101
|
Wang Z, Zhang Y, Ma W. Chronic Mucocutaneous Candidiasis: A Case Report. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:231-236. [PMID: 36721837 PMCID: PMC9884432 DOI: 10.2147/ccid.s396802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Chronic mucocutaneous candidiasis (CMC) is a rare infectious skin disease. This study reported a case of CMC in a child with clinical manifestations of oral mucosal leukoplakia and erythema and crust-like thick scabs on the skin of the face and upper limbs. Microscopic fungal examination revealed a large amount of pseudohyphae, and the fungal culture indicated Candida albicans. A drug sensitivity test indicated that it was sensitive to itraconazole and nystatin. Laboratory tests did not show significant immunodeficiency or endocrine abnormalities, and gene sequencing did not identify DNA gene mutations in the coiled-coil domain (CCD) or the DNA-binding domain (DBD) of signal transducer and activator of transcription 1 (STAT1). The skin lesions subsided after oral administration of itraconazole but relapsed 6 months later, and hypoparathyroidism occurred 1 year later. Patients with repeated superficial fungal infection should be alert to the possibility of CMC. CMC has numerous complications and a poor prognosis that requires the attention of clinicians. In this case, STAT1 mutation was not found, and parathyroid dysfunction was rare, providing reference for clinical diagnosis and treatment of CMC.
Collapse
Affiliation(s)
- Zhensheng Wang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Yongfeng Zhang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China,Yongfeng Zhang, Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China, Tel +86-536-3081502, Email
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China,Correspondence: Weiyuan Ma, Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China, Tel +86-536-3081272, Email
| |
Collapse
|
102
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
103
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
104
|
Yang Q, Yu C, Wu Y, Cao K, Li X, Cao W, Cao L, Zhang S, Ba Y, Zheng Y, Zhang H, Wang W. Unusual Talaromyces marneffei and Pneumocystis jirovecii coinfection in a child with a STAT1 mutation: A case report and literature review. Front Immunol 2023; 14:1103184. [PMID: 36891307 PMCID: PMC9986280 DOI: 10.3389/fimmu.2023.1103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Talaromyces marneffei and Pneumocystis jirovecii are the common opportunistic pathogens in immunodeficient patients. There have been no reports of T. marneffei and P. jirovecii coinfection in immunodeficient children. Signal transducer and activator of transcription 1 (STAT1) is a key transcription factor in immune responses. STAT1 mutations are predominately associated with chronic mucocutaneous candidiasis and invasive mycosis. We report a 1-year-2-month-old boy diagnosed with severe laryngitis and pneumonia caused by T. marneffei and P. jirovecii coinfection, which was confirmed by smear, culture, polymerase chain reaction and metagenome next-generation sequencing of bronchoalveolar lavage fluid. He has a known STAT1 mutation at amino acid 274 in the coiled-coil domain of STAT1 according to whole exome sequencing. Based on the pathogen results, itraconazole and trimethoprim-sulfamethoxazole were administered. This patient's condition improved, and he was discharged after two weeks of targeted therapy. In the one-year follow-up, the boy remained symptom-free without recurrence.
