101
|
Xia LY, Jiang YL, Kong WW, Sun H, Li WF, Chen Y, Zhou CZ. Molecular basis for the assembly of RuBisCO assisted by the chaperone Raf1. NATURE PLANTS 2020; 6:708-717. [PMID: 32451445 DOI: 10.1038/s41477-020-0665-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/14/2020] [Indexed: 05/19/2023]
Abstract
The folding and assembly of RuBisCO, the most abundant enzyme in nature, needs a series of chaperones, including the RuBisCO accumulation factor Raf1, which is highly conserved in cyanobacteria and plants. Here, we report the crystal structures of Raf1 from cyanobacteria Anabaena sp. PCC 7120 and its complex with RuBisCO large subunit RbcL. Structural analyses and biochemical assays reveal that each Raf1 dimer captures an RbcL dimer, with the C-terminal tail inserting into the catalytic pocket, and further mediates the assembly of RbcL dimers to form the octameric core of RuBisCO. Furthermore, the cryo-electron microscopy structures of the RbcL-Raf1-RbcS assembly intermediates enable us to see a dynamic assembly process from RbcL8Raf18 to the holoenzyme RbcL8RbcS8. In vitro assays also indicate that Raf1 can attenuate and reverse CcmM-mediated cyanobacterial RuBisCO condensation. Combined with previous findings, we propose a putative model for the assembly of cyanobacterial RuBisCO coordinated by the chaperone Raf1.
Collapse
Affiliation(s)
- Ling-Yun Xia
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.
| | - Wen-Wen Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
102
|
Veaudor T, Blanc-Garin V, Chenebault C, Diaz-Santos E, Sassi JF, Cassier-Chauvat C, Chauvat F. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life (Basel) 2020; 10:E71. [PMID: 32438704 PMCID: PMC7281370 DOI: 10.3390/life10050071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria constitute the only phylum of oxygen-evolving photosynthetic prokaryotes that shaped the oxygenic atmosphere of our planet. Over time, cyanobacteria have evolved as a widely diverse group of organisms that have colonized most aquatic and soil ecosystems of our planet and constitute a large proportion of the biomass that sustains the biosphere. Cyanobacteria synthesize a vast array of biologically active metabolites that are of great interest for human health and industry, and several model cyanobacteria can be genetically manipulated. Hence, cyanobacteria are regarded as promising microbial factories for the production of chemicals from highly abundant natural resources, e.g., solar energy, CO2, minerals, and waters, eventually coupled to wastewater treatment to save costs. In this review, we summarize new important discoveries on the plasticity of the photoautotrophic metabolism of cyanobacteria, emphasizing the coordinated partitioning of carbon and nitrogen towards growth or compound storage, and the importance of these processes for biotechnological perspectives. We also emphasize the importance of redox regulation (including glutathionylation) on these processes, a subject which has often been overlooked.
Collapse
Affiliation(s)
- Théo Veaudor
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Victoire Blanc-Garin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Célia Chenebault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Encarnación Diaz-Santos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Jean-François Sassi
- Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Centre de Cadarache St Paul Lez, 13108 Durance, France;
| | - Corinne Cassier-Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| | - Franck Chauvat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (T.V.); (V.B.-G.); (C.C.); (E.D.-S.); (C.C.-C.)
| |
Collapse
|
103
|
Tominaga J, Takahashi S, Sakamoto A, Shimada H. Arabidopsis BSD2 reveals a novel redox regulation of Rubisco physiology in vivo. PLANT SIGNALING & BEHAVIOR 2020; 15:1740873. [PMID: 32233721 PMCID: PMC7194379 DOI: 10.1080/15592324.2020.1740873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Plants need light energy to drive photosynthesis, but excess energy leads to the production of harmful reactive oxygen species (ROS), resulting in oxidative inactivation of target enzymes, including the photosynthetic CO2-fixing enzyme, ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been demonstrated in vitro that oxidatively inactivated Rubisco can be reactivated by the addition of reducing agents. Busch et al. (in The Plant Journal, doi: 10.1111/tpj.14617, 2020) recently demonstrated that bundle-sheath defective 2 (BSD2), a stroma-targeted protein formerly known as a late-assembly chaperone for Rubisco biosynthesis, can be responsible for such reactivation in vivo. Here, we propose a working model of the novel redox regulation in Rubisco activity. Redox of Rubisco may be a new target for improving photosynthesis.
Collapse
Affiliation(s)
- Jun Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shunichi Takahashi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroshi Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
104
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
105
|
Singh AK, Balchin D, Imamoglu R, Hayer-Hartl M, Hartl FU. Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF. J Mol Biol 2020; 432:2304-2318. [PMID: 32135190 DOI: 10.1016/j.jmb.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (β/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| |
Collapse
|
106
|
Sokolov VA. On a Possible Way to Increase the Efficiency of Photosynthesis. DOKL BIOCHEM BIOPHYS 2020; 491:98-100. [DOI: 10.1134/s1607672920020131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
|
107
|
Suganami M, Suzuki Y, Kondo E, Nishida S, Konno S, Makino A. Effects of Overproduction of Rubisco Activase on Rubisco Content in Transgenic Rice Grown at Different N Levels. Int J Mol Sci 2020; 21:ijms21051626. [PMID: 32120887 PMCID: PMC7084177 DOI: 10.3390/ijms21051626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
It has been reported that overproduction of Rubisco activase (RCA) in rice (Oryza sativa L.) decreased Rubisco content, resulting in declining photosynthesis. We examined the effects of RCA levels on Rubisco content using transgenic rice with overexpressed or suppressed RCA under the control of different promoters of the RCA and Rubisco small subunit (RBCS) genes. All plants were grown hydroponically with different N concentrations (0.5, 2.0 and 8.0 mM-N). In RCA overproduced plants with > 2-fold RCA content (RCA-HI lines), a 10%-20% decrease in Rubisco content was observed at 0.5 and 2.0 mM-N. In contrast, at 8.0 mM-N, Rubisco content did not change in RCA-HI lines. Conversely, in plants with 50%-60% increased RCA content (RCA-MI lines), Rubisco levels remained unchanged, regardless of N concentration. Such effects on Rubisco content were independent of the promoter that was used. In plants with RCA suppression to < 10% of the wild-type RCA content, Rubisco levels were increased at 0.5 mM-N, but were unchanged at 2.0 and 8.0 mM-N. Thus, the effects of the changes in RCA levels on Rubisco content depended on N supply. Moreover, RCA overproduction was feasible without a decrease in Rubisco content, depending on the degree of RCA production.
Collapse
Affiliation(s)
- Mao Suganami
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan;
| | - Eri Kondo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Shinji Nishida
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - So Konno
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-ku, Sendai 980-8572, Japan; (M.S.); (E.K.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +81-22-757-4287
| |
Collapse
|
108
|
Lechno-Yossef S, Rohnke BA, Belza ACO, Melnicki MR, Montgomery BL, Kerfeld CA. Cyanobacterial carboxysomes contain an unique rubisco-activase-like protein. THE NEW PHYTOLOGIST 2020; 225:793-806. [PMID: 31518434 DOI: 10.1111/nph.16195] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In plants, rubisco activase (Rca) regulates rubisco by removing inhibitory molecules such as ribulose-1,5-bisphosphate (RuBP). In cyanobacteria, a homologous protein (activase-like cyanobacterial protein, ALC), contains a distinctive C-terminal fusion resembling the small-subunit of rubisco. Although cyanobacterial rubisco is believed to be less sensitive to RuBP inhibition, the ALC is widely distributed among diverse cyanobacteria. Using microscopy, biochemistry and molecular biology, the cellular localization of the ALC, its effect on carboxysome/cell ultrastructure in Fremyella diplosiphon, and its function in vitro were studied. Bioinformatic analysis uncovered evolutionary relationships between the ALC and rubisco. ALC localizes to carboxysomes and exhibits ATPase activity. Furthermore, the ALC induces rubisco aggregation in a manner similar to that of another carboxysomal protein, M35, and this activity is affected by ATP. An alc deletion mutant showed modified cell morphology when grown under enriched CO2 and impaired regulation of carboxysome biogenesis, without affecting growth rate. Carbamylation of Fremyella recombinant rubisco was inhibited by RuBP, but this inhibition was not relieved by the ALC. The ALC does not appear to function like a canonical Rca; instead, it exerts an effect on the response to CO2 availability at the level of a metabolic module, the carboxysome, through rubisco network formation, and carboxysome organization.
