101
|
Welinder C, Jönsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Breslin T, Rezeli M, Jansson B, Laurell T, Fehniger TE, Wieslander E, Pawlowski K, Marko-Varga G. Feasibility study on measuring selected proteins in malignant melanoma tissue by SRM quantification. J Proteome Res 2014; 13:1315-26. [PMID: 24490776 DOI: 10.1021/pr400876p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.
Collapse
Affiliation(s)
- Charlotte Welinder
- Departments of †Oncology, ∥Surgery, and ⊥Cancer Epidemiology, Clinical Sciences, and ‡Centre of Excellence in Biological and Medical Mass Spectrometry, Lund University , 221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Luo C, Weber CEM, Osen W, Bosserhoff AK, Eichmüller SB. The role of microRNAs in melanoma. Eur J Cell Biol 2014; 93:11-22. [PMID: 24602414 DOI: 10.1016/j.ejcb.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Melanoma is the most dangerous form of skin cancer, being largely resistant to conventional therapies at advanced stages. Understanding the molecular mechanisms behind this disease might be the key for the development of novel therapeutic strategies. MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control gene expression, thereby regulating various cellular signaling pathways involved in the initiation and progression of different cancer types, including melanoma. In this review, we summarize approaches for the identification of candidate miRNAs and their target genes and review the functions of miRNAs in melanoma. Finally, we highlight the recent progress in pre-clinical use of miRNAs as prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Chonglin Luo
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Claudia E M Weber
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolfram Osen
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Stefan B Eichmüller
- Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
103
|
Gajos-Michniewicz A, Duechler M, Czyz M. MiRNA in melanoma-derived exosomes. Cancer Lett 2014; 347:29-37. [PMID: 24513178 DOI: 10.1016/j.canlet.2014.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 02/08/2023]
Abstract
Proteins, RNAs and viruses can be spread through exosomes, therefore transport utilizing these nanovesicles is of the great interest. MiRNAs are common exosomal constituents capable of influencing expression of a variety of target genes. MiRNA signatures of exosomes are unique in cancer patients and differ from those in normal controls. The knowledge about miRNA profiles of tumor-derived exosomes may contribute to better diagnosis, determination of tumor progression and response to treatment, as well as to the development of targeted therapies. We summarize the current knowledge with regard to miRNAs that are found in exosomes derived from tumors, particularly from melanoma.
Collapse
Affiliation(s)
| | - Markus Duechler
- Department of Bioorganic Chemistry, Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland.
| |
Collapse
|
104
|
UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One 2013; 8:e83392. [PMID: 24391759 PMCID: PMC3877020 DOI: 10.1371/journal.pone.0083392] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.
Collapse
|
105
|
Hung PS, Liu CJ, Chou CS, Kao SY, Yang CC, Chang KW, Chiu TH, Lin SC. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS One 2013; 8:e79926. [PMID: 24302991 PMCID: PMC3841223 DOI: 10.1371/journal.pone.0079926] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/30/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients' plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3'UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.
Collapse
Affiliation(s)
- Pei-Shi Hung
- Department of Surgery National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Department of Medical Research, National Yang-Ming University Hospital, Yi-Lan, Taiwan
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Chung-Shan Chou
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Hui Chiu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
106
|
Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer 2013; 109:3116-24. [PMID: 24169347 PMCID: PMC3859937 DOI: 10.1038/bjc.2013.646] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/19/2022] Open
Abstract
Background: Processing of microRNAs (miRNAs) is a highly controlled process. Deregulation of miRNA expression was observed in several types of cancer but changes in the miRNA-processing enzymes have not been analysed until today. In this study, we analysed Argonaute2 (AGO2, EIF2C2), as one main factor of the miRNA processing ensemble, in the context of cancer development, especially in melanoma. Methods: We determined the AGO2 expression level in melanoma, as well as in other cancers, with biochemical approaches (qRT–PCR, western blot and immunofluorescence studies) and analysed the cell behaviour in migration assays. Results: Specifically in melanoma, we revealed a strong reduction of AGO2 expression compared with primary melanocytes. The reduction of AGO2 expression was only found on protein level, whereas the mRNA level stayed unchanged hinting to post-transcriptional regulation. We could show that re-expression of AGO2 in melanoma leads to a strong improvement of regulatory effects due to increased functionality of small-interfering RNAs and short hairpin RNAs. Conclusion: We identified melanoma-specific downregulation of AGO2 and corresponding reduced RNAi efficiency. These findings will help to understand the molecular basis of malignant melanoma and can potentially lead to an improvement of therapeutic strategies.
Collapse
|
107
|
Elgamal OA, Park JK, Gusev Y, Azevedo-Pouly ACP, Jiang J, Roopra A, Schmittgen TD. Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PLoS One 2013; 8:e76402. [PMID: 24098490 PMCID: PMC3788717 DOI: 10.1371/journal.pone.0076402] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/13/2013] [Indexed: 12/29/2022] Open
Abstract
Identifying targets of dysregulated microRNAs (miRNAs) will enhance our understanding of how altered miRNA expression contributes to the malignant phenotype of breast cancer. The expression of miR-205 was reduced in four breast cancer cell lines compared to the normal-like epithelial cell line MCF10A and in tumor and metastatic tissues compared to adjacent benign breast tissue. Two predicted binding sites for miR-205 were identified in the 3’ untranslated region of the high mobility group box 3 gene, HMGB3. Both dual-luciferase reporter assay and Western blotting confirmed that miR-205 binds to and regulates HMGB3. To further explore miR-205 targeting of HMGB3, WST-1 proliferation and in vitro invasion assays were performed in MDA-MB-231 and BT549 cells transiently transfected with precursor miR-205 oligonucleotide or HMGB3 small interfering RNA (siRNA). Both treatments reduced the proliferation and invasion of the cancer cells. The mRNA and protein levels of HMGB3 were higher in the tumor compared to adjacent benign specimens and there was an indirect correlation between the expression of HMGB3 mRNA and patient survival. Treatment of breast cancer cells with 5-Aza/TSA derepressed miR-205 and reduced HMGB3 mRNA while knockdown of the transcriptional repressor NRSF/REST, reduced miR-205 and increased HMGB3. In conclusion, regulation of HMGB3 by miR-205 reduced both proliferation and invasion of breast cancer cells. Our findings suggest that modulating miR-205 and/or targeting HMGB3 are potential therapies for advanced breast cancer.
Collapse
Affiliation(s)
- Ola A. Elgamal
- College of Pharmacy, the Ohio State University, Columbus, Ohio, United States of America
| | - Jong-Kook Park
- College of Pharmacy, the Ohio State University, Columbus, Ohio, United States of America
| | - Yuriy Gusev
- Georgetown University Cancer Center, Washington, District of Columbia, United States of America
| | | | - Jinmai Jiang
- College of Pharmacy, the Ohio State University, Columbus, Ohio, United States of America
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Thomas D. Schmittgen
- College of Pharmacy, the Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
108
|
Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 2013; 8:e73473. [PMID: 24039954 PMCID: PMC3764006 DOI: 10.1371/journal.pone.0073473] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.
Collapse
Affiliation(s)
- Christiane Margue
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Demetra Philippidou
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Susanne E. Reinsbach
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Martina Schmitt
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Stephanie Kreis
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| |
Collapse
|
109
|
Kozubek J, Ma Z, Fleming E, Duggan T, Wu R, Shin DG, Dadras SS. In-depth characterization of microRNA transcriptome in melanoma. PLoS One 2013; 8:e72699. [PMID: 24023765 PMCID: PMC3762816 DOI: 10.1371/journal.pone.0072699] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/10/2013] [Indexed: 01/09/2023] Open
Abstract
The full repertoire of human microRNAs (miRNAs) that could distinguish common (benign) nevi from cutaneous (malignant) melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS) platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm) and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic) (n = 28). From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58%) previously discovered miRNAs while introducing an additional 17 (42%) known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n = 101), we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC = 0.933), melanoma in situ (AUC = 0.933) and dysplastic (atypical) nevi (AUC = 0.951) from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs) and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics.
