be CD34+ SFCs). Granulation tissue showed the same pattern for CD31+ and α-SMA, but a different staining pattern for CD34. Ultrastructural examination of the palatal tissue highlighted perivascular cells with fibroblast-like characteristics and pericytes in close spatial relationship to endothelial cells. The ultrastructural evaluation of granulation tissue sections confirmed the presence of neovasculature and the inflammatory nature of this tissue. The present study traced the presence of CD34+ SFCs and of pericytes in the palatal connective tissue thus highlighting once more its intrinsic regenerative capabilities. The clinical and systemic factors triggering mobilization and influencing the fate of local CD34+SCFs and other progenitors are issues to be further investigated.
Collapse
Affiliation(s)
- Alexandra Roman
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Emőke Páll
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Carmen M Mihu
- 3Department of Histology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,6 L. Pasteur Street,400349 Cluj-Napoca,Romania
| | - Adrian S Petruţiu
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Lucian Barbu-Tudoran
- 4Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology,Babeş-Bolyai University,5-7 Clinicilor Street,400006 Cluj-Napoca,Romania
| | - Radu S Câmpian
- 5Department of Oral Rehabilitation, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Adrian Florea
- 6Department of Cell and Molecular Biology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,6 L. Pasteur Street,400349 Cluj-Napoca,Romania
| | - Carmen Georgiu
- 7Department of Pathology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,8 V. Babeş Street,400012 Cluj-Napoca,Romania
| |
Collapse
|
140
|
Abstract
The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.
Collapse
Affiliation(s)
- Peter J Psaltis
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.)
| | - Robert D Simari
- From the Department of Medicine, University of Adelaide and Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (P.J.P.); Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia (P.J.P.); and Department of Internal Medicine, University of Kansas School of Medicine (R.D.S.).
| |
Collapse
|
141
|
Gokce A, Abd Elmageed ZY, Lasker GF, Bouljihad M, Braun SE, Kim H, Kadowitz PJ, Abdel-Mageed AB, Sikka SC, Hellstrom WJ. Intratunical Injection of Genetically Modified Adipose Tissue-Derived Stem Cells with Human Interferon α-2b for Treatment of Erectile Dysfunction in a Rat Model of Tunica Albugineal Fibrosis. J Sex Med 2015; 12:1533-44. [PMID: 26062100 DOI: 10.1111/jsm.12916] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Peyronie's disease (PD) has frequently been associated with erectile dysfunction (ED) and may further compromise coitus. AIM To investigate the efficacy of intratunical injection of genetically modified rat adipose tissue-derived stem cells (ADSCs) expressing human interferon α-2b (ADSCs-IFN) in decreasing fibrosis and restoring erectile function in a rat model of tunica albugineal fibrosis (TAF). METHODS A total of 36 Sprague-Dawley rats (12 weeks old; 300-350 g) were randomly divided in six equal groups: (i) sham group (50 μL saline-injected into the tunica albuginea [TA]); (ii) TAF group (transforming growth factor [TGF]-β1 [0.5 μg/50 μL] injected into the TA); (iii) TGF-β1 plus 5 × 10(5) control ADSCs injected same day; (iv) TGF-β1 plus 5 × 10(5) ADSCs-IFN injected same day; (v) TGF-β1 plus 5 × 10(5) control ADSCs injected after 30 days; and (vi) TGF-β1 plus 5 × 10(5) ADSCs-IFN injected after 30 days. Rat allogeneic ADSCs were harvested from inguinal fat tissue. MAIN OUTCOME MEASURES Forty-five days following the TGF-β1 injection, erectile function was assessed, and penile tissues were harvested for further evaluations. RESULTS In the same-day injection groups, intratunical injection of ADSCs and ADSC-IFN improved erectile response observed upon stimulation of cavernous nerve compared with TAF group. Intratunical ADSC-IFN injection at day 30 improved erectile responses 3.1, 1.8, and 1.3 fold at voltages of 2.5, 5.0, and 7.0, respectively, when compared with TAF group. Furthermore, at voltages of 2.5 and 5.0, treatment on day 30 with ADSCs-IFN improved erectile responses 1.6- and 1.3-fold over treatment with ADSCs alone. Local injection of ADSCs or ADSCs-IFN reduced Peyronie's-like manifestations, and these effects might be associated with a decrease in the expression of tissue inhibitors of metalloproteinases. CONCLUSION This study documents that transplantation of genetically modified ADSCs, with or without human IFN α-2b, attenuated Peyronie's-like changes and enhanced erectile function in a rat model of TAF.