Collapse
Affiliation(s)
- Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Brandon A Rohnke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ana C O Belza
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
109
|
Wang X, Li Z, Liu B, Zhou H, Elmongy MS, Xia Y. Combined Proteome and Transcriptome Analysis of Heat-Primed Azalea Reveals New Insights Into Plant Heat Acclimation Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:1278. [PMID: 32973837 PMCID: PMC7466565 DOI: 10.3389/fpls.2020.01278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
Plants can obtain superinduction of defense against unpredictable challenges based on prior acclimation, but the mechanisms involved in the acclimation memory are little known. The objective of this study was to characterize mechanisms of heat acclimation memory in Rhododendron hainanense, a thermotolerant wild species of azalea. Pretreatment of a 2-d recovery (25/18°C, day/night) after heat acclimation (37°C, 1 h) (AR-pt) did not weaken but enhanced acquired thermotolerance in R. hainanense with less damaged phenotype, net photosynthetic rate, and membrane stability than non-acclimation pretreated (NA-pt) plants. Combined transcriptome and proteome analysis revealed that a lot of heat-responsive genes still maintained high protein abundance rather than transcript level after the 2-d recovery. Photosynthesis-related genes were highly enriched and most decreased under heat stress (HS: 42°C, 1 h) with a less degree in AR-pt plants compared to NA-pt. Sustainably accumulated chloroplast-localized heat shock proteins (HSPs), Rubisco activase 1 (RCA1), beta-subunit of chaperonin-60 (CPN60β), and plastid transcriptionally active chromosome 5 (pTAC5) in the recovery period probably provided equipped protection of AR-pt plants against the subsequent HS, with less damaged photochemical efficiency and chloroplast structure. In addition, significant higher levels of RCA1 transcripts in AR-pt compared to NA-pt plants in early stage of HS showed a more important role of RCA1 than other chaperonins in heat acclimation memory. The novel heat-induced RCA1, rather than constitutively expressed RCA2 and RCA3, showed excellent thermostability after long-term HS (LHS: 42/35°C, 7 d) and maintained balanced Rubisco activation state in photosynthetic acclimation. This study provides new insights into plant heat acclimation memory and indicates candidate genes for genetic modification and molecular breeding in thermotolerance improvement.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S. Elmongy
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable and Floriculture, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Yiping Xia,
| |
Collapse
|
110
|
Feng BH, Li GY, Islam M, Fu WM, Zhou YQ, Chen TT, Tao LX, Fu GF. Strengthened antioxidant capacity improves photosynthesis by regulating stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110245. [PMID: 31779890 DOI: 10.1016/j.plantsci.2019.110245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 05/10/2023]
Abstract
ABA is important for plant growth and development; however, it also inhibits photosynthesis by regulating the stomatal aperture and ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Noteworthy, this negative effect can be alleviated by antioxidants including ascorbic acid (AsA) and catalase (CAT), but the underlying mechanism remains unclear. Two rice cultivars, Zhefu802 (recurrent parent) and its near-isogenic line, fgl were selected and planted in a greenhouse with 30/24 °C (day/night) under natural sunlight conditions. Compared to fgl, Zhefu802 had significantly lower net photosynthetic rate (PN) and stomatal conductance (Cond) as well as significantly higher ABA and H2O2 contents. However, AsA and CAT increased PN, Cond, and stomatal aperture, which decreased H2O2 and malondialdehyde (MDA) levels. In this process, AsA and CAT significantly increased the ribulose-1,5-bisphosphate carboxylase activity, while they strongly decreased the ribulose-1,5-bisphosphate oxygenase activity, and finally caused an obvious decrease in the ratio of photorespiration (Pr) to PN. Additionally, AsA and CAT significantly increased the expression levels of RbcS and RbcL genes of leaves, while H2O2 significantly decreased them, especially the RbcS gene. In summary, the removal of H2O2 by AsA and CAT can improve the leaf photosynthesis by alleviating the inhibition on the stomatal conductance and ribulose-1,5-bisphosphate carboxylase capacity caused by ABA.
Collapse
Affiliation(s)
- B H Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - G Y Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Md Islam
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - W M Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Y Q Zhou
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - T T Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - L X Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| | - G F Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh.
| |
Collapse
|
111
|
Insights into the mechanism and regulation of the CbbQO-type Rubisco activase, a MoxR AAA+ ATPase. Proc Natl Acad Sci U S A 2019; 117:381-387. [PMID: 31848241 DOI: 10.1073/pnas.1911123117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast majority of biological carbon dioxide fixation relies on the function of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most cases the enzyme exhibits a tendency to become inhibited by its substrate RuBP and other sugar phosphates. The inhibition is counteracted by diverse molecular chaperones known as Rubisco activases (Rcas). In some chemoautotrophic bacteria, the CbbQO-type Rca Q2O2 repairs inhibited active sites of hexameric form II Rubisco. The 2.2-Å crystal structure of the MoxR AAA+ protein CbbQ2 from Acidithiobacillus ferrooxidans reveals the helix 2 insert (H2I) that is critical for Rca function and forms the axial pore of the CbbQ hexamer. Negative-stain electron microscopy shows that the essential CbbO adaptor protein binds to the conserved, concave side of the CbbQ2 hexamer. Site-directed mutagenesis supports a model in which adenosine 5'-triphosphate (ATP)-powered movements of the H2I are transmitted to CbbO via the concave residue L85. The basal ATPase activity of Q2O2 Rca is repressed but strongly stimulated by inhibited Rubisco. The characterization of multiple variants where this repression is released indicates that binding of inhibited Rubisco to the C-terminal CbbO VWA domain initiates a signal toward the CbbQ active site that is propagated via elements that include the CbbQ α4-β4 loop, pore loop 1, and the presensor 1-β hairpin (PS1-βH). Detailed mechanistic insights into the enzyme repair chaperones of the highly diverse CO2 fixation machinery of Proteobacteria will facilitate their successful implementation in synthetic biology ventures.
Collapse
|
112
|
Probing the rice Rubisco-Rubisco activase interaction via subunit heterooligomerization. Proc Natl Acad Sci U S A 2019; 116:24041-24048. [PMID: 31712424 DOI: 10.1073/pnas.1914245116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During photosynthesis the AAA+ protein and essential molecular chaperone Rubisco activase (Rca) constantly remodels inhibited active sites of the CO2-fixing enzyme Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) to release tightly bound sugar phosphates. Higher plant Rca is a crop improvement target, but its mechanism remains poorly understood. Here we used structure-guided mutagenesis to probe the Rubisco-interacting surface of rice Rca. Mutations in Ser-23, Lys-148, and Arg-321 uncoupled adenosine triphosphatase and Rca activity, implicating them in the Rubisco interaction. Mutant doping experiments were used to evaluate a suite of known Rubisco-interacting residues for relative importance in the context of the functional hexamer. Hexamers containing some subunits that lack the Rubisco-interacting N-terminal domain displayed a ∼2-fold increase in Rca function. Overall Rubisco-interacting residues located toward the rim of the hexamer were found to be less critical to Rca function than those positioned toward the axial pore. Rca is a key regulator of the rate-limiting CO2-fixing reactions of photosynthesis. A detailed functional understanding will assist the ongoing endeavors to enhance crop CO2 assimilation rate, growth, and yield.