Collapse
Affiliation(s)
- James Kozubek
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth Fleming
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Tatiana Duggan
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Rong Wu
- Connecticut Institute for Clinical and Translational Science Biostatics Center, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Dong-Guk Shin
- Department of Computer Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Soheil S. Dadras
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Therapy of malignant melanoma recently experienced remarkable advances with the introduction of two treatment regimens, gene mutation-based therapies with signaling pathway inhibitors (kinase inhibitors) and treatments with immune modulators. Both strategies prolong patients' survival but still have specific limitations, demanding the identification of additional genetic and immunological biomarkers as predictors of treatment response and prognosis. New developments in that field are summarized in this review. RECENT FINDINGS Activating oncogene mutations are important melanoma biomarkers. They predict responsiveness to kinase inhibitor therapies and have therapy independent prognostic relevance. Epigenetic alterations (DNA methylation, chromatin remodeling, and noncoding RNA) in melanoma are emerging as potentially valuable biomarkers. With the successful introduction of immunotherapies for melanoma, interest in immunological biomarkers has grown. Tumor-reactive cytotoxic T cells from patients' peripheral blood were recently proposed to predict prognosis and response to immunotherapy. A superior immune profile assessment could be achieved by combining a detailed characterization of a tumor's immune cell infiltrate with its (immune) gene signature. SUMMARY Genetic melanoma markers have already become clinically relevant. We expect both their role and that of immunological biomarkers to increase significantly in the next few years, enabling personalized therapy with optimal treatment selection for individual tumors.
Collapse
|
111
|
Giangreco AA, Nonn L. The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol 2013; 136:86-93. [PMID: 23333596 PMCID: PMC3686905 DOI: 10.1016/j.jsbmb.2013.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/03/2012] [Accepted: 01/01/2013] [Indexed: 12/31/2022]
Abstract
Vitamin D3 deficiency is rampant which may contribute to increased risk of many diseases including cancer, cardiovascular disease and autoimmune disorders. Genomic activity of the active metabolite 1,25-dihydroxyvitamin D (1,25D) mediates most vitamin D3's actions and many gene targets of 1,25D have been characterized. As the importance of non-coding RNAs has emerged, the ability of vitamin D3via 1,25D to regulate microRNAs (miRNAs) has been demonstrated in several cancer cell lines, patient tissue and sera. In vitamin D3 intervention patient trials, significant differences in miRNAs are observed between treatment groups and/or between baseline and followup. In patient sera from population studies, specific miRNA differences associate with serum levels of 25D. The findings thus far indicate that dietary vitamin D3 in patients and 1,25D in vitro not only regulate specific miRNA(s), but may also globally upregulate miRNA levels. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
- Corresponding author at: Department of Pathology, 840 S. Wood St, Room 130 CSN, Chicago, IL60612, USA. Tel.: +1 312 996 0194; fax: +1 312 996 7586
| |
Collapse
|
112
|
Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM, El-Naggar AK. MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome. PLoS One 2013; 8:e66778. [PMID: 23825564 PMCID: PMC3692530 DOI: 10.1371/journal.pone.0066778] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Background Salivary adenoid cystic carcinoma (ACC) is a rare relentlessly progressive malignant tumor. The molecular events associated with ACC tumorigenesis are poorly understood. Variable microRNAs (miRNA) have been correlated with tumorigenesis of several solid tumors but not in ACC. To investigate the association of miRNAs with the development and/or progression of ACC, we performed a comparative analysis of primary ACC specimens and matched normal samples and a pooled salivary gland standard and correlated the results with clinicopathologic factors and validated selected miRNAs in a separate set of 30 tumors. Methods MiRNA array platform was used for the identification of target miRNAs and the data was subjected to informatics and statistical interrelations. The results were also collected with the MYB-NFIB fusion status and the clinicopathologic features. Results Differentially dysregulated miRNAs in ACC were characterized in comparison to normal expression. No significant differences in miRNA expression were found between the MYB-NFIB fusion positive and -negative ACCs. Of the highly dysregulated miRNA in ACC, overexpression of the miR-17 and miR-20a were significantly associated with poor outcome in the screening and validation sets. Conclusion Our study indicates that the upregulation of miR-17-92 may play a role in the biology of ACC and could be potentially targeted in future therapeutic studies.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dianna B. Roberts
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hanadi Fatani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Randal S. Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Merrill S. Kies
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Scott M. Lippman
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
113
|
Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, Stieber D, Keunen O, Brekka N, Moen I, Nigro JM, Vintermyr OK, Lund-Johansen M, Niclou S, Mørk SJ, Enger PØ, Bjerkvig R, Miletic H. EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol 2013; 125:683-98. [PMID: 23429996 PMCID: PMC3631314 DOI: 10.1007/s00401-013-1101-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/24/2013] [Accepted: 02/09/2013] [Indexed: 11/15/2022]
Abstract
Angiogenesis is regarded as a hallmark of cancer progression and it has been postulated that solid tumor growth depends on angiogenesis. At present, however, it is clear that tumor cell invasion can occur without angiogenesis, a phenomenon that is particularly evident by the infiltrative growth of malignant brain tumors, such as glioblastomas (GBMs). In these tumors, amplification or overexpression of wild-type (wt) or truncated and constitutively activated epidermal growth factor receptor (EGFR) are regarded as important events in GBM development, where the complex downstream signaling events have been implicated in tumor cell invasion, angiogenesis and proliferation. Here, we show that amplification and in particular activation of wild-type EGFR represents an underlying mechanism for non-angiogenic, invasive tumor growth. Using a clinically relevant human GBM xenograft model, we show that tumor cells with EGFR gene amplification and activation diffusely infiltrate normal brain tissue independent of angiogenesis and that transient inhibition of EGFR activity by cetuximab inhibits the invasive tumor growth. Moreover, stable, long-term expression of a dominant-negative EGFR leads to a mesenchymal to epithelial-like transition and induction of angiogenic tumor growth. Analysis of human GBM biopsies confirmed that EGFR activation correlated with invasive/non-angiogenic tumor growth. In conclusion, our results indicate that activation of wild-type EGFR promotes invasion and glioblastoma development independent of angiogenesis, whereas loss of its activity results in angiogenic tumor growth.