Collapse
Affiliation(s)
- Qin Yang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Chendi Yu
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Yue Wu
- Department of Pharmacy, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Xiaonan Li
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Weiguo Cao
- Department of Radiology, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Lichao Cao
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Shenrui Zhang
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Ying Ba
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Yuejie Zheng
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| | - Hezi Zhang
- Department of Research and Development, Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
- *Correspondence: Wenjian Wang, ; Hezi Zhang,
| | - Wenjian Wang
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
- *Correspondence: Wenjian Wang, ; Hezi Zhang,
| |
Collapse
|
105
|
Staels F, Roosens W, Giovannozzi S, Moens L, Bogaert J, Iglesias-Herrero C, Gijsbers R, Bossuyt X, Frans G, Liston A, Humblet-Baron S, Meyts I, Van Aelst L, Schrijvers R. Case report: Myocarditis in congenital STAT1 gain-of function. Front Immunol 2023; 14:1095595. [PMID: 37020552 PMCID: PMC10067556 DOI: 10.3389/fimmu.2023.1095595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Autosomal dominant Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in an inborn error of immunity characterized by chronic mucocutaneous candidiasis, recurrent viral and bacterial infections, and diverse autoimmune manifestations. Current treatment consists of chronic antifungal therapy, antibiotics for concomitant infections, and immunosuppressive therapy in case of autoimmune diseases. More recently, treatment with Janus kinases 1 and 2 (JAK1/2) inhibitors have shown promising yet variable results. We describe a STAT1 GOF patient with an incidental finding of elevated cardiac troponins, leading to a diagnosis of a longstanding, slowly progressive idiopathic myocarditis, attributed to STAT1 GOF. Treatment with a JAK-inhibitor (baricitinib) mitigated cardiac inflammation on MRI but was unable to alter fibrosis, possibly due to the diagnostic and therapeutic delay, which finally led to fatal arrhythmia. Our case illustrates that myocarditis could be part of the heterogeneous disease spectrum of STAT1 GOF. Given the insidious presentation in our case, a low threshold for cardiac evaluation in STAT1 GOF patients seems warranted.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Willem Roosens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Simone Giovannozzi
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Jan Bogaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Cecilia Iglesias-Herrero
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Van Aelst
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Rik Schrijvers,
| |
Collapse
|
106
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
107
|
Parackova Z, Zentsova I, Vrabcova P, Sediva A, Bloomfield M. Aberrant tolerogenic functions and proinflammatory skew of dendritic cells in STAT1 gain-of-function patients may contribute to autoimmunity and fungal susceptibility. Clin Immunol 2023; 246:109174. [PMID: 36372319 DOI: 10.1016/j.clim.2022.109174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
STAT1 gain-of-function (GOF) mutations underlie an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). Beyond the fungal susceptibility, attributed to Th17 failure, over half of the reported patients suffer from autoimmune manifestations, mechanism of which has not been explained yet. We hypothesized that the STAT1 mutations would affect dendritic cells' (DCs) properties and alter their inflammatory and tolerogenic functions. To test the hypothesis, we generated monocyte-derived DCs (moDCs) and tolerogenic DCs (tDCs). Functional and signaling studies, co-culture experiments and RNA sequencing demonstrated that STAT1 GOF DCs were profoundly altered in their phenotype and functions, characterized by loss of tolerogenic functions, proinflammatory skew and decreased capacity to induce Th17. Cytokine signaling, autophagy and metabolic processes were identified as the most prominently altered cellular processes. The results suggest that DCs are directly involved in STAT1 GOF-associated immune pathology, possibly contributing to both autoimmune manifestations and the failure of antifungal defense.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic.
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, Prague, Czech Republic
| |
Collapse
|
108
|
Shamriz O, Rubin L, Simon AJ, Lev A, Barel O, Somech R, Korem M, Matza Porges S, Freund T, Hagin D, Garty BZ, Nahum A, Molho Pessach V, Tal Y. Dominant-negative signal transducer and activator of transcription (STAT)3 variants in adult patients: A single center experience. Front Immunol 2022; 13:1044933. [PMID: 36605204 PMCID: PMC9807906 DOI: 10.3389/fimmu.2022.1044933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Autosomal dominant hyper-IgE syndrome (AD-HIES) caused by dominant negative (DN) variants in the signal transducer and activator of transcription 3 gene (STAT3) is characterized by recurrent Staphylococcal abscesses, severe eczema, chronic mucocutaneous candidiasis (CMC), and non-immunological facial and skeletal features. Objectives To describe our experience with the diagnosis and treatment of adult patients with AD-HIES induced by DN-STAT3 variants. Methods The medical records of adult patients (>18 years) treated at the Allergy and Clinical Immunology Clinic of Hadassah Medical Center, Jerusalem, Israel, were retrospectively analyzed. Immune and genetic workups were used to confirm