Collapse
|
113
|
Reaction of ribulose biphosphate carboxylase/oxygenase assembled on a DNA scaffold. Bioorg Med Chem 2019; 27:115120. [DOI: 10.1016/j.bmc.2019.115120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022]
|
114
|
Zhou Y, Whitney S. Directed Evolution of an Improved Rubisco; In Vitro Analyses to Decipher Fact from Fiction. Int J Mol Sci 2019; 20:ijms20205019. [PMID: 31658746 PMCID: PMC6834295 DOI: 10.3390/ijms20205019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inaccuracies in biochemically characterizing the amount and CO2-fixing properties of the photosynthetic enzyme Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase continue to hamper an accurate evaluation of Rubisco mutants selected by directed evolution. Here, we outline an analytical pipeline for accurately quantifying Rubisco content and kinetics that averts the misinterpretation of directed evolution outcomes. Our study utilizes a new T7-promoter regulated Rubisco Dependent Escherichia coli (RDE3) screen to successfully select for the first Rhodobacter sphaeroides Rubisco (RsRubisco) mutant with improved CO2-fixing properties. The RsRubisco contains four amino acid substitutions in the large subunit (RbcL) and an improved carboxylation rate (kcatC, up 27%), carboxylation efficiency (kcatC/Km for CO2, increased 17%), unchanged CO2/O2 specificity and a 40% lower holoenzyme biogenesis capacity. Biochemical analysis of RsRubisco chimers coding one to three of the altered amino acids showed Lys-83-Gln and Arg-252-Leu substitutions (plant RbcL numbering) together, but not independently, impaired holoenzyme (L8S8) assembly. An N-terminal Val-11-Ile substitution did not affect RsRubisco catalysis or assembly, while a Tyr-345-Phe mutation alone conferred the improved kinetics without an effect on RsRubisco production. This study confirms the feasibility of improving Rubisco by directed evolution using an analytical pipeline that can identify false positives and reliably discriminate carboxylation enhancing amino acids changes from those influencing Rubisco biogenesis (solubility).
Collapse
Affiliation(s)
- Yu Zhou
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| | - Spencer Whitney
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| |
Collapse
|
115
|
Slattery RA, Ort DR. Carbon assimilation in crops at high temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:2750-2758. [PMID: 31046135 DOI: 10.1111/pce.13572] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 05/24/2023]
Abstract
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof-of-concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
116
|
Zhang Y, Zhou Y, Sun Q, Deng D, Liu H, Chen S, Yin Z. Genetic determinants controlling maize rubisco activase gene expression and a comparison with rice counterparts. BMC PLANT BIOLOGY 2019; 19:351. [PMID: 31412785 PMCID: PMC6692957 DOI: 10.1186/s12870-019-1965-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/08/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Rubisco activase (RCA) regulates the activity of Rubisco and is a key enzyme of photosynthesis. RCA expression was widely reported to affect plant photosynthesis and crop yield, but the molecular basis of natural variation in RCA expression in a wide range of maize materials has not been fully elucidated. RESULTS In this study, correlation analysis in approximately 200 maize inbred lines revealed a significantly positive correlation between the expression of maize RCA gene ZmRCAβ and grain yield. A genome-wide association study revealed both cis-expression quantitative trait loci (cis-eQTLs) and trans-eQTLs underlying the expression of ZmRCAβ, with the latter playing a more important role. Further allele mining and genetic transformation analysis showed that a 2-bp insertion and a 14-bp insertion in the promoter of ZmRCAβ conferred increased gene expression. Because rice is reported to have higher RCA gene expression than does maize, we subsequently compared the genetic factors underlying RCA gene expression between maize and rice. The promoter activity of the rice RCA gene was shown to be stronger than that of the maize RCA gene, suggesting that replacing the maize RCA gene promoter with that of the rice RCA gene would improve the expression of RCA in maize. CONCLUSION Our results revealed two DNA polymorphisms regulating maize RCA gene ZmRCAβ expression, and the RCA gene promoter activity of rice was stronger than that of maize. This work increased understanding of the genetic mechanism that underlies RCA gene expression and identify new targets for both genetic engineering and selection for maize yield improvement.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Qian Sun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Huanhuan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| | - Zhitong Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
117
|
Selection of Cyanobacterial ( Synechococcus sp. Strain PCC 6301) RubisCO Variants with Improved Functional Properties That Confer Enhanced CO 2-Dependent Growth of Rhodobacter capsulatus, a Photosynthetic Bacterium. mBio 2019; 10:mBio.01537-19. [PMID: 31337726 PMCID: PMC6650557 DOI: 10.1128/mbio.01537-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RubisCO catalysis has a significant impact on mitigating greenhouse gas accumulation and CO2 conversion to food, fuel, and other organic compounds required to sustain life. Because RubisCO-dependent CO2 fixation is severely compromised by oxygen inhibition and other physiological constraints, improving RubisCO’s kinetic properties to enhance growth in the presence of atmospheric O2 levels has been a longstanding goal. In this study, RubisCO variants with superior structure-functional properties were selected which resulted in enhanced growth of an autotrophic host organism (R. capsulatus), indicating that RubisCO function was indeed growth limiting. It is evident from these results that genetically engineered RubisCO with kinetically enhanced properties can positively impact growth rates in primary producers. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a ubiquitous enzyme that catalyzes the conversion of atmospheric CO2 into organic carbon in primary producers. All naturally occurring RubisCOs have low catalytic turnover rates and are inhibited by oxygen. Evolutionary adaptations of the enzyme and its host organisms to changing atmospheric oxygen concentrations provide an impetus to artificially evolve RubisCO variants under unnatural selective conditions. A RubisCO deletion strain of the nonsulfur purple photosynthetic bacterium Rhodobacter capsulatus was previously used as a heterologous host for directed evolution and suppressor selection studies that led to the identification of a conserved hydrophobic region near the active site where amino acid substitutions selectively impacted the enzyme’s sensitivity to O2. In this study, structural alignments, mutagenesis, suppressor selection, and growth complementation with R. capsulatus under anoxic or oxygenic conditions were used to analyze the importance of semiconserved residues in this region of Synechococcus RubisCO. RubisCO mutant substitutions were identified that provided superior CO2-dependent growth capabilities relative to the wild-type enzyme. Kinetic analyses of the mutant enzymes indicated that enhanced growth performance was traceable to differential interactions of the enzymes with CO2 and O2. Effective residue substitutions also appeared to be localized to two other conserved hydrophobic regions of the holoenzyme. Structural comparisons and similarities indicated that regions identified in this study may be targeted for improvement in RubisCOs from other sources, including crop plants.
Collapse
|
118
|
Wunder T, Oh ZG, Mueller‐Cajar O. CO
2
‐fixing liquid droplets: Towards a dissection of the microalgal pyrenoid. Traffic 2019; 20:380-389. [DOI: 10.1111/tra.12650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tobias Wunder
- School of Biological SciencesNanyang Technological University Singapore
| | - Zhen Guo Oh
- School of Biological SciencesNanyang Technological University Singapore
| | | |
Collapse
|
119
|
Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM. BSD2 is a Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is nonlimiting to growth in tobacco. PLANT, CELL & ENVIRONMENT 2019; 42:1287-1301. [PMID: 30375663 DOI: 10.1111/pce.13473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 05/28/2023]
Abstract
The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Celine Kelso
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Sophie Holland
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jennifer L Beck
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
120
|
Wilson RH, Thieulin-Pardo G, Hartl FU, Hayer-Hartl M. Improved recombinant expression and purification of functional plant Rubisco. FEBS Lett 2019; 593:611-621. [PMID: 30815863 PMCID: PMC6593764 DOI: 10.1002/1873-3468.13352] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Improving the performance of the key photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by protein engineering is a critical strategy for increasing crop yields. The extensive chaperone requirement of plant Rubisco for folding and assembly has long been an impediment to this goal. Production of plant Rubisco in Escherichia coli requires the coexpression of the chloroplast chaperonin and four assembly factors. Here, we demonstrate that simultaneous expression of Rubisco and chaperones from a T7 promotor produces high levels of functional enzyme. Expressing the small subunit of Rubisco with a C-terminal hexahistidine-tag further improved assembly, resulting in a ~ 12-fold higher yield than the previously published procedure. The expression system described here provides a platform for the efficient production and engineering of plant Rubisco.