Collapse
Affiliation(s)
- Krishna M. Talasila
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anke Soentgerath
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Neurosurgery, Hospital Cologne Merheim, 51109 Cologne, Germany
| | - Philipp Euskirchen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Gro V. Rosland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Peter C. Huszthy
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Lars Prestegarden
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Dermatology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kai Ove Skaftnesmo
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | | | - Eskil Eskilsson
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Daniel Stieber
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Olivier Keunen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Narve Brekka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Janice M. Nigro
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Olav K. Vintermyr
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Morten Lund-Johansen
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
- Institute of Surgical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Simone Niclou
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Sverre J. Mørk
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, CRP-Santé, 1526 Luxembourg, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Pathology, The Gade Institute, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| |
Collapse
|
114
|
Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, Min L, Liu W. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 2013; 7:1579-84. [PMID: 23546450 DOI: 10.3892/mmr.2013.1403] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/20/2013] [Indexed: 02/06/2023] Open
Abstract
Doxorubicin (ADR) is successfully used to treat breast cancer, however, it is often associated with the acquired resistance of breast cancer cells which eliminates the therapeutic efficiency of ADR, leading to relapse and a poorer prognosis. It has been reported that microRNA-200c (miRNA-200c), a non-coding RNA, is important in the epithelial to mesenchymal transition (EMT) and metastasis in breast cancer cells. Recent evidence demonstrated that miRNA-200c is also regulated in chemotherapeutic drug resistance, however, the precise mechanism by which this occurs remains unclear. In this study, we demonstrated that the loss of miRNA-200c correlates with the acquired resistance of breast cancer cells to ADR. In addition, the loss of miRNA-200c correlated with decreased levels of E-cadherin and PTEN, and increased levels of ZEB1 and phospho-Akt (p-Akt) in ADR-resistant breast cancer cells (MCF-7/ADR cells). More importantly, we demonstrated that the gain of miRNA-200c results in an increased sensitivity of cells to ADR, downregulation of ZEB1, upregulation of E-cadherin and PTEN, and inactivation of Akt signaling. Following the co-transfection of E-cadherin siRNA, the miRNA-200c-mediated regulation of Akt signaling and PTEN was inhibited. Results of the present study also demonstrated that Akt signaling is involved in the ADR resistance of breast cancer cells since LY294002, an inhibitor of Akt signaling, partially restored the sensitivity of MCF-7/ADR cells to ADR. In conclusion, miRNA-200c inhibited Akt signaling through its effects on E-cadherin and PTEN, resulting in the inhibition of ADR resistance in breast cancer cells.
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Subei People's Hospital, Yangzhou, Jiangsu 225000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Swoboda RK, Herlyn M. There is a world beyond protein mutations: the role of non-coding RNAs in melanomagenesis. Exp Dermatol 2013; 22:303-6. [PMID: 23489578 DOI: 10.1111/exd.12117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2013] [Indexed: 12/17/2022]
Abstract
Until recently, the general perception has been that mutations in protein-coding genes are responsible for tumorigenesis. With the discovery of (V600E)BRAF in about 50% of cutaneous melanomas, there was an increased effort to find additional mutations. However, mutations characterized in melanoma to date cannot account for the development of all melanomas. With the discovery of microRNAs as important players in melanomagenesis, protein mutations are no longer considered the sole drivers of tumors. Recent research findings have expanded the view for tumor initiation and progression to additional non-coding RNAs. The data suggest that tumorigenesis is likely an interplay between mutated proteins and deregulation of non-coding RNAs in the cell with an additional role of the tumor environment. With the exception of microRNAs, our knowledge of the role of non-coding RNAs in melanoma is in its infancy. Using few examples, we will summarize some of the roles of non-coding RNAs in tumorigenesis. Thus, there is a whole world beyond protein-coding sequences and microRNAs, which can cause melanoma.
Collapse
|
116
|
Fils-Aimé N, Dai M, Guo J, El-Mousawi M, Kahramangil B, Neel JC, Lebrun JJ. MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-β Mediates the migration and actin dynamics of breast cancer cells. J Biol Chem 2013; 288:11807-23. [PMID: 23479725 DOI: 10.1074/jbc.m112.430934] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TGF-β plays an important role in breast cancer progression as a prometastatic factor, notably through enhancement of cell migration. It is becoming clear that microRNAs, a new class of small regulatory molecules, also play crucial roles in mediating tumor formation and progression. We found TGF-β to down-regulate the expression of the microRNA miR-584 in breast cancer cells. Furthermore, we identified PHACTR1, an actin-binding protein, to be positively regulated by TGF-β in a miR-584-dependent manner. Moreover, we found TGF-β-mediated down-regulation of miR-584 and increased expression of PHACTR1 to be required for TGF-β-induced cell migration of breast cancer cells. Indeed, both overexpression of miR-584 and knockdown of PHACTR1 resulted in a drastic reorganization of the actin cytoskeleton and reduced TGF-β-induced cell migration. Our data highlight a novel signaling route whereby TGF-β silences the expression of miR-584, resulting in enhanced PHACTR1 expression, and further leading to actin rearrangement and breast cancer cell migration.
Collapse
Affiliation(s)
- Nadège Fils-Aimé
- Division of Medical Oncology, Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | |
Collapse
|
117
|
Yamashita J, Iwakiri T, Fukushima S, Jinnin M, Miyashita A, Hamasaki T, Makino T, Aoi J, Masuguchi S, Inoue Y, Ihn H. The rs2910164 G>C polymorphism in microRNA-146a is associated with the incidence of malignant melanoma. Melanoma Res 2013; 23:13-20. [DOI: 10.1097/cmr.0b013e32835c5b30] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Abstract
Epithelial to mesenchymal transition (EMT) is essential for driving plasticity during development, but is an unintentional behaviour of cells during cancer progression. The EMT-associated reprogramming of cells not only suggests that fundamental changes may occur to several regulatory networks but also that an intimate interplay exists between them. Disturbance of a controlled epithelial balance is triggered by altering several layers of regulation, including the transcriptional and translational machinery, expression of non-coding RNAs, alternative splicing and protein stability.
Collapse
Affiliation(s)
- Bram De Craene
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
119
|
Dar AA, Majid S, Rittsteuer C, de Semir D, Bezrookove V, Tong S, Nosrati M, Sagebiel R, Miller JR, Kashani-Sabet M. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 2013; 105:433-42. [PMID: 23365201 PMCID: PMC3601951 DOI: 10.1093/jnci/djt003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Although p53 is inactivated by point mutations in many tumors, melanomas infrequently harbor mutations in the p53 gene. Here we investigate the biological role of microRNA-18b (miR-18b) in melanoma by targeting the MDM2-p53 pathway. Methods Expression of miR-18b was examined in nevi (n = 48) and melanoma (n = 92) samples and in melanoma cell lines and normal melanocytes. Immunoblotting was performed to determine the expression of various proteins regulated by miR-18b. The effects of miR-18b overexpression in melanoma cell lines were investigated using assays of colony formation, cell viability, migration, invasion, and cell cycle and in a xenograft model (n = 10 mice per group). Chromatin immunoprecipitation and methylation assays were performed to determine the mechanism of microRNA silencing. Results Expression of miR-18b was substantially reduced in melanoma specimens and cell lines by virtue of hypermethylation and was reinduced (by 1.5- to 5.3-fold) in melanoma cell lines after 5-AZA-deoxycytidine treatment. MDM2 was identified as a target of miR-18b action, and overexpression of miR-18b in melanoma cells was accompanied by 75% reduced MDM2 expression and 2.5-fold upregulation of p53, resulting in 70% suppression of melanoma cell colony formation. The effects of miR-18b overexpression on the p53 pathway and on melanoma cell growth were reversed by MDM2 overexpression. Stable overexpression of miR-18b produced potent tumor suppressor activity, as evidenced by suppressed melanoma cell viability, induction of apoptosis, and reduced tumor growth in vivo. miR-18b overexpression suppressed melanoma cell migration and invasiveness and reversed epithelial-to-mesenchymal transition. Conclusions Our results demonstrate a novel role for miR-18b as a tumor suppressor in melanoma, identify the MDM2-p53 pathway as a target of miR-18b action, and suggest miR-18b overexpression as a novel strategy to reactivate the p53 pathway in human tumors.