diagnosis. Results Three adult patients (2 males; age 29-41 years) were diagnosed with DN-STAT3 variants. All patients had non-immunological features, including coarse faces and osteopenia. Serious bacterial infections were noted in all patients, including recurrent abscesses, recurrent pneumonia, and bronchiectasis. CMC and diffuse dermatophytosis were noted in two patients. Two patients had severe atopic dermatitis refractory to topical steroids and phototherapy. Immune workup revealed elevated IgE in three patients and eosinophilia in two patients. Whole exome sequencing revealed DN-STAT3 variants (c.1166C>T; p.Thr389Ile in two patients and c.1268G>A; p. Arg423Gln in one patient). Variants were located in DNA-binding domain (DBD) and did not hamper STAT3 phosphorylation Treatment included antimicrobial prophylaxis with trimethoprim/sulfamethoxazole (n=2) and amoxycillin-clavulanic acid (n=1), and anti-fungal treatment with fluconazole (n=2) and voriconazole (n=1). Two patients who had severe atopic dermatitis, were treated with dupilumab with complete resolution of their rash. No adverse responses were noted in the dupilumab-treated patients. Discussion Dupilumab can be used safely as a biotherapy for atopic dermatitis in these patients as it can effectively alleviate eczema-related symptoms. Immunologists and dermatologists treating AD-HIES adult patients should be aware of demodicosis as a possible manifestation. DN-STAT3 variants in DBD do not hamper STAT3 phosphorylation.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel,*Correspondence: Oded Shamriz,
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amos J. Simon
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Ramat Gan, Israel,Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Tel-Hashomer Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel,Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Tal Freund
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Zion Garty
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel,Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel,Allergy and Clinical Immunology Unit, Schneider Children’s Medical Center, Petach-Tikva, Israel
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vered Molho Pessach
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
109
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
110
|
Tian T, Sun W, Du J, Sun Y. Analysis of co-expression gene network associated with intracranial aneurysm and type 2 diabetes mellitus. Front Neurol 2022; 13:1032038. [PMID: 36561297 PMCID: PMC9763588 DOI: 10.3389/fneur.2022.1032038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
To screen for common target genes in intracranial aneurysms (IA) and type 2 diabetes mellitus (T2DM), construct a common transcriptional regulatory network to predict clusters of candidate genes involved in the pathogenesis of T2DM and IA, and identify the common neurovascular markers and pathways in T2DM causing IA. Microarray datasets (GSE55650, GSE25462, GSE26969, GSE75436, and GSE13353) from the GEO database were analyzed in this research. Screening of the IA and the T2DM datasets yielded a total of 126 DEGs, among which 78 were upregulated and 138 were downregulated. Functional enrichment analysis revealed that these DEGs were enriched for a total of 68 GO pathways, including extracellular matrix composition, coagulation regulation, hemostasis regulation, and collagen fiber composition pathways. We also constructed transcriptional regulatory networks, and identified key transcription factors involved in both the conditions. Univariate logistic regression analysis showed that ARNTL2 and STAT1 were significantly associated with the development of T2DM and IA, acting as the common neurovascular markers for both the diseases. In cellular experiments, hyperglycemic microenvironments exhibited upregulated STAT1 expression. STAT1 may be involved in the pathogenesis of IA in T2DM patients. Being the common neurovascular markers, STAT1 may acts as novel therapeutic targets for the treatment of IA and T2DM.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Wenhao Sun
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Jia Du
- Department of Neurological Surgery, Cangzhou Center Hospital, Cangzhou, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Yafei Sun
| |
Collapse
|
111
|
Sharma D, Ben Yakov G, Kapuria D, Viana Rodriguez G, Gewirtz M, Haddad J, Kleiner DE, Koh C, Bergerson JRE, Freeman AF, Heller T. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022; 76:1845-1861. [PMID: 35466407 DOI: 10.1002/hep.32539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/08/2022]
Abstract
Inborn errors of immunity (IEIs) consist of numerous rare, inherited defects of the immune system that affect about 500,000 people in the United States. As advancements in diagnosis through genetic testing and treatment with targeted immunotherapy and bone marrow transplant emerge, increasing numbers of patients survive into adulthood posing fresh clinical challenges. A large spectrum of hepatobiliary diseases now present in those with immunodeficiency diseases, leading to morbidity and mortality in this population. Awareness of these hepatobiliary diseases has lagged the improved management of the underlying disorders, leading to missed opportunities to improve clinical outcomes. This review article provides a detailed description of specific liver diseases occurring in various inborn errors of immunity. A generalized approach to diagnosis and management of hepatic complications is provided, and collaboration with hepatologists, immunologists, and pathologists is emphasized as a requirement for optimizing management and outcomes.