Collapse
Affiliation(s)
- Robert H Wilson
- Chaperonin-assisted Protein Folding Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gabriel Thieulin-Pardo
- Chaperonin-assisted Protein Folding Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franz-Ulrich Hartl
- Cellular Biochemistry Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Chaperonin-assisted Protein Folding Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
121
|
Kurepa J, Smalle JA. Oxidative stress-induced formation of covalently linked ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit dimer in tobacco plants. BMC Res Notes 2019; 12:112. [PMID: 30819220 PMCID: PMC6396445 DOI: 10.1186/s13104-019-4153-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/22/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Many abiotic stresses cause the excessive accumulation of reactive oxygen species known as oxidative stress. While analyzing the effects of oxidative stress on tobacco, we noticed the increased accumulation of a specific protein in extracts from plants treated with the oxidative-stress inducing herbicide paraquat which promotes the generation of reactive oxygen species primarily in chloroplasts. The primary objectives of this study were to identify this protein and to determine if its accumulation is indeed a result of oxidative stress. RESULTS Here we show that the paraquat-induced protein is a covalently linked dimer of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU). Increased accumulation of this LSU dimer was also observed in tobacco plants exposed to ultra-small anatase titanium dioxide nanoparticles (nTiO2), which because of their surface reactivity cause oxidative stress by promoting the generation of superoxide anion. nTiO2 nanoparticle treatments also caused a decline in the chloroplast thylakoid proteins cytochrome f and chlorophyll a/b binding protein, thus confirming that covalent LSU dimer formation coincides with loss of chloroplast function.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
122
|
van Tol N, Flores Andaluz G, Leeggangers HACF, Roushan MR, Hooykaas PJJ, van der Zaal BJ. Zinc Finger Artificial Transcription Factor-Mediated Chloroplast Genome Interrogation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:393-406. [PMID: 30398644 PMCID: PMC6375250 DOI: 10.1093/pcp/pcy216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Gema Flores Andaluz
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Hendrika A C F Leeggangers
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - M Reza Roushan
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| | - Bert J van der Zaal
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, Leiden, BE, The Netherlands
| |
Collapse
|
123
|
Zhao X, Li WF, Wang Y, Ma ZH, Yang SJ, Zhou Q, Mao J, Chen BH. Elevated CO 2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. 'Pinot noir') plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC PLANT BIOLOGY 2019; 19:42. [PMID: 30696402 PMCID: PMC6352424 DOI: 10.1186/s12870-019-1644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant photosynthesis can be improved by elevated CO2 concentration (eCO2). In vitro growth under CO2 enriched environment can lead to greater biomass accumulation than the conventional in micropropagation. However, little is know about how eCO2 promotes transformation of grape plantlets in vitro from heterotrophic to autotrophic. In addition, how photosynthesis-related genes and their proteins are expressed under eCO2 and the mechanisms of how eCO2 regulates RbcS, Rca and their proteins have not been reported. RESULTS Grape (Vitis vinifera L. cv. 'Pinot Noir') plantlets in vitro were cultured with 2% sucrose designated as control (CK), with eCO2 (1000 μmol·mol- 1) as C0, with both 2% sucrose and eCO2 as Cs. Here, transcriptomic and proteomic profiles associated with photosynthesis and growth in leaves of V. vinifera at different CO2 concentration were analyzed. A total of 1814 genes (465 up-regulated and 1349 down-regulated) and 172 proteins (80 up-regulated and 97 down-regulated) were significantly differentially expressed in eCO2 compared to CK. Photosynthesis-antenna, photosynthesis and metabolism pathways were enriched based on GO and KEGG. Simultaneously, 9, 6 and 48 proteins were involved in the three pathways, respectively. The leaf area, plantlet height, qP, ΦPSII and ETR increased under eCO2, whereas Fv/Fm and NPQ decreased. Changes of these physiological indexes are related to the function of DEPs. After combined analysis of proteomic and transcriptomic, the results make clear that eCO2 have different effects on gene transcription and translation. RbcS was not correlated with its mRNA level, suggesting that the change in the amount of RbcS is regulated at their transcript levels by eCO2. However, Rca was negatively correlated with its mRNA level, it is suggested that the change in the amount of its corresponding protein is regulated at their translation levels by eCO2. CONCLUSIONS Transcriptomic, proteomic and physiological analysis were used to evaluate eCO2 effects on photosynthesis. The eCO2 triggered the RbcS and Rca up-regulated, thus promoting photosynthesis and then advancing transformation of grape plantlets from heterotrophic to autotrophic. This research will helpful to understand the influence of eCO2 on plant growth and promote reveal the mechanism of plant transformation from heterotrophic to autotrophic.
Collapse
Affiliation(s)
- Xin Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ying Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
124
|
Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration. THE NEW PHYTOLOGIST 2019; 221:32-49. [PMID: 29983005 DOI: 10.1111/nph.15283] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 32 I. The importance of plant carbon metabolism for climate change 32 II. Rising atmospheric CO2 and carbon metabolism 33 III. Rising temperatures and carbon metabolism 37 IV. Thermal acclimation responses of carbon metabolic processes can be best understood when studied together 38 V. Will elevated CO2 offset warming-induced changes in carbon metabolism? 40 VI. No plant is an island: water and nutrient limitations define plant responses to climate drivers 41 VII. Conclusions 42 Acknowledgements 42 References 42 Appendix A1 48 SUMMARY: Plant carbon metabolism is impacted by rising CO2 concentrations and temperatures, but also feeds back onto the climate system to help determine the trajectory of future climate change. Here we review how photosynthesis, photorespiration and respiration are affected by increasing atmospheric CO2 concentrations and climate warming, both separately and in combination. We also compile data from the literature on plants grown at multiple temperatures, focusing on net CO2 assimilation rates and leaf dark respiration rates measured at the growth temperature (Agrowth and Rgrowth , respectively). Our analyses show that the ratio of Agrowth to Rgrowth is generally homeostatic across a wide range of species and growth temperatures, and that species that have reduced Agrowth at higher growth temperatures also tend to have reduced Rgrowth , while species that show stimulations in Agrowth under warming tend to have higher Rgrowth in the hotter environment. These results highlight the need to study these physiological processes together to better predict how vegetation carbon metabolism will respond to climate change.
Collapse
Affiliation(s)
- Mirindi Eric Dusenge
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - André Galvao Duarte
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Danielle A Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
125
|
Serban AJ, Breen IL, Bui HQ, Levitus M, Wachter RM. Assembly-disassembly is coupled to the ATPase cycle of tobacco Rubisco activase. J Biol Chem 2018; 293:19451-19465. [PMID: 30352875 PMCID: PMC6302163 DOI: 10.1074/jbc.ra118.005047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Indexed: 11/06/2022] Open
Abstract
The carbon-fixing activity of enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is regulated by Rubisco activase (Rca), a ring-forming ATPase that catalyzes inhibitor release. For higher plant Rca, the catalytic roles played by different oligomeric species have remained obscure. Here, we utilized fluorescence-correlation spectroscopy to estimate dissociation constants for the dimer-tetramer, tetramer-hexamer, hexamer-12-mer, and higher-order assembly equilibria of tobacco Rca. A comparison of oligomer composition with ATPase activity provided evidence that assemblies larger than hexamers are hydrolytically inactive. Therefore, supramolecular aggregates may serve as storage forms at low-energy charge. We observed that the tetramer accumulates only when both substrate and product nucleotides are bound. During rapid ATP turnover, about one in six active sites was occupied by ADP, and ∼36% of Rca was tetrameric. The steady-state catalytic rate reached a maximum between 0.5 and 2.5 μm Rca. In this range, significant amounts of dimers, tetramers, and hexamers coexisted, although none could fully account for the observed activity profile. Therefore, we propose that dynamic assembly-disassembly partakes in the ATPase cycle. According to this model, the association of dimers with tetramers generates a hexamer that forms a closed ring at high ATP and magnesium levels. Upon hydrolysis and product release, the toroid breaks open and dissociates into a dimer and tetramer, which may be coupled to Rubisco remodeling. Although a variant bearing the R294V substitution assembled in much the same way, highly stabilized states could be generated by binding of a transition-state analog. A tight-binding pre-hydrolysis state appears to become more accessible in thermally labile Rcas.