Collapse
Affiliation(s)
- Altaf A Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, 475 Brannan St, Ste 220, San Francisco, CA 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 2013; 41:2817-31. [PMID: 23335783 PMCID: PMC3597666 DOI: 10.1093/nar/gks1471] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed small non-coding RNAs that, in most cases, negatively regulate gene expression at the post-transcriptional level. miRNAs are involved in fine-tuning fundamental cellular processes such as proliferation, cell death and cell cycle control and are believed to confer robustness to biological responses. Here, we investigated simultaneously the transcriptional changes of miRNA and mRNA expression levels over time after activation of the Janus kinase/Signal transducer and activator of transcription (Jak/STAT) pathway by interferon-γ stimulation of melanoma cells. To examine global miRNA and mRNA expression patterns, time-series microarray data were analysed. We observed delayed responses of miRNAs (after 24-48 h) with respect to mRNAs (12-24 h) and identified biological functions involved at each step of the cellular response. Inference of the upstream regulators allowed for identification of transcriptional regulators involved in cellular reactions to interferon-γ stimulation. Linking expression profiles of transcriptional regulators and miRNAs with their annotated functions, we demonstrate the dynamic interplay of miRNAs and upstream regulators with biological functions. Finally, our data revealed network motifs in the form of feed-forward loops involving transcriptional regulators, mRNAs and miRNAs. Additional information obtained from integrating time-series mRNA and miRNA data may represent an important step towards understanding the regulatory principles of gene expression.
Collapse
Affiliation(s)
- Petr V Nazarov
- Genomics Research Unit, Centre de Recherche Public de la Santé, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
121
|
Sand M, Skrygan M, Sand D, Georgas D, Gambichler T, Hahn SA, Altmeyer P, Bechara FG. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res 2013; 351:85-98. [PMID: 23111773 DOI: 10.1007/s00441-012-1514-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Perturbations in microRNA (miRNA) expression profiles have been reported for cutaneous malignant melanoma (CMM) predominantly when examined in cell lines. Despite the rapidly growing number of newly discovered human miRNA sequences, the availability of up-to-date miRNA expression profiles for clinical samples of primary cutaneous malignant melanoma (PCMM), cutaneous malignant melanoma metastases (CMMM), and benign melanocytic nevi (BMN) is limited. Specimens excised from the center of tumors (lesional) from patients with PCMM (n=9), CMMM (n=4), or BMN (n=8) were obtained during surgery. An exploratory microarray analysis was performed by miRNA expression profiling based on Agilent platform screening for 1205 human miRNAs. The results from the microarray analysis were validated by TaqMan quantitative real-time polymerase chain reaction. In addition to several miRNAs previously known to be associated with CMM, 19 unidentified miRNA candidates were found to be dysregulated in CMM patient samples. Among the 19 novel miRNA candidates, the genes hsa-miR-22, hsa-miR-130b, hsa-miR-146b-5p, hsa-miR-223, hsa-miR-301a, hsa-miR-484, hsa-miR-663, hsa-miR-720, hsa-miR-1260, hsa-miR-1274a, hsa-miR-1274b, hsa-miR-3663-3p, hsa-miR-4281, and hsa-miR-4286 were upregulated, and the genes hsa-miR-24-1*, hsa-miR-26a, hsa-miR-4291, hsa-miR-4317, and hsa-miR-4324 were downregulated. The results of this study partially confirm previous CMM miRNA profiling studies identifying miRNAs that are dysregulated in CMM. However, we report several novel miRNA candidates in CMM tumors; these miRNA sequences require further validation and functional analysis to evaluate whether they play a role in the pathogenesis of CMM.
Collapse
Affiliation(s)
- Michael Sand
- Department of Dermatology, Venereology and Allergology, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
|
123
|
Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I, Kreis S. Interferon-γ-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal 2012; 10:41. [PMID: 23245396 PMCID: PMC3541122 DOI: 10.1186/1478-811x-10-41] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background The type-II-cytokine IFN-γ is a pivotal player in innate immune responses but also assumes functions in controlling tumor cell growth by orchestrating cellular responses against neoplastic cells. The role of IFN-γ in melanoma is not fully understood: it is a well-known growth inhibitor of melanoma cells in vitro. On the other hand, IFN-γ may also facilitate melanoma progression. While interferon-regulated genes encoding proteins have been intensively studied since decades, the contribution of miRNAs to effects mediated by interferons is an emerging area of research. We recently described a distinct and dynamic regulation of a whole panel of microRNAs (miRNAs) after IFN-γ-stimulation. The aim of this study was to analyze the transcriptional regulation of miR-29 family members in detail, identify potential interesting target genes and thus further elucidate a potential signaling pathway IFN-γ → Jak→ P-STAT1 → miR-29 → miR-29 target genes and its implication for melanoma growth. Results Here we show that IFN-γ induces STAT1-dependently a profound up-regulation of the miR-29 primary cluster pri-29a~b-1 in melanoma cell lines. Furthermore, expression levels of pri-29a~b-1 and mature miR-29a and miR-29b were elevated while the pri-29b-2~c cluster was almost undetectable. We observed an inverse correlation between miR-29a/b expression and the proliferation rate of various melanoma cell lines. This finding could be corroborated in cells transfected with either miR-29 mimics or inhibitors. The IFN-γ-induced G1-arrest of melanoma cells involves down-regulation of CDK6, which we proved to be a direct target of miR-29 in these cells. Compared to nevi and normal skin, and metastatic melanoma samples, miR-29a and miR-29b levels were found strikingly elevated in certain patient samples derived from primary melanoma. Conclusions Our findings reveal that the miR-29a/b1 cluster is to be included in the group of IFN- and STAT-regulated genes. The up-regulated miR-29 family members may act as effectors of cytokine signalling in melanoma and other cancer cells as well as in the immune system.
Collapse
Affiliation(s)
- Martina J Schmitt
- Signal Transduction Laboratory, University of Luxembourg, 162A Avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Giles KM, Brown RAM, Epis MR, Kalinowski FC, Leedman PJ. miRNA-7-5p inhibits melanoma cell migration and invasion. Biochem Biophys Res Commun 2012. [PMID: 23206698 DOI: 10.1016/j.bbrc.2012.11.086] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrant expression of microRNAs (miRNAs), a class of small non-coding regulatory RNAs, has been implicated in the development and progression of melanoma. However, the precise mechanistic role of many of these miRNAs remains unclear. We have investigated the functional role of miR-7-5p in melanoma, and demonstrate that miR-7-5p expression is reduced in metastatic melanoma-derived cell lines compared with primary melanoma cells, and that when ectopically expressed miR-7-5p significantly inhibits melanoma cell migration and invasion. Additionally, we report that insulin receptor substrate-2 (IRS-2) is a target of miR-7-5p in melanoma cells, and using RNA interference (RNAi) we provide evidence that IRS-2 activates protein kinase B (Akt), and promotes melanoma cell migration. Thus, miR-7-5p may represent a novel tumor suppressor miRNA in melanoma, acting at least in part via its inhibition of IRS-2 expression and oncogenic Akt signaling.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research and University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|
125
|
Huffaker TB, Hu R, Runtsch MC, Bake E, Chen X, Zhao J, Round JL, Baltimore D, O'Connell RM. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity. Cell Rep 2012. [PMID: 23200854 DOI: 10.1016/j.celrep.2012.10.025] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
An increased understanding of antitumor immunity is necessary for improving cell-based immunotherapies against human cancers. Here, we investigated the roles of two immune system-expressed microRNAs (miRNAs), miR-155 and miR-146a, in the regulation of antitumor immune responses. Our results indicate that miR-155 promotes and miR-146a inhibits interferon γ (IFNγ) responses by T cells and reduces solid tumor growth in vivo. Using a double-knockout (DKO) mouse strain deficient in both miR-155 and miR-146a, we have also identified an epistatic relationship between these two miRNAs. DKO mice had defective T cell responses and tumor growth phenotypes similar to miR-155(-/-) mice. Further analysis of the T cell compartment revealed that miR-155 modulates IFNγ expression through a mechanism involving repression of Ship1. Our work reveals critical roles for miRNAs in the reciprocal regulation of CD4(+) and CD8(+) T cell-mediated antitumor immunity and demonstrates the dominant nature of miR-155 during its promotion of immune responses.