Collapse
Affiliation(s)
- Ahmet Gokce
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | | | - George F Lasker
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Stephen E Braun
- Tulane National Primate Research Center, New Orleans, LA, USA
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wayne J Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
142
|
Nakagomi T, Nakano-Doi A, Kawamura M, Matsuyama T. Do Vascular Pericytes Contribute to Neurovasculogenesis in the Central Nervous System as Multipotent Vascular Stem Cells? Stem Cells Dev 2015; 24:1730-9. [PMID: 25900222 DOI: 10.1089/scd.2015.0039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that multipotent stem cells are harbored within a vascular niche inside various organs. Although a precise phenotype of resident vascular stem cells (VSCs) that can function as multipotent stem cells remains unclear, accumulating evidence shows that multipotent VSCs are likely vascular pericytes (PCs) that localize within blood vessels. These PCs are multipotent, possessing the ability to differentiate into various cell types, including vascular lineage cells. In addition, brain PCs are unique: They are derived from neural crest and can differentiate into neural lineage cells. Because PCs in the central nervous system (CNS) can contribute to both neurogenesis and vasculogenesis, they may mediate the reparative process of neurovascular units that are constructed by neural and vascular cells. Here, we describe the activity of PCs when viewed as multipotent VSCs, primarily regarding their neurogenic and vasculogenic potential in the CNS. We also discuss similarities between PCs and other candidates for multipotent VSCs, including perivascular mesenchymal stem cells, neural crest-derived stem cells, adventitial progenitor cells, and adipose-derived stem cells.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Akiko Nakano-Doi
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| | - Miki Kawamura
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan .,2 Department of Neurology, Osaka University Graduate School of Medicine , Osaka, Japan
| | - Tomohiro Matsuyama
- 1 Institute for Advanced Medical Sciences, Hyogo College of Medicine , Hyogo, Japan
| |
Collapse
|
143
|
Steinert AF, Kunz M, Prager P, Göbel S, Klein-Hitpass L, Ebert R, Nöth U, Jakob F, Gohlke F. Characterization of bursa subacromialis-derived mesenchymal stem cells. Stem Cell Res Ther 2015; 6:114. [PMID: 26036250 PMCID: PMC4479225 DOI: 10.1186/s13287-015-0104-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 05/21/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was CD44+, CD73+, CD90+, CD105+, CD106+, STRO-1+, CD14−, CD31−, CD34−, CD45−, CD144−. Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies.
Collapse
Affiliation(s)
- Andre F Steinert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Manuela Kunz
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Patrick Prager
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Sascha Göbel
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ludger Klein-Hitpass
- University of Duisburg-Essen, Center for Medical Biotechnology, BioChip Laboratory, Essen, Germany.
| | - Regina Ebert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ulrich Nöth
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Franz Jakob
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Frank Gohlke
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany. .,Present address: Klinik für Schulterchirurgie, Rhön Klinikum AG, Bad Neustadt/Saale, Germany.
| |
Collapse
|
144
|
Qiu X, Zhang Y, Zhao X, Zhang S, Wu J, Guo H, Hu Y. Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell. Biomaterials 2015; 53:600-8. [DOI: 10.1016/j.biomaterials.2015.02.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/15/2022]
|
145
|
Iyyanki T, Hubenak J, Liu J, Chang EI, Beahm EK, Zhang Q. Harvesting technique affects adipose-derived stem cell yield. Aesthet Surg J 2015; 35:467-76. [PMID: 25791999 DOI: 10.1093/asj/sju055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. OBJECTIVE To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. METHODS Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b-, CD45-, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. RESULTS Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. CONCLUSIONS Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs.
Collapse
Affiliation(s)
- Tejaswi Iyyanki
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin Hubenak
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun Liu
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edward I Chang
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elisabeth K Beahm
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qixu Zhang
- From the Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
146
|
Kapur SK, Dos-Anjos Vilaboa S, Llull R, Katz AJ. Adipose Tissue and Stem/Progenitor Cells. Clin Plast Surg 2015; 42:155-67. [DOI: 10.1016/j.cps.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
147
|
Kusuma G, Manuelpillai U, Abumaree M, Pertile M, Brennecke S, Kalionis B. Mesenchymal stem cells reside in a vascular niche in the decidua basalis and are absent in remodelled spiral arterioles. Placenta 2015; 36:312-21. [DOI: 10.1016/j.placenta.2014.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
|
148
|
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2015; 21:345-57. [PMID: 24267154 DOI: 10.1111/micc.12107] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. The strategy of manipulating pericyte recruitment to capillaries could result in anti- or proangiogenic effects. Our current understanding of pericytes, however, is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a "mash-up" that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2, and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Molly R Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
149
|
Asatrian G, Pham D, Hardy WR, James AW, Peault B. Stem cell technology for bone regeneration: current status and potential applications. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:39-48. [PMID: 25709479 PMCID: PMC4334288 DOI: 10.2147/sccaa.s48423] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Continued improvements in the understanding and application of mesenchymal stem cells (MSC) have revolutionized tissue engineering. This is particularly true within the field of skeletal regenerative medicine. However, much remains unknown regarding the native origins of MSC, the relative advantages of different MSC populations for bone regeneration, and even the biologic safety of such unpurified, grossly characterized cells. This review will first summarize the initial discovery of MSC, as well as the current and future applications of MSC in bone tissue engineering. Next, the relative advantages and disadvantages of MSC isolated from distinct tissue origins are debated, including the MSC from adipose, bone marrow, and dental pulp, among others. The perivascular origin of MSC is next discussed. Finally, we briefly comment on pluripotent stem cell populations and their possible application in bone tissue engineering. While continually expanding, the field of MSC-based bone tissue engineering and regeneration shows potential to become a clinical reality in the not-so-distant future.
Collapse
Affiliation(s)
- Greg Asatrian
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA
| | - Dalton Pham
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Winters R Hardy
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Aaron W James
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, Los Angeles, CA, USA ; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, CA, USA ; UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA
| | - Bruno Peault
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, CA, USA ; Medical Research Council Centre for Regenerative Medicine, Edinburgh, Scotland, UK
| |
Collapse
|
150
|
Song N, Kou L, Lu XW, Sugawara A, Shimizu Y, Wu MK, Du L, Wang H, Sato S, Shen JF. The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes. Biochem Biophys Res Commun 2015; 457:479-84. [DOI: 10.1016/j.bbrc.2015.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/10/2015] [Indexed: 01/29/2023]
|