Collapse
Affiliation(s)
- Disha Sharma
- Department of Internal MedicineMedStar Washington Hospital Center & Georgetown UniversityWashingtonDCUSA.,Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Gil Ben Yakov
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,26744Center for Liver DiseaseSheba Medical CenterTel HaShomerIsrael
| | - Devika Kapuria
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,Department of GastroenterologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Gracia Viana Rodriguez
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Meital Gewirtz
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - James Haddad
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - David E Kleiner
- 3421Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| | - Christopher Koh
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Theo Heller
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
112
|
Gutierrez MJ, Nino G, Sun D, Restrepo-Gualteros S, Sadreameli SC, Fiorino EK, Wu E, Vece T, Hagood JS, Maglione PJ, Kurland G, Koumbourlis A, Sullivan KE. The lung in inborn errors of immunity: From clinical disease patterns to molecular pathogenesis. J Allergy Clin Immunol 2022; 150:1314-1324. [PMID: 36244852 PMCID: PMC9826631 DOI: 10.1016/j.jaci.2022.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
In addition to being a vital organ for gas exchange, the lung is a crucial immune organ continuously exposed to the external environment. Genetic defects that impair immune function, called inborn errors of immunity (IEI), often have lung disease as the initial and/or primary manifestation. Common types of lung disease seen in IEI include infectious complications and a diverse group of diffuse interstitial lung diseases. Although lung damage in IEI has been historically ascribed to recurrent infections, contributions from potentially targetable autoimmune and inflammatory pathways are now increasingly recognized. This article provides a practical guide to identifying the diverse pulmonary disease patterns in IEI based on lung imaging and respiratory manifestations, and integrates this clinical information with molecular mechanisms of disease and diagnostic assessments in IEI. We cover the entire IEI spectrum, including immunodeficiencies and immune dysregulation with monogenic autoimmunity and autoinflammation, as well as recently described IEI with pulmonary manifestations. Although the pulmonary manifestations of IEI are highly relevant for all age groups, special emphasis is placed on the pediatric population, because initial presentations often occur during childhood. We also highlight the pivotal role of genetic testing in the diagnosis of IEI involving the lungs and the critical need to develop multidisciplinary teams for the challenging evaluation of these rare but potentially life-threatening disorders.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University, Baltimore, Md.
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Di Sun
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sonia Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Division of Pediatric Pulmonology, Fundacion Hospital La Misericordia, Bogotá, Colombia
| | - Sarah C Sadreameli
- Division of Pediatric Pulmonology and Sleep Medicine, Johns Hopkins University, Baltimore, Md
| | - Elizabeth K Fiorino
- Departments of Science Education and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Eveline Wu
- Division of Pediatric Allergy, Immunology and Rheumatology, University of North Carolina, Chapel Hill, NC
| | - Timothy Vece
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - James S Hagood
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - Paul J Maglione
- Division of Allergy and Immunology, Boston University, Boston, Mass
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Anastassios Koumbourlis
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Kathleen E Sullivan
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.
Collapse
|
114
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
115
|
Chinese Pedigree of Chronic Mucocutaneous Candidiasis Due to STAT1 Gain-of-Function Mutation: A Case Study and Literature Review. Mycopathologia 2022; 188:87-97. [PMID: 36335528 DOI: 10.1007/s11046-022-00685-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To further elucidate the clinical, immunological and genetic features of chronic mucocutaneous candidiasis (CMC) due to STAT1 GOF mutation in the Chinese population. METHODS Clinical data for a proband were collected, and pedigree analyses were performed. Whole-exome sequencing and targeted Sanger sequencing were conducted to explore genetic factors of a Chinese pedigree involving inherited CMC. RESULTS An autosomal dominant CMC pedigree was identified, and both the proband and his father had mucocutaneous Candida infections without involvement of other systems. A rare mutation (c.T1175C) in STAT1 was detected in this CMC pedigree. Multiple sequence alignment revealed that the amino acid position of this mutation (p.M392T) is evolutionarily conserved in vertebrate species. Serum IFN-α was elevated in patients harbouring the mutation. A total of 10 publications reporting 26 CMC patients with STAT1 GOF mutations were retrieved by literature review, and the most common mutation found in previously reported Chinese patients is T385M in the DNA-binding domain. CONCLUSIONS STAT1 GOF mutation at c.T1175C (p.M392T) may lead to mucocutaneous Candida infections and an increase in serum IFN-α. T385M in the DNA-binding domain is the most common STAT1 GOF mutation found in the Chinese population.