Collapse
Affiliation(s)
- Thomas B Huffaker
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, Holland-Cunz S, Sinnberg T, Schittek B, Schadendorf D, Diederichs S, Eichmüller SB. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol 2012; 133:768-775. [PMID: 23151846 DOI: 10.1038/jid.2012.357] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.
Collapse
Affiliation(s)
- Chonglin Luo
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Paul W Tetteh
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick R Merz
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Dickes
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alia Abukiwan
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Sven Diederichs
- Helmholtz-University-Group 'Molecular RNA Biology & Cancer', German Cancer Research Center (DKFZ) and Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Stefan B Eichmüller
- Division of Translational Immunology (D015), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
127
|
Hoshino I, Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today 2012; 43:467-78. [PMID: 23129027 DOI: 10.1007/s00595-012-0392-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/17/2012] [Indexed: 12/12/2022]
Abstract
Epigenetic changes, such as DNA methylation and histone modifications, regulate gene expression. It is speculated that investigating the fundamental epigenetic mechanisms and their gene regulation will promote a better understanding of cancer development. The idea of epigenetic modification has been extended to microRNAs (miRs). MiRs are single-stranded RNA molecules, about 19-25 ribonucleotides in length, which regulate gene expression post-transcriptionally and can act as tumor suppressors or oncogenes. We review the most recent findings related to their mechanisms of action, the modification of miR expression, and their relationship to cancer. We also discuss the potential application of miRs in the clinical setting, such as for biomarkers and therapy.
Collapse
Affiliation(s)
- Isamu Hoshino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
| | | |
Collapse
|
128
|
Leibowitz-Amit R, Sidi Y, Avni D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res 2012; 25:740-57. [DOI: 10.1111/pcmr.12018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
129
|
In situ measurement of miR-205 in malignant melanoma tissue supports its role as a tumor suppressor microRNA. J Transl Med 2012; 92:1390-7. [PMID: 22890556 PMCID: PMC3460033 DOI: 10.1038/labinvest.2012.119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oncogenic and tumor suppressing microRNAs (miRNAs) have emerged as key regulators of gene expression in many types of cancer including melanoma. We utilized quantitative in situ hybridization (qISH) to evaluate the tumor suppressing properties of miRNA, miR-205 in a population of human tumors. We hypothesize decreased miR-205 would be associated with more aggressive tumors. Multiplexing miR-205 qISH with immunofluorescent assessment of S100/GP100 allowed us to quantitatively evaluate miR-205 expression using the AQUA method of quantitative immunofluorescence. The specificity of the assay was validated using blocking oligos and transfected cell lines as controls. Outcomes were assessed on the Yale Melanoma Discovery Cohort consisting of 105 primary melanoma specimens and validated on an independent set of 206 primary melanomas (Yale Melanoma Validation Cohort). Measurement of melanoma cell miR-205 levels shows a significantly shorter melanoma-specific survival in patients with low expression. Multivariate analysis shows miR-205 levels are significantly independent of stage, age, gender, and Breslow depth. Low levels of melanoma cell miR-205 expression as quantified by ISH show worse outcome, supporting the role of miR-205 as a tumor suppressor miRNA. The quantification of miR-205 in situ suggests potential for the use of miRNAs in future prognostic or predictive models.
Collapse
|
130
|
Friedman EB, Shang S, de Miera EVS, Fog JU, Teilum MW, Ma MW, Berman RS, Shapiro RL, Pavlick AC, Hernando E, Baker A, Shao Y, Osman I. Serum microRNAs as biomarkers for recurrence in melanoma. J Transl Med 2012; 10:155. [PMID: 22857597 PMCID: PMC3479021 DOI: 10.1186/1479-5876-10-155] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/18/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Identification of melanoma patients at high risk for recurrence and monitoring for recurrence are critical for informed management decisions. We hypothesized that serum microRNAs (miRNAs) could provide prognostic information at the time of diagnosis unaccounted for by the current staging system and could be useful in detecting recurrence after resection. METHODS We screened 355 miRNAs in sera from 80 melanoma patients at primary diagnosis (discovery cohort) using a unique quantitative reverse transcription-PCR (qRT-PCR) panel. Cox proportional hazard models and Kaplan-Meier recurrence-free survival (RFS) curves were used to identify a miRNA signature with prognostic potential adjusting for stage. We then tested the miRNA signature in an independent cohort of 50 primary melanoma patients (validation cohort). Logistic regression analysis was performed to determine if the miRNA signature can determine risk of recurrence in both cohorts. Selected miRNAs were measured longitudinally in subsets of patients pre-/post-operatively and pre-/post-recurrence. RESULTS A signature of 5 miRNAs successfully classified melanoma patients into high and low recurrence risk groups with significant separation of RFS in both discovery and validation cohorts (p = 0.0036, p = 0.0093, respectively). Significant separation of RFS was maintained when a logistic model containing the same signature set was used to predict recurrence risk in both discovery and validation cohorts (p < 0.0001, p = 0.033, respectively). Longitudinal expression of 4 miRNAs in a subset of patients was dynamic, suggesting miRNAs can be associated with tumor burden. CONCLUSION Our data demonstrate that serum miRNAs can improve accuracy in identifying primary melanoma patients with high recurrence risk and in monitoring melanoma tumor burden over time.
Collapse
Affiliation(s)
- Erica B Friedman
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Bhattacharya A, Schmitz U, Wolkenhauer O, Schönherr M, Raatz Y, Kunz M. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene 2012; 32:3175-83. [PMID: 22847610 DOI: 10.1038/onc.2012.324] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.
Collapse
Affiliation(s)
- A Bhattacharya
- Department of Dermatology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
132
|
Bell RE, Levy C. The three M's: melanoma, microphthalmia-associated transcription factor and microRNA. Pigment Cell Melanoma Res 2012; 24:1088-106. [PMID: 22004179 DOI: 10.1111/j.1755-148x.2011.00931.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies examining intratumor heterogeneity have indicated that several cancer types, including melanoma, can display phenotypic plasticity, corresponding to their capacity to undergo transient reversible cellular changes. Conceptual models constructed to explain the process of cancer propagation differ in their treatment of intratumor heterogeneity. Recent observations of reversible phenotypic heterogeneity in melanoma have led to the proposal of a novel 'phenotypic plasticity' model of cancer propagation. Microphthalmia-associated transcription factor (MITF), the melanocyte 'lineage-specific' transcription factor, has emerged as one of the central players in melanoma phenotypic plasticity. Here we discuss the conceptual models suggested to explain the relations between MITF and melanoma plasticity, in addition to the complex regulatory roles that MITF plays in melanocytes and melanoma development. Finally, we provide an in-depth literature survey of microRNAs (miRNAs) involved in MITF activity, melanoma propagation and metastasis, in addition to their potential use as agents of personalized therapy.