Collapse
Affiliation(s)
- Andrew J Serban
- From the School of Molecular Sciences
- Center for Bioenergy and Photosynthesis
- Biodesign Center for Applied Structural Discovery, and
| | - Isabella L Breen
- From the School of Molecular Sciences
- Center for Bioenergy and Photosynthesis
- Biodesign Center for Applied Structural Discovery, and
| | - Hoang Q Bui
- From the School of Molecular Sciences
- Center for Bioenergy and Photosynthesis
- Biodesign Center for Applied Structural Discovery, and
| | - Marcia Levitus
- From the School of Molecular Sciences,
- the Biodesign Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287
| | - Rebekka M Wachter
- From the School of Molecular Sciences,
- Center for Bioenergy and Photosynthesis
- Biodesign Center for Applied Structural Discovery, and
| |
Collapse
|
126
|
Gao J, Wang F, Sun J, Tian Z, Hu H, Jiang S, Luo Q, Xu Y, Jiang D, Cao W, Dai T. Enhanced Rubisco activation associated with maintenance of electron transport alleviates inhibition of photosynthesis under low nitrogen conditions in winter wheat seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5477-5488. [PMID: 30239847 DOI: 10.1093/jxb/ery315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Studying the response of photosynthesis to low nitrogen (N) and the underlying physiological mechanism can provide a theoretical basis for breeding N-efficient cultivars and optimizing N management. We conducted hydroponic experiments using two wheat (Triticum aestivum) cultivars, Zaoyangmai (low N sensitive) and Yangmai158 (low N tolerant), with either 0.25 mM N as a low N (LN) treatment or 5 mM N as a control. Under LN, a decrease in net photosynthetic rate (Pn) was attributed to reduction in the maximum Rubisco carboxylation rate, which then accelerated a reduction in the maximum ribulose-1,5-bisphosphate regeneration rate, and the reduction in Pn was 5-35% less in Yangmai158 than in Zaoyangmai. Yangmai158 maintained a 10-25% higher Rubisco concentration, especially in the upper leaves, and up-regulated Rubisco activase activity compared with Zaoyangmai to increase the Rubisco activation to sustain Rubisco carboxylation under LN conditions. In addition, Yangmai158 increased electron flux to the photorespiratory carbon oxidation cycle and alternative electron flux to maintain a faster electron transport rate and avoid photodamage. In conclusion, the LN-tolerant cultivar showed enhanced Rubisco activation and sustained electron transport to maintain a greater photosynthetic capacity under LN conditions.
Collapse
Affiliation(s)
- Jingwen Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Feng Wang
- Center of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Beibei, Chongqing, P. R. China
| | - Jianyun Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Hang Hu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Suyu Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Qiuci Luo
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Yun Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Dong Jiang
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Weixing Cao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| |
Collapse
|
127
|
Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. NATURE PLANTS 2018; 4:802-810. [PMID: 30287949 DOI: 10.1038/s41477-018-0252-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/15/2018] [Indexed: 05/21/2023]
Abstract
Rubisco catalyses a rate-limiting step in photosynthesis and has long been a target for improvement due to its slow turnover rate. An alternative to modifying catalytic properties of Rubisco is to increase its abundance within C4 plant chloroplasts, which might increase activity and confer a higher carbon assimilation rate. Here, we overexpress the Rubisco large (LS) and small (SS) subunits with the Rubisco assembly chaperone RUBISCO ASSEMBLY FACTOR 1 (RAF1). While overexpression of LS and/or SS had no discernable impact on Rubisco content, addition of RAF1 overexpression resulted in a >30% increase in Rubisco content. Gas exchange showed a 15% increase in CO2 assimilation (ASAT) in UBI-LSSS-RAF1 transgenic plants, which correlated with increased fresh weight and in vitro Vcmax calculations. The divergence of Rubisco content and assimilation could be accounted for by the Rubisco activation state, which decreased up to 23%, suggesting that Rubisco activase may be limiting Vcmax, and impinging on the realization of photosynthetic potential from increased Rubisco content.
Collapse
Affiliation(s)
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Florian A Busch
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | | | | |
Collapse
|
128
|
Albaladejo I, Egea I, Morales B, Flores FB, Capel C, Lozano R, Bolarin MC. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis. BMC PLANT BIOLOGY 2018; 18:213. [PMID: 30285698 PMCID: PMC6167845 DOI: 10.1186/s12870-018-1436-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/23/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate in roots under non-stressful conditions, exhibits a remarkable growth inhibition and morphological alterations in roots and leaves, which are suppressed when the mutant plants are exposed to salinity. In order to understand the molecular basis of the phenotype recovery induced by salt stress in the res mutant, we carried out a comparative transcriptomic analysis in roots and leaves of wild-type and res plants in absence of stress (control) and when the phenotypic recovery of res mutant began to be observed upon salt stress (5 days of 200 mM NaCl). RESULTS The number of differentially expressed genes was three times greater in roots than in leaves of res vs WT plants grown in control, and included the down-regulation of growth-promoting genes and the up-regulation of genes involved in Ca2+ signalling, transcription factors and others related to stress responses. However, these expression differences were attenuated under salt stress, coinciding with the phenotypic normalisation of the mutant. Contrarily to the attenuated response observed in roots, an enhanced response was found in leaves under salt stress. This included drastic expression changes in several circadian clock genes, such as GIGANTEA1, which was down-regulated in res vs WT plants. Moreover, the higher photosynthetic efficiency of res leaves under salt stress was accompanied by specific salt-upregulation of the genes RUBISCO ACTIVASE1 and ALTERNATIVE OXIDASE1A. Very few genes were found to be differentially expressed in both tissues (root and leaf) and conditions (control and salt), but this group included SlWRKY39 and SlMYB14 transcription factors, as well as genes related to protein homeostasis, especially protease inhibitors such as METALLOCARBOXYPEPTIDASE INHIBITOR, which also seem to play a role in the phenotype recovery and salt tolerance of res mutant. CONCLUSIONS In summary, in this study we have identified genes which seem to have a prominent role in salt tolerance. Moreover, we think this work could contribute to future breeding of tomato crops with increased stress tolerance.
Collapse
Affiliation(s)
- Irene Albaladejo
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Isabel Egea
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Belen Morales
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Francisco B. Flores
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Maria C. Bolarin
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| |
Collapse
|
129
|
Bloom AJ, Lancaster KM. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. NATURE PLANTS 2018; 4:414-422. [PMID: 29967515 DOI: 10.1038/s41477-018-0191-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Most plants, contrary to popular belief, do not waste over 30% of their photosynthate in a futile cycle called photorespiration. Rather, the photorespiratory pathway generates additional malate in the chloroplast that empowers many energy-intensive chemical reactions, such as those involved in nitrate assimilation. Thus, the balance between carbon fixation and photorespiration determines the plant carbon-nitrogen balance and protein concentrations. Plant protein concentrations, in turn, depend not only on the relative concentrations of carbon dioxide and oxygen in the chloroplast but also on the relative activities of magnesium and manganese, which are metals that associate with several key enzymes in the photorespiratory pathway and alter their function. Understanding the regulation of these processes is critical for sustaining food quality under rising CO2 atmospheres.
Collapse
Affiliation(s)
- Arnold J Bloom
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA.
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
130
|
Gao J, Wang F, Hu H, Jiang S, Muhammad A, Shao Y, Sun C, Tian Z, Jiang D, Dai T. Improved leaf nitrogen reutilisation and Rubisco activation under short-term nitrogen-deficient conditions promotes photosynthesis in winter wheat (Triticum aestivum L.) at the seedling stage. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:840-853. [PMID: 32291066 DOI: 10.1071/fp17232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 02/06/2018] [Indexed: 05/28/2023]
Abstract
Excess N input results in low N use efficiency and environmental crisis, so nitrogenous fertiliser applications must be reduced. However, this can lead to low-N stress. Previous studies on low N have not explored the unique adjustment strategy to N deficiency in the short term, which is important for developing long-term N deficiency tolerance. In this case, two wheat (Triticum aestivum L.) cultivars with different tolerances to low N, Zaoyangmai (sensitive) and Yangmai158 (tolerant), were exposed to 0.25mM N as a N-deficient condition with 5.0mM N as a control. Under long-term N-deficient conditions, a significant decrease in Rubisco content resulted in decreased Rubisco activity and net photosynthetic rate (Pn) in both cultivars. However, the NO3-:soluble protein ratio decreased, and nitrate reductase and glutamine synthetase activity increased under short-term N deficiency, especially in Yangmai158. As a result, Rubisco content was not decreased in Yangmai158, while total N content decreased significantly. Moreover, increased Rubisco activase activity promoted Rubisco activation under short-term N deficiency. In sequence, Rubisco activity and Pn improved under short-term N deficiency. In conclusion, N deficiency-tolerant cultivars can efficiently assimilate N to Rubisco and enhance Rubisco activation to improve photosynthetic capabilities under short-term N deficiency conditions.