Collapse
|
116
|
Conti F, Marzollo A, Moratti M, Lodi L, Ricci S. Inborn errors of immunity underlying a susceptibility to pyogenic infections: from innate immune system deficiency to complex phenotypes. Clin Microbiol Infect 2022; 28:1422-1428. [PMID: 35640842 DOI: 10.1016/j.cmi.2022.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pyogenic bacteria are associated with a wide range of clinical manifestations, ranging from common and relatively mild respiratory and cutaneous infections to life-threatening localized or systemic infections, such as sepsis and profound abscesses. Despite vaccination and the widespread use of effective antibiotic treatment, severe infection is still observed in a subset of affected patients. OBJECTIVES We aim to summarize the available data regarding inborn errors of immunity that result in a high risk of severe pyogenic infections. SOURCES Case series, as well as review and original articles on human genetic susceptibility to pyogenic infections were examined. CONTENT We review host-associated factors resulting in inborn errors of immunity and leading to a susceptibility to pyogenic infections, including deficiency in major components of the immune system (e.g., neutrophils, complement, immunoglobulin, and spleen function) and novel monogenic disorders resulting in specific susceptibility to pyogenic infection. Specifically, innate immune system deficiency involving toll-like receptors and associated signaling typically predispose to a narrow spectrum of bacterial diseases in otherwise healthy people, making a diagnosis more difficult to suspect and confirm. More complex syndromes, such as hyper IgE syndrome, are associated with a high risk of pyogenic infections due to an impairment of the interleukin-6 or -17 signaling, demonstrating the pivotal role of these pathways in controlling bacterial infections. IMPLICATIONS In clinical practice, awareness of such conditions is essential, especially in the pediatric setting, to avoid a potentially fatal diagnostic delay, set the most proper and prompt treatment, and ensure prevention of severe complications.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy; Fondazione Citta' della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| | - Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, Bologna, Italy
| | - Lorenzo Lodi
- Section of Pediatrics, Department of Health Sciences, University of Florence, Florence, Italy; Immunology and Molecular Microbiology Unit, Meyer Children's Hospital, Florence, Italy
| | - Silvia Ricci
- Section of Pediatrics, Department of Health Sciences, University of Florence, Florence, Italy; Immunology and Molecular Microbiology Unit, Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
117
|
Ye F, Zhang W, Dong J, Peng M, Fan C, Deng W, Zhang H, Yang L. A novel STAT1 loss-of-function mutation associated with Mendelian susceptibility to mycobacterial disease. Front Cell Infect Microbiol 2022; 12:1002140. [PMID: 36339330 PMCID: PMC9635896 DOI: 10.3389/fcimb.2022.1002140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital immune deficiency characterized by susceptibility to weakly virulent mycobacteria. Loss-of-function (LOF) mutation of signal transducer and activator of transcription 1 (STAT1) is one of the common genetic causes of MSMD. In this study, we identified a patient who presented with multiple lymph node enlargements and multiple osteolytic disruptions. Mycobacterium gordonae infection was confirmed by metagenomic next-generation sequencing. Whole-exome sequencing identified a novel paternal heterozygous mutation in exon 22 of STAT1 (NM_007315.4, c.1892T>C, p.Val631Ala). This variant was confirmed pathogenic by multiple software predictions. Based on functional assays, STAT1 expression in STAT1V631A cells was not different from STAT1WT cells. But STAT1V631A mutation caused much lower activation of STAT1 when stimulated by interferon-γ (IFN-γ). Fluorescence localization analysis revealed that both STAT1V631A and STAT1WT proteins were located in the cytoplasm, and only a few STAT1V631A proteins were translocated to the nucleus in response to IFN-γ. These results suggest that STAT1V631A leads to LOF in IFN-γ-mediated mycobacterial immunity, resulting in MSMD. Treatment with antibiotics has achieved ideal disease control for this patient, and no adverse events occurred during follow-up. The STAT1 LOF deficiency is a genetic cause of MSMD, which should be considered in patients with mycobacterial disease, especially those with bone involvement.