Collapse
Affiliation(s)
- Rachel E Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
133
|
Kappelmann M, Kuphal S, Meister G, Vardimon L, Bosserhoff AK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 2012; 32:2984-91. [PMID: 22797068 DOI: 10.1038/onc.2012.307] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fundamental event in the development and progression of malignant melanoma is the deregulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of tumor progression in melanoma and thus the most important member of the AP-1 transcription factor family for this disease. Interestingly, we revealed that c-Jun expression was regulated on the post-transcriptional level and therefore speculated that miRNAs could be involved in c-Jun regulation. We determined seed sequences for miR-125b and miR-527 in the coding region of c-Jun mRNA that hints at the direct involvement of miRNA-dependent regulation on the protein level. We found that the expression of miR-125b was significantly reduced in malignant melanoma cell lines and tissue samples compared with melanocytes, whereas miR-527 remained unchanged. In further functional experiments, treatment of melanoma cells with pre-miR-125b resulted in strong suppression of cellular proliferation and migration, supporting the role of miR-125b in melanoma. In addition, transfection of pre-miR-125b led to strong downregulation of c-Jun protein but not mRNA expression in melanoma cells. Luciferase assays using reporter plasmids containing the miR-125b seed sequence in the luciferase coding region confirmed the direct interaction with miR-125b. Furthermore, immunoprecipitation of Ago-2 revealed that c-Jun mRNA accumulated in the RNA-induced silencing complex after pre-miR-125b transfection in melanoma cells. In summary, we identified an important role for miR-125b in malignant melanoma. Moreover, we demonstrated post-transcriptional regulation of c-Jun by this miRNA and showed that c-Jun is a main mediator of the effects of miR-125b on melanoma cells.
Collapse
Affiliation(s)
- M Kappelmann
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
134
|
Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene 2012; 32:1959-70. [PMID: 22751131 PMCID: PMC3630485 DOI: 10.1038/onc.2012.209] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over two-thirds of melanomas have activating mutations in B-Raf, leading to constitutive activation of the B-Raf/MKK/ERK signaling pathway. The most prevalent mutation, B-RafV600E, promotes cancer cell behavior through mechanisms that are still incompletely defined. Here, we used a sensitive microarray profiling platform to compare microRNA (miRNA) expression levels between primary melanocytes and B-RafV600E-positive melanoma cell lines, and between melanoma cells treated in the presence and absence of an MKK1/2 inhibitor. We identified a network of >20 miRNAs deregulated by B-Raf/MKK/ERK in melanoma cells, the majority of which modulate the expression of key cancer regulatory genes and functions. Importantly, miRNAs within the network converge on protein regulation and cancer phenotypes, suggesting that these miRNAs might function combinatorially. We show that miRNAs augment effects on protein repression and cell invasion when co-expressed, and gene-specific latency and interference effects between miRNAs were also observed. Thus, B-Raf/MKK/ERK controls key aspects of cancer cell behavior and gene expression by modulating a network of miRNAs with cross-regulatory functions. The findings highlight the potential for complex interactions between coordinately regulated miRNAs within a network.
Collapse
|
135
|
Zehavi L, Avraham R, Barzilai A, Bar-Ilan D, Navon R, Sidi Y, Avni D, Leibowitz-Amit R. Silencing of a large microRNA cluster on human chromosome 14q32 in melanoma: biological effects of mir-376a and mir-376c on insulin growth factor 1 receptor. Mol Cancer 2012; 11:44. [PMID: 22747855 PMCID: PMC3444916 DOI: 10.1186/1476-4598-11-44] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/25/2012] [Indexed: 11/26/2022] Open
Abstract
Background Metastatic melanoma is a devastating disease with limited therapeutic options. MicroRNAs (miRNAs) are small non coding RNA molecules with important roles in post-transcriptional gene expression regulation, whose aberrant expression has been implicated in cancer. Results We show that the expression of miRNAs from a large cluster on human chromosome 14q32 is significantly down-regulated in melanoma cell lines, benign nevi and melanoma samples relative to normal melanocytes. This miRNA cluster resides within a parentally imprinted chromosomal region known to be important in development and differentiation. In some melanoma cell lines, a chromosomal deletion or loss-of-heterozygosity was observed in the cis-acting regulatory region of this cluster. In several cell lines we were able to re-express two maternally-induced genes and several miRNAs from the cluster with a combination of de-methylating agents and histone de-acetylase inhibitors, suggesting that epigenetic modifications take part in their silencing. Stable over-expression of mir-376a and mir-376c, two miRNAs from this cluster that could be re-expressed following epigenetic manipulation, led to modest growth retardation and to a significant decrease in migration in-vitro. Bioinformatic analysis predicted that both miRNAs could potentially target the 3'UTR of IGF1R. Indeed, stable expression of mir-376a and mir-376c in melanoma cells led to a decrease in IGF1R mRNA and protein, and a luciferase reporter assay indicated that the 3'UTR of IGF1R is a target of both mir-376a and mir-376c. Conclusions Our work is the first to show that the large miRNA cluster on chromosome 14q32 is silenced in melanoma. Our results suggest that down-regulation of mir-376a and mir-376c may contribute to IGF1R over-expression and to aberrant negative regulation of this signaling pathway in melanoma, thus promoting tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Liron Zehavi
- Laboratory of Molecular Cell Biology, Cancer Research Center and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Reinsbach S, Nazarov PV, Philippidou D, Schmitt M, Wienecke-Baldacchino A, Muller A, Vallar L, Behrmann I, Kreis S. Dynamic regulation of microRNA expression following interferon-γ-induced gene transcription. RNA Biol 2012; 9:978-89. [PMID: 22767256 DOI: 10.4161/rna.20494] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferon-γ (IFN-γ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a, miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not.
Collapse
Affiliation(s)
- Susanne Reinsbach
- Signal Transduction Laboratory, Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
In this study, we used formalin-fixed paraffin-embedded melanocytic tumors to demonstrate reproducible alterations in microRNA expression in nevi compared with melanomas using a microarray platform. We validated those results in an independent set of nevi and melanomas by quantitative RT-PCR. miR-205 demonstrated a statistically significant, progressive diminution in expression from nevi to primary melanomas to metastatic melanomas. Enforced miR-205 expression in melanoma cells profoundly impairs cell motility and migration along with significantly decreased F-actin polymerization with only a modest reduction in cell proliferation. Using a xenograft model, melanoma cells overexpressing miR-205 exhibit a reduced migratory capacity compared with control tumor cells. Mechanistically, miR-205 overexpression results in decreased expression of the zinc-finger E-box binding homeobox 2 (ZEB2) mRNA and protein. This coincides with increased expression of E-cadherin mRNA and protein. Furthermore, re-introduction of ZEB2 into melanoma cells overexpressing miR-205 rescues these phenotypic effects and results in a restoration of cell migration and F-actin polymerization with a concomitant reduction in E-cadherin expression. Together, these results provide in vitro and in vivo evidence for miR-205 as a critical suppressor of melanoma cell migration.
Collapse
|
138
|
Abstract
Cutaneous malignant melanoma is the most aggressive and lethal form of skin cancer. Over the past decades, its incidence has been increasing by 3-8% per year in western countries while mortality has stabilized. Melanoma is a heterogenous disease and can be subclassified based on distinct clinical characteristics, histopathological features and mutation patterns within NRAS and BRAF genes. Recent data indicate that microRNAs (miRNAs) are involved in the pathogenesis of malignant melanoma. MiRNAs are small, non-coding, regulatory RNA molecules expressed in a tissue and cell specific manner and are known to play a crucial role in cell homeostasis and carcinogenesis. MiRNAs might prove to be powerful cancer biomarkers and future therapeutic targets. In this review, we focused on the miRNA involvement in four molecular pathways known to be deregulated in malignant melanoma, including the RAS-RAF-MEK-ERK pathway, the p16(INK4A) -CDK4-RB pathway, the PIK3-AKT pathway and the MITF pathway.