Collapse
Affiliation(s)
- Jingwen Gao
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Feng Wang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Hang Hu
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Suyu Jiang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Abid Muhammad
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Yuhang Shao
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Chuanjiao Sun
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Dong Jiang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, P.R. China
| |
Collapse
|
131
|
Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR. A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol 2018; 118:671-675. [PMID: 29959019 PMCID: PMC6096091 DOI: 10.1016/j.ijbiomac.2018.06.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
The chaperonins (GroEL and GroES in Escherichia coli) are ubiquitous molecular chaperones that assist a subset of essential substrate proteins to undergo productive folding to the native state. Using single particle cryo EM and image processing we have examined complexes of E. coli GroEL with the stringently GroE-dependent substrate enzyme RuBisCO from Rhodospirillum rubrum. Here we present snapshots of non-native RuBisCO - GroEL complexes. We observe two distinct substrate densities in the binary complex reminiscent of the two-domain structure of the RuBisCO subunit, so that this may represent a captured form of an early folding intermediate. The occupancy of the complex is consistent with the negative cooperativity of GroEL with respect to substrate binding, in accordance with earlier mass spectroscopy studies.
Collapse
Affiliation(s)
- Ramanathan Natesh
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK
| | - George W Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Arthur L Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Helen R Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
132
|
Pottier M, Gilis D, Boutry M. The Hidden Face of Rubisco. TRENDS IN PLANT SCIENCE 2018; 23:382-392. [PMID: 29525130 DOI: 10.1016/j.tplants.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 05/21/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) fixes atmospheric CO2 into organic compounds and is composed of eight copies each of a large subunit (RbcL) and a small subunit (RbcS). Recent reports have revealed unusual RbcS, which are expressed in particular tissues and confer higher catalytic rate, lesser affinity for CO2, and a more acidic profile of the activity versus pH. The resulting Rubisco was proposed to be adapted to a high CO2 environment and recycle CO2 generated by the metabolism. These RbcS belong to a cluster named T (for trichome), phylogenetically distant from cluster M, which gathers well-characterized RbcS expressed in mesophyll or bundle-sheath tissues. Cluster T is largely represented in different plant phyla, including pteridophytes and bryophytes, indicating an ancient origin.
Collapse
Affiliation(s)
- Mathieu Pottier
- Institut des Sciences de la Vie, University of Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Dimitri Gilis
- Bioinformatique génomique et structurale, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, University of Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
133
|
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a ∼530 kDa complex of 8 large (RbcL) and 8 small subunits (RbcS), mediates the fixation of atmospheric CO2 into usable sugars during photosynthesis. Despite its fundamental role, Rubisco is a remarkably inefficient enzyme and thus is produced by plants in huge amounts. It has long been a key target for bioengineering with the goal to increase crop yields. However, such efforts have been hampered by the complex requirement of Rubisco biogenesis for molecular chaperones. Recent studies have identified an array of auxiliary factors needed for the folding and assembly of the Rubisco subunits. The folding of plant RbcL subunits is mediated by the cylindrical chloroplast chaperonin, Cpn60, and its cofactor Cpn20. Folded RbcL requires a number of additional Rubisco specific assembly chaperones, including RbcX, Rubisco accumulation factors 1 (Raf1) and 2 (Raf2), and the Bundle sheath defective-2 (BSD2), to mediate the assembly of the RbcL8 intermediate complex. Incorporation of the RbcS and displacement of the assembly factors generates the active holoenzyme. An Escherichia coli strain expressing the chloroplast chaperonin and auxiliary factors now allows the expression of functional plant Rubisco, paving the way for Rubisco engineering by large scale mutagenesis. Here, we review our current understanding on how these chaperones cooperate to produce one of the most important enzymes in nature.
Collapse
Affiliation(s)
- Robert H Wilson
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry , Max Planck Institute of Biochemistry , Am Klopferspitz 18 , 82152 Martinsried , Germany
| |
Collapse
|
134
|
Fristedt R, Hu C, Wheatley N, Roy LM, Wachter RM, Savage L, Harbinson J, Kramer DM, Merchant SS, Yeates T, Croce R. RAF2 is a RuBisCO assembly factor in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:146-156. [PMID: 29396988 DOI: 10.1111/tpj.13849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the reaction between gaseous carbon dioxide (CO2 ) and ribulose-1,5-bisphosphate. Although it is one of the most studied enzymes, the assembly mechanisms of the large hexadecameric RuBisCO is still emerging. In bacteria and in the C4 plant Zea mays, a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) has recently been shown to be involved in RuBisCO assembly. However, studies of the homologous PCD-like protein (RAF2, RuBisCO assembly factor 2) in the C3 plant Arabidopsis thaliana (A. thaliana) have so far focused on its role in hormone and stress signaling. We investigated whether A. thalianaRAF2 is also involved in RuBisCO assembly. We localized RAF2 to the soluble chloroplast stroma and demonstrated that raf2 A. thaliana mutant plants display a severe pale green phenotype with reduced levels of stromal RuBisCO. We concluded that the RAF2 protein is probably involved in RuBisCO assembly in the C3 plant A. thaliana.
Collapse
Affiliation(s)
- Rikard Fristedt
- Biophysics of Photosynthesis, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Chen Hu
- Biophysics of Photosynthesis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicole Wheatley
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Laura M Roy
- Biophysics of Photosynthesis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rebekka M Wachter
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, USA
| | - Linda Savage
- Department of Energy Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University, Wageningen, The Netherlands
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Todd Yeates
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Roberta Croce
- Biophysics of Photosynthesis, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
135
|
Aigner H, Wilson RH, Bracher A, Calisse L, Bhat JY, Hartl FU, Hayer-Hartl M. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science 2018; 358:1272-1278. [PMID: 29217567 DOI: 10.1126/science.aap9221] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.