Collapse
Affiliation(s)
- M Glud
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
139
|
Abstract
We examined the microRNA signature that distinguishes the most common melanoma histological subtypes, superficial spreading melanoma (SSM) and nodular melanoma (NM). We also investigated the mechanisms underlying the differential expression of histology-specific microRNAs. MicroRNA array performed on a training cohort of 82 primary melanoma tumors (26 SSM, 56 NM), and nine congenital nevi (CN) revealed 134 microRNAs differentially expressed between SSM and NM (P<0.05). Out of 134 microRNAs, 126 remained significant after controlling for thickness and 31 were expressed at a lower level in SSM compared with both NM and CN. For seven microRNAs (let-7g, miR-15a, miR-16, miR-138, miR-181a, miR-191, and miR-933), the downregulation was associated with selective genomic loss in SSM cell lines and primary tumors, but not in NM cell lines and primary tumors. The lower expression level of six out of seven microRNAs in SSM compared with NM was confirmed by real-time PCR on a subset of cases in the training cohort and validated in an independent cohort of 97 melanoma cases (38 SSM, 59 NM). Our data support a molecular classification in which SSM and NM are two molecularly distinct phenotypes. Therapeutic strategies that take into account subtype-specific alterations might improve the outcome of melanoma patients.
Collapse
|
140
|
Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. Biochim Biophys Acta Rev Cancer 2012; 1826:89-102. [PMID: 22503822 DOI: 10.1016/j.bbcan.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/05/2023]
Abstract
Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM.
Collapse
|
141
|
Evidence for positive selection on a number of MicroRNA regulatory interactions during recent human evolution. PLoS Genet 2012; 8:e1002578. [PMID: 22457636 PMCID: PMC3310733 DOI: 10.1371/journal.pgen.1002578] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/18/2012] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution. MicroRNAs (miRNAs) are endogenous small RNAs that bind to their target mRNAs to post-transcriptionally repress protein production. miRNA–mediated gene regulation is usually considered to be strongly conserved among and within species, and thus alteration of such regulations is usually considered as detrimental. However, it is likely that evolutionary divergence of miRNA regulation may actually be selectively advantageous and could even serve as a genetic reservoir for innovation and adaptation. Towards this goal, we identified a number of polymorphic miRNA binding sites that display extreme population differentiation and show evidence of positive selection. We experimentally validated 3 regulations, including a regulation by miR-155 on TYRP1, a melanosomal enzyme associated with human pigmentation. We found that the two alternate alleles on the 3′ UTR of TYRP1, either inducing or disrupting repression by miR-155, are under opposite selections among human populations. This results in a strong negative correlation between the degree of fixation of miR-155–mediated repression of TYRP1 in a population and the population's latitude of residence. These observations collectively suggest miR-155 acts a rheostat to optimize TYRP1 expression for local adaptation to differential UV radiation along the latitudes. Our findings demonstrate the plasticity of miRNA regulation in recent human evolution.
Collapse
|
142
|
Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A, Kaufmann M, Vogel B, Katus HA, Meder B, Stähler C, Meese E, Lenhof HP, Keller A. miRTrail--a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics 2012; 13:36. [PMID: 22356618 PMCID: PMC3352041 DOI: 10.1186/1471-2105-13-36] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 02/22/2012] [Indexed: 01/09/2023] Open
Abstract
Background Expression profiling provides new insights into regulatory and metabolic processes and in particular into pathogenic mechanisms associated with diseases. Besides genes, non-coding transcripts as microRNAs (miRNAs) gained increasing relevance in the last decade. To understand the regulatory processes of miRNAs on genes, integrative computer-aided approaches are essential, especially in the light of complex human diseases as cancer. Results Here, we present miRTrail, an integrative tool that allows for performing comprehensive analyses of interactions of genes and miRNAs based on expression profiles. The integrated analysis of mRNA and miRNA data should generate more robust and reliable results on deregulated pathogenic processes and may also offer novel insights into the regulatory interactions between miRNAs and genes. Our web-server excels in carrying out gene sets analysis, analysis of miRNA sets as well as the combination of both in a systems biology approach. To this end, miRTrail integrates information on 20.000 genes, almost 1.000 miRNAs, and roughly 280.000 putative interactions, for Homo sapiens and accordingly for Mus musculus and Danio rerio. The well-established, classical Chi-squared test is one of the central techniques of our tool for the joint consideration of miRNAs and their targets. For interactively visualizing obtained results, it relies on the network analyzers and viewers BiNA or Cytoscape-web, also enabling direct access to relevant literature. We demonstrated the potential of miRTrail by applying our tool to mRNA and miRNA data of malignant melanoma. MiRTrail identified several deregulated miRNAs that target deregulated mRNAs including miRNAs hsa-miR-23b and hsa-miR-223, which target the highest numbers of deregulated mRNAs and regulate the pathway "basal cell carcinoma". In addition, both miRNAs target genes like PTCH1 and RASA1 that are involved in many oncogenic processes. Conclusions The application on melanoma samples demonstrates that the miRTrail platform may open avenues for investigating the regulatory interactions between genes and miRNAs for a wide range of human diseases. Moreover, miRTrail cannot only be applied to microarray based expression profiles, but also to NGS-based transcriptomic data. The program is freely available as web-server at mirtrail.bioinf.uni-sb.de.
Collapse
Affiliation(s)
- Cedric Laczny
- Center for Bioinformatics, Saarland University, Campus E2 1, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Greenberg ES, Chong KK, Huynh KT, Tanaka R, Hoon DSB. Epigenetic biomarkers in skin cancer. Cancer Lett 2012; 342:170-7. [PMID: 22289720 DOI: 10.1016/j.canlet.2012.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/05/2012] [Accepted: 01/15/2012] [Indexed: 02/08/2023]
Abstract
Epigenetic aberrations have been associated with cutaneous melanoma tumorigenesis and progression including dysregulated DNA gene promoter region methylation, histone modification, and microRNA. Several of these major epigenetic aberrations have been developed into biomarkers. Epigenetic biomarkers can be detected in tissue and in blood as circulating DNA in melanoma patients. There is strong evidence that biomarkers in cutaneous melanoma will have an important role as companions to therapeutics and overall patient management. Important progress has been made in epigenetic melanoma biomarker development and verification of clinical utility, and this review discusses some of the key current developments and existing challenges.
Collapse
Affiliation(s)
- Edward S Greenberg
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA, USA
| | | | | | | | | |
Collapse
|
144
|
Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, Sansom OJ, Evans TRJ, McKay CJ, Oien KA. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 2012; 18:534-45. [PMID: 22114136 DOI: 10.1158/1078-0432.ccr-11-0679] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE MicroRNAs (miRNA) have potential as diagnostic and prognostic biomarkers and as therapeutic targets in cancer. We sought to establish the relationship between miRNA expression and clinicopathologic parameters, including prognosis, in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Global miRNA microarray expression profiling of prospectively collected fresh-frozen PDAC tissue was done on an initial test cohort of 48 patients, who had undergone pancreaticoduodenectomy between 2003 and 2008 at a single institution. We evaluated association with tumor stage, lymph node status, and site of recurrence, in addition to overall survival, using Cox regression multivariate analysis. Validation of selected potentially prognostic miRNAs was done in a separate cohort of 24 patients. RESULTS miRNA profiling identified expression signatures associated with PDAC, lymph node involvement, high tumor grade, and 20 miRNAs were associated with overall survival. In the initial cohort of 48 PDAC patients, high expression of miR-21 (HR = 3.22, 95% CI: 1.21-8.58) and reduced expression of miR-34a (HR = 0.15, 95% CI: 0.06-0.37) and miR-30d (HR = 0.30, 95% CI: 0.12-0.79) were associated with poor overall survival following resection independent of clinical covariates. In a further validation set of 24 patients, miR-21 and miR-34a expression again significantly correlated with overall survival (P = 0.031 and P = 0.001). CONCLUSION Expression patterns of miRNAs are significantly altered in PDAC. Aberrant expression of a number of miRNAs was independently associated with reduced survival, including overexpression of miR-21 and underexpression of miR-34a. SUMMARY miRNA expression profiles for resected PDAC were examined to identify potentially prognostic miRNAs. miRNA microarray analysis identified statistically unique profiles, which could discriminate PDAC from paired nonmalignant pancreatic tissues as well as molecular signatures that differ according to pathologic features. miRNA expression profiles correlated with overall survival of PDAC following resection, indicating that miRNAs provide prognostic utility.