Collapse
Affiliation(s)
- H Aigner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - R H Wilson
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - A Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - L Calisse
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F U Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - M Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
136
|
Vitlin Gruber A, Feiz L. Rubisco Assembly in the Chloroplast. Front Mol Biosci 2018; 5:24. [PMID: 29594130 PMCID: PMC5859369 DOI: 10.3389/fmolb.2018.00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 01/13/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step in the Calvin-Benson cycle, which transforms atmospheric carbon into a biologically useful carbon source. The slow catalytic rate of Rubisco and low substrate specificity necessitate the production of high levels of this enzyme. In order to engineer a more efficient plant Rubisco, we need to better understand its folding and assembly process. Form I Rubisco, found in green algae and vascular plants, is a hexadecamer composed of 8 large subunits (RbcL), encoded by the chloroplast genome and 8 small, nuclear-encoded subunits (RbcS). Unlike its cyanobacterial homolog, which can be reconstituted in vitro or in E. coli, assisted by bacterial chaperonins (GroEL-GroES) and the RbcX chaperone, biogenesis of functional chloroplast Rubisco requires Cpn60-Cpn20, the chloroplast homologs of GroEL-GroES, and additional auxiliary factors, including Rubisco accumulation factor 1 (Raf1), Rubisco accumulation factor 2 (Raf2) and Bundle sheath defective 2 (Bsd2). The discovery and characterization of these factors paved the way for Arabidopsis Rubisco assembly in E. coli. In the present review, we discuss the uniqueness of hetero-oligomeric chaperonin complex for RbcL folding, as well as the sequential or concurrent actions of the post-chaperonin chaperones in holoenzyme assembly. The exact stages at which each assembly factor functions are yet to be determined. Expression of Arabidopsis Rubisco in E. coli provided some insight regarding the potential roles for Raf1 and RbcX in facilitating RbcL oligomerization, for Bsd2 in stabilizing the oligomeric core prior to holoenzyme assembly, and for Raf2 in interacting with both RbcL and RbcS. In the long term, functional characterization of each known factor along with the potential discovery and characterization of additional factors will set the stage for designing more efficient plants, with a greater biomass, for use in biofuels and sustenance.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leila Feiz
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
137
|
Lin MT, Hanson MR. Red algal Rubisco fails to accumulate in transplastomic tobacco expressing Griffithsia monilis RbcL and RbcS genes. PLANT DIRECT 2018; 2:e00045. [PMID: 31245711 PMCID: PMC6508576 DOI: 10.1002/pld3.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 05/03/2023]
Abstract
In C3 plants, the carbon fixation step catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) represents a major rate-limiting step due to the competing oxygenation reaction, which leads to the energy-intensive photorespiration and lowers the overall photosynthetic efficiency. Hence, there is great biotechnological interest in replacing the Rubisco in C3 crops with a more efficient enzyme. The Rubisco enzymes from red algae are among the most attractive choices due to their remarkable preference for carboxylation over oxygenation reaction. However, the biogenesis of Rubisco is extremely complex. The Rubisco enzymes in plants, algae, and cyanobacteria are made up of eight large and eight small subunits. The folding of the large subunits and the assembly of the large subunits with the small subunits to form a functional holoenzyme require specific chaperonin complexes and assembly factors. As a result, previous success in expressing foreign Rubisco in plants has been limited to Rubisco large subunits from closely related plant species and simpler bacterial enzymes. In our previous work, we successfully replaced the Rubisco in tobacco with a cyanobacterial enzyme, which was able to support the phototrophic growth of the transgenic plants. In this work, we used the same approach to express the Rubisco subunits from the red alga Griffithsia monilis in tobacco chloroplasts in the absence of the tobacco Rubisco large subunit. Although the red algal Rubisco genes are being transcribed in tobacco chloroplasts, the transgenic plants lack functional Rubisco and can only grow in a medium containing sucrose. Our results suggest that co-expression of compatible chaperones will be necessary for successful assembly of red algal Rubisco in plants.
Collapse
Affiliation(s)
- Myat T. Lin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
138
|
Liu D, Ramya RCS, Mueller-Cajar O. Surveying the expanding prokaryotic Rubisco multiverse. FEMS Microbiol Lett 2018; 364:3983162. [PMID: 28854711 DOI: 10.1093/femsle/fnx156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.
Collapse
Affiliation(s)
- Di Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
139
|
Wilson RH, Martin-Avila E, Conlan C, Whitney SM. An improved Escherichia coli screen for Rubisco identifies a protein-protein interface that can enhance CO 2-fixation kinetics. J Biol Chem 2018; 293:18-27. [PMID: 28986448 PMCID: PMC5766918 DOI: 10.1074/jbc.m117.810861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
An overarching goal of photosynthesis research is to identify how components of the process can be improved to benefit crop productivity, global food security, and renewable energy storage. Improving carbon fixation has mostly focused on enhancing the CO2 fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This grand challenge has mostly proved ineffective because of catalytic mechanism constraints and required chaperone complementarity that hinder Rubisco biogenesis in alternative hosts. Here we refashion Escherichia coli metabolism by expressing a phosphoribulokinase-neomycin phosphotransferase fusion protein to produce a high-fidelity, high-throughput Rubisco-directed evolution (RDE2) screen that negates false-positive selection. Successive evolution rounds using the plant-like Te-Rubisco from the cyanobacterium Thermosynechococcus elongatus BP1 identified two large subunit and six small subunit mutations that improved carboxylation rate, efficiency, and specificity. Structural analysis revealed the amino acids clustered in an unexplored subunit interface of the holoenzyme. To study its effect on plant growth, the Te-Rubisco was transformed into tobacco by chloroplast transformation. As previously seen for Synechocccus PCC6301 Rubisco, the specialized folding and assembly requirements of Te-Rubisco hinder its heterologous expression in leaf chloroplasts. Our findings suggest that the ongoing efforts to improve crop photosynthesis by integrating components of a cyanobacteria CO2-concentrating mechanism will necessitate co-introduction of the ancillary molecular components required for Rubisco biogenesis.
Collapse
Affiliation(s)
- Robert H Wilson
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Elena Martin-Avila
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Carly Conlan
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| |
Collapse
|
140
|
Affiliation(s)
- Brendon Conlan
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The Australian National University, Acton, Australian Capital Territory, Australia
- Research School of Biology, College of Science, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Spencer Whitney
- Australian Research Council Centre of Excellence for Translational Photosynthesis, The Australian National University, Acton, Australian Capital Territory, Australia.
- Research School of Biology, College of Science, The Australian National University, Acton, Australian Capital Territory, Australia.
| |
Collapse
|
141
|
Valegård K, Hasse D, Andersson I, Gunn LH. Structure of Rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1,5-bisphosphate. Acta Crystallogr D Struct Biol 2018; 74:1-9. [PMID: 29372894 PMCID: PMC5786004 DOI: 10.1107/s2059798317017132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Arabidopsis thaliana is reported at 1.5 Å resolution. In light of the importance of A. thaliana as a model organism for understanding higher plant biology, and the pivotal role of Rubisco in photosynthetic carbon assimilation, there has been a notable absence of an A. thaliana Rubisco crystal structure. A. thaliana Rubisco is an L8S8 hexadecamer comprising eight plastome-encoded catalytic large (L) subunits and eight nuclear-encoded small (S) subunits. A. thaliana produces four distinct small-subunit isoforms (RbcS1A, RbcS1B, RbcS2B and RbcS3B), and this crystal structure provides a snapshot of A. thaliana Rubisco containing the low-abundance RbcS3B small-subunit isoform. Crystals were obtained in the presence of the transition-state analogue 2-carboxy-D-arabinitol-1,5-bisphosphate. A. thaliana Rubisco shares the overall fold characteristic of higher plant Rubiscos, but exhibits an interesting disparity between sequence and structural relatedness to other Rubisco isoforms. These results provide the structural framework to understand A. thaliana Rubisco and the potential catalytic differences that could be conferred by alternative A. thaliana Rubisco small-subunit isoforms.
Collapse
Affiliation(s)
- Karin Valegård
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| | - Laura H. Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
142
|
Zheng DW, Li B, Li CX, Xu L, Fan JX, Lei Q, Zhang XZ. Photocatalyzing CO 2 to CO for Enhanced Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703822. [PMID: 29024101 DOI: 10.1002/adma.201703822] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/09/2017] [Indexed: 05/22/2023]
Abstract
Continuous exposure to carbon monoxide (CO) can sensitize cancer cells to chemotherapy while protect normal cells from apoptosis. The Janus face of CO thus provides an ideal strategy for cancer therapy. Here, a photocatalytic nanomaterial (HisAgCCN) is introduced to transform endogenous CO2 to CO for improving cancer therapy in vivo. The CO production rate of HisAgCCN reaches to 65 µmol h-1 gmat-1 , which can significantly increase the cytotoxicity of anticancer drug (doxorubicin, DOX) by 70%. Interestingly, this study finds that HisAgCCN can enhance mitochondria biogenesis and aggravate oxidative stress in cancer cells, whereas protect normal cells from chemotherapy-induced apoptosis as well. Proteomics and metabolomics studies reveal that HisAgCCN can enhance mitochondria biogenesis and aggravate oxidative stress in cancer cells specifically. In vivo studies indicate that HisAgCCN/DOX combination therapy presents a synergetic tumor inhibition, which might provide a new direction for clinical cancer therapy.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Lu Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
143
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
144
|
Hayer-Hartl M. From chaperonins to Rubisco assembly and metabolic repair. Protein Sci 2017; 26:2324-2333. [PMID: 28960553 DOI: 10.1002/pro.3309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/13/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mediates the fixation of atmospheric CO2 in photosynthesis by catalyzing the carboxylation of the 5-carbon sugar ribulose-1,5-bisphosphate (RuBP). Despite its pivotal role, Rubisco is an inefficient enzyme and thus has been a key target for bioengineering. However, efforts to increase crop yields by Rubisco engineering remain unsuccessful, due in part to the complex machinery of molecular chaperones required for Rubisco biogenesis and metabolic repair. While the large subunit of Rubisco generally requires the chaperonin system for folding, the evolution of the hexadecameric Rubisco from its dimeric precursor resulted in the dependence on an array of additional factors required for assembly. Moreover, Rubisco function can be inhibited by a range of sugar-phosphate ligands. Metabolic repair of Rubisco depends on remodeling by the ATP-dependent Rubisco activase and hydrolysis of inhibitors by specific phosphatases. This review highlights our work toward understanding the structure and mechanism of these auxiliary machineries.