Collapse
Affiliation(s)
- Nigel B Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow, G31 2ER, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer 2012; 106:553-61. [PMID: 22223089 PMCID: PMC3273359 DOI: 10.1038/bjc.2011.568] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The incidence of malignant melanoma is increasing faster than that for any other cancer. Histological examination of skin excision biopsies remains the standard method for melanoma diagnosis and prognosis. Significant morphological overlap between benign and malignant lesions complicates diagnosis, and tumour thickness is not always an accurate predictor of prognosis. METHODS To identify improved molecular markers to support histological examination, we used microarray analysis of formalin-fixed and paraffin-embedded samples from different stages of melanomagenesis to identify differentially expressed microRNAs (miRNAs). Differential expression was validated by qRT-PCR, and functional studies were carried out after transfection of miRNA precursors or inhibitors into melanoma cells to modulate miRNA expression. RESULTS In all, 20 miRNAs showed highly significant differential expression between benign naevi and either primary or metastatic melanomas, the majority being downregulated in melanoma, whereas only 2 miRNAs, namely miR-203 and miR-205, were differentially expressed between primary and metastatic melanomas. In functional in vitro assays, overexpression of miR-200c and miR-205 inhibited anchorage-independent colony formation and overexpression of miR-211 inhibited both anchorage-independent colony formation and invasion. CONCLUSION We have identified a series of differentially expressed miRNAs that could be useful as diagnostic or prognostic markers for melanoma and have shown that three miRNAs (namely miR-200c, miR-205 and miR-211) act as tumour suppressors.
Collapse
|
146
|
The emerging important role of microRNAs in the pathogenesis, diagnosis and treatment of human cancers. Pathology 2012; 43:657-71. [PMID: 21876471 DOI: 10.1097/pat.0b013e32834a7358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small non-protein-coding RNAs which repress gene expression, through base pair matching with messenger RNA (mRNA). A single microRNA is capable of regulating hundreds of mRNA sequences. Only a small fraction of the over 1000 discovered microRNAs have currently known functions; many are crucial in the regulation of genetic signalling, including cellular processes such as cellular differentiation, growth, proliferation and death. Dysfunction in microRNA signalling is present in all cancers studied thus far, leading to overactive oncogenic and underactive tumour suppressor gene signalling. Current research is actively pursuing the potential to use microRNAs as diagnostic tools and novel therapies in a variety of diseases. This review summarises normal and abnormal maturation and function of microRNAs and their role in the pathogenesis of various human tumours and highlights how microRNAs may be used as diagnostic and treatment tools in human cancers in the future.
Collapse
|
147
|
The potential role of microRNA-146 in Alzheimer's disease: biomarker or therapeutic target? Med Hypotheses 2011; 78:398-401. [PMID: 22209051 DOI: 10.1016/j.mehy.2011.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
Recently, there have been increasing evidences that microRNA-146 (miR-146) is related to up-regulated immune and inflammatory signaling through its target genes, such as IRAK1 and TRAF6. Additionally, abundant data continue to support the hypothesis that progressive up-regulation of inflammatory gene expression and elevated inflammatory signaling facilitate the development and progression of Alzheimer's disease (AD). This review focuses on the recent findings regarding the role of miR-146 in modulating immune response and its subsequent effects in the pathogenesis of AD.
Collapse
|
148
|
Hung PS, Chang KW, Kao SY, Chu TH, Liu CJ, Lin SC. Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral Oncol 2011; 48:404-8. [PMID: 22182931 DOI: 10.1016/j.oraloncology.2011.11.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/03/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022]
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression by RNA interference. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. miR-146a has been reported to regulate Toll-like receptors and cytokine signaling, which are both crucial for inflammation and oncogenesis. This study identifies that areca nut extract, TNFα and TGFβ up-regulates miR-146a in OSCC cells. The increased expression of miR-146a enhanced the oncogenicity of OSCC cells. In addition, a G to C polymorphism (rs2910164), which is located in the pre-miR-146a and has been associated with functional alterations in miR-146a, was significantly more prevalent among OSCC patients having more advanced nodal involvement. Our analysis also suggested a higher miR-146a expression in OSCC tissues of patients carrying C polymorphism. The present study concluded a higher prevalence of the pre-mir-146a C-variant was associated with OSCC progression in patients with this disease.
Collapse
Affiliation(s)
- Pei-Shi Hung
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
149
|
Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 2011; 9:355-61. [PMID: 22067035 DOI: 10.1111/j.1742-481x.2011.00890.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A major complication of diabetes mellitus is the disruption of normal wound repair process, characterised by insufficient production of growth factors. A molecular genetic approach wherein resident cells synthesise and deliver the growth factors to the wound site would be a powerful therapeutic strategy to treat diabetic wounds. One such molecular approach could be the application of microRNAs (miRNAs). This study reports differential expression of miRNAs related to cell development and differentiation, during wound healing in diabetic mice. Comparison of skin tissue from normal and diabetic mice showed that 14 miRNAs were differentially expressed in diabetic skin; miR-146b and miR-21 were the most noteworthy. Expression pattern of these miRNAs was also altered during healing of diabetic wounds. A subset of miRNAs (miR-20b, miR-10a, miR-10b, miR-96, miR-128, miR-452 and miR-541) exhibited similar basal levels in normal and diabetic skins, but displayed dysregulation during healing of diabetic wounds. Amongst the miRNAs studied, miR-21 showed a distinct signature with increased expression in diabetic skin but decreased expression during diabetic wound healing. We analysed the role of miR-21 in fibroblast migration, because migration of fibroblasts into the wound area is an important landmark facilitating secretion of growth factors and migration of other cell types into the wound, thus enhancing the healing process. Using gain-of and loss-of function approaches, we show that miR-21 is involved in fibroblast migration. Our preliminary studies implicate an important role for miRNAs in the pathogenesis of diabetic wounds.
Collapse
Affiliation(s)
- R Madhyastha
- Department of Applied Physiology, School of Medicine, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
150
|
Abstract
MicroRNAs (miRNAs) are a group of newly discovered small (∼19-24 nucleotides), noncoding RNAs that modulate gene expression by interacting with the 3' untranslated region of the corresponding target gene messenger RNA (mRNA). miRNAs have been estimated to regulate more than one-third of protein-encoding mRNAs. As a consequence, cellular protein expression and a large number of biological processes are influenced by miRNA-mediated post-transcriptional regulation of gene expression. The severe phenotype of mice lacking key enzymes of the miRNA biogenesis pathway (Dgcr8 and Dicer) in the skin confirmed the essential function of miRNAs in this tissue. In addition, a growing number of reports has identified miRNAs as regulators of the morphogenesis and homeostasis of the skin and its appendages, and miRNA deregulation was shown to be associated or even causally related to several skin diseases. Profiling studies have identified numerous differentially regulated miRNAs associated with physiological (e.g. keratinocyte differentiation) and pathological (e.g. psoriasis, melanoma) processes. These data bear enormous potential for further studies. Because of the easy accessibility of the skin, it is plausible to anticipate that, once efficient and safe methods for the topical delivery of substances mimicking or modulating miRNA activity become available, skin diseases will be among the first to be approached with miRNA-based therapies. This review article gives a short introduction to miRNA biology and summarizes and discusses existing evidence for a role of these molecules in the skin.
Collapse
Affiliation(s)
- M R Schneider
- Gene Center, LMU Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| |
Collapse
|