Collapse
Affiliation(s)
- Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
145
|
Graham PJ, Nguyen B, Burdyny T, Sinton D. A penalty on photosynthetic growth in fluctuating light. Sci Rep 2017; 7:12513. [PMID: 28970553 PMCID: PMC5624943 DOI: 10.1038/s41598-017-12923-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Fluctuating light is the norm for photosynthetic organisms, with a wide range of frequencies (0.00001 to 10 Hz) owing to diurnal cycles, cloud cover, canopy shifting and mixing; with broad implications for climate change, agriculture and bioproduct production. Photosynthetic growth in fluctuating light is generally considered to improve with increasing fluctuation frequency. Here we demonstrate that the regulation of photosynthesis imposes a penalty on growth in fluctuating light for frequencies in the range of 0.01 to 0.1 Hz (organisms studied: Synechococcus elongatus and Chlamydomonas reinhardtii). We provide a comprehensive sweep of frequencies and duty cycles. In addition, we develop a 2nd order model that identifies the source of the penalty to be the regulation of the Calvin cycle – present at all frequencies but compensated at high frequencies by slow kinetics of RuBisCO.
Collapse
Affiliation(s)
- Percival J Graham
- University of Toronto Mechanical and Industrial Engineering, Toronto, Canada
| | - Brian Nguyen
- University of Toronto Mechanical and Industrial Engineering, Toronto, Canada
| | - Thomas Burdyny
- University of Toronto Mechanical and Industrial Engineering, Toronto, Canada
| | - David Sinton
- University of Toronto Mechanical and Industrial Engineering, Toronto, Canada.
| |
Collapse
|
146
|
Ogbaga CC, Stepien P, Athar HUR, Ashraf M. Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants. Crit Rev Biotechnol 2017; 38:559-572. [DOI: 10.1080/07388551.2017.1378998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chukwuma C. Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Piotr Stepien
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
147
|
Peterson-Forbrook DS, Hilton MT, Tichacek L, Henderson JN, Bui HQ, Wachter RM. Nucleotide Dependence of Subunit Rearrangements in Short-Form Rubisco Activase from Spinach. Biochemistry 2017; 56:4906-4921. [PMID: 28795566 DOI: 10.1021/acs.biochem.7b00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Higher-plant Rubisco activase (Rca) plays a critical role in regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In vitro, Rca is known to undergo dynamic assembly-disassembly processes, with several oligomer stoichiometries coexisting over a broad concentration range. Although the hexamer appears to be the active form, changes in quaternary structure could play a role in Rubisco regulation. Therefore, fluorescent labels were attached to the C-termini of spinach β-Rca, and the rate of subunit mixing was monitored by measuring energy transfer as a function of nucleotide and divalent cation. Only dimeric units appeared to exchange. Poorly hydrolyzable substrate analogues provided locked complexes with high thermal stabilities (apparent Tm = 60 °C) and an estimated t1/2 of at least 7 h, whereas ATP-Mg provided tight assemblies with t1/2 values of 30-40 min and ADP-Mg loose assemblies with t1/2 values of <15 min. Accumulation of ADP to 20% of the total level of adenine nucleotide substantially accelerated equilibration. An initial lag period was observed with ATP·Mg, indicating inhibition of subunit exchange at low ADP concentrations. The ADP Ki value was estimated to exceed the Km for ATP (0.772 ± 96 mM), suggesting that the equilibration rate is a function of the relative contributions of high- and low-affinity states. C-Terminal cross-linking generated covalent dimers, required the N-terminal extension to the AAA+ domain, and provided evidence of different classes of sites. We propose that oligomer reorganization may be stalled during periods of high Rubisco reactivation activity, whereas changes in quaternary structure are stimulated by the accumulation of ADP at low light levels.
Collapse
Affiliation(s)
- Dayna S Peterson-Forbrook
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | - Matthew T Hilton
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | - Laura Tichacek
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | - J Nathan Henderson
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | - Hoang Q Bui
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| | - Rebekka M Wachter
- School of Molecular Sciences, School of Life Sciences, and Center for Bioenergy and Photosynthesis, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
148
|
Bhat JY, Miličić G, Thieulin-Pardo G, Bracher A, Maxwell A, Ciniawsky S, Mueller-Cajar O, Engen JR, Hartl FU, Wendler P, Hayer-Hartl M. Mechanism of Enzyme Repair by the AAA + Chaperone Rubisco Activase. Mol Cell 2017; 67:744-756.e6. [PMID: 28803776 DOI: 10.1016/j.molcel.2017.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/16/2023]
Abstract
How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.
Collapse
Affiliation(s)
- Javaid Y Bhat
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Goran Miličić
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gabriel Thieulin-Pardo
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrew Maxwell
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Susanne Ciniawsky
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Oliver Mueller-Cajar
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Petra Wendler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
149
|
Mueller-Cajar O. The Diverse AAA+ Machines that Repair Inhibited Rubisco Active Sites. Front Mol Biosci 2017; 4:31. [PMID: 28580359 PMCID: PMC5437159 DOI: 10.3389/fmolb.2017.00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/29/2017] [Indexed: 11/13/2022] Open
Abstract
Gaseous carbon dioxide enters the biosphere almost exclusively via the active site of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This highly conserved catalyst has an almost universal propensity to non-productively interact with its substrate ribulose 1,5-bisphosphate, leading to the formation of dead-end inhibited complexes. In diverse autotrophic organisms this tendency has been counteracted by the recruitment of dedicated AAA+ (ATPases associated with various cellular activities) proteins that all use the energy of ATP hydrolysis to remodel inhibited Rubisco active sites leading to release of the inhibitor. Three evolutionarily distinct classes of these Rubisco activases (Rcas) have been discovered so far. Green and red-type Rca are mostly found in photosynthetic eukaryotes of the green and red plastid lineage respectively, whereas CbbQO is associated with chemoautotrophic bacteria. Ongoing mechanistic studies are elucidating how the various motors are utilizing both similar and contrasting strategies to ultimately perform their common function of cracking the inhibited Rubisco active site. The best studied mechanism utilized by red-type Rca appears to involve transient threading of the Rubisco large subunit C-terminal peptide, reminiscent of the action performed by Clp proteases. As well as providing a fascinating example of convergent molecular evolution, Rca proteins can be considered promising crop-improvement targets. Approaches aiming to replace Rubisco in plants with improved enzymes will need to ensure the presence of a compatible Rca protein. The thermolability of the Rca protein found in crop plants provides an opportunity to fortify photosynthesis against high temperature stress. Photosynthesis also appears to be limited by Rca when light conditions are fluctuating. Synthetic biology strategies aiming to enhance the autotrophic CO2 fixation machinery will need to take into consideration the requirement for Rubisco activases as well as their properties.
Collapse
Affiliation(s)
- Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
150
|
Wachter RM. A peptide adhesive molded by magnesium glues Rubisco's subunits together. J Biol Chem 2017; 292:6851-6852. [PMID: 28432177 DOI: 10.1074/jbc.h116.767145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rubisco enzymes play central roles in carbon fixation, with potential importance in biotechnology, but have eluded a full description of their multistep assembly and function. A new article describes the fascinating discovery that some archaeal Rubiscos contain a built-in assembly domain inserted into an otherwise canonical Rubisco fold, providing a tremendous expansion of our understanding of the diversity of naturally occurring Rubiscos.
Collapse
Affiliation(s)
- Rebekka M Wachter
- From the School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|