Collapse
|
118
|
Clark DN, Begg LR, Filiano AJ. Unique aspects of IFN-γ/STAT1 signaling in neurons. Immunol Rev 2022; 311:187-204. [PMID: 35656941 PMCID: PMC10120860 DOI: 10.1111/imr.13092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023]
Abstract
The IFN-γ/STAT1 immune signaling pathway impacts many homeostatic and pathological aspects of neurons, beyond its canonical role in controlling intracellular pathogens. Well known for its potent pro-inflammatory and anti-viral functions in the periphery, the IFN-γ/STAT1 pathway is rapidly activated then deactivated to prevent excessive inflammation; however, neurons utilize unique IFN-γ/STAT1 activation patterns, which may contribute to the non-canonical neuron-specific downstream effects. Though it is now well-established that the immune system interacts and supports the CNS in health and disease, many aspects regarding IFN-γ production in the CNS and how neurons respond to IFN-γ are unclear. Additionally, it is not well understood how the diversity of the IFN-γ/STAT1 pathway is regulated in neurons to control homeostatic functions, support immune surveillance, and prevent pathologies. In this review, we discuss the neuron-specific mechanisms and kinetics of IFN-γ/STAT1 activation, the potential sources and entry sites of IFN-γ in the CNS, and the diverse set of homeostatic and pathological effects IFN-γ/STAT1 signaling in neurons has on CNS health and disease. We will also highlight the different contexts and conditions under which IFN-γ-induced STAT1 activation has been studied in neurons, and how various factors might contribute to the vast array of downstream effects observed.
Collapse
Affiliation(s)
- Danielle N. Clark
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Lauren R. Begg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anthony J. Filiano
- Department of Immunology, Duke University, Durham, North Carolina, USA
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
119
|
Wang Z, Man X. An 18-Year-Old Woman With Recurrent Skin, Nail, and Oral Mucosal Abnormalities. JAMA 2022; 328:1100-1101. [PMID: 35980713 DOI: 10.1001/jama.2022.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
An 18-year-old woman had a 14-year history of recurrent skin, nail, and oral mucosal abnormalities, treated with 3- to 6-month courses of itraconazole; the abnormalities typically recurred within 6 to 12 months of discontinuing itraconazole. Skin scrapings from the lower extremities demonstrated fungal elements; fungal culture of the skin scrapings grew Candida albicans. What is the diagnosis and what would you do next?
Collapse
Affiliation(s)
- Zhaoyuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
120
|
Lu X, Zhang K, Jiang W, Li H, Huang Y, Du M, Wan J, Cao Y, Du L, Liu X, Pan W. Single-cell RNA sequencing combined with whole exome sequencing reveals the landscape of the immune pathogenic response to chronic mucocutaneous candidiasis with STAT1 GOF mutation. Front Immunol 2022; 13:988766. [PMID: 36225936 PMCID: PMC9549386 DOI: 10.3389/fimmu.2022.988766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections with Candida of the skin, nails, and mucous membranes (e.g., mouth, esophagus, and vagina). Compared with that of other infectious diseases, the immune pathogenic mechanism of CMC is still poorly understood. We identified a signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutation in a CMC patient. Single-cell transcriptional profiling on peripheral blood mononuclear cells from this patient revealed decreases in immature B cells and monocytes. Further analysis revealed several differentially expressed genes related to immune regulation, including RGS1, TNFAIP3, S100A8/A9, and CTSS. In our review of the literature on signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutations, we identified seven cases in total. The median age of onset for CMC (n=4, data lacking for three cases) was 10.5 years (range: birth to 11 years), with an average onset age of 8 years. There were no reports linking tumors to the c.Y289C mutation, and the incidence of pre-existing clinical disease in patients with the c.Y289C mutation was similar to previous data.
Collapse
Affiliation(s)
- Xiaodi Lu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Keming Zhang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Weiwei Jiang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- Department of Dermatology, 72nd Group Army Hospital of People’s Liberation Army (PLA), Huzhou, China
| | - Hang Li
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Yue Huang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Mingwei Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Jian Wan
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Pudong New Area People’s Hospital, Shanghai, China
| | - Lin Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Xiaogang Liu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| |
Collapse
|
121
|
Campos JS, Henrickson SE. Defining and targeting patterns of T cell dysfunction in inborn errors of immunity. Front Immunol 2022; 13:932715. [PMID: 36189259 PMCID: PMC9516113 DOI: 10.3389/fimmu.2022.932715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a group of more than 450 monogenic disorders that impair immune development and function. A subset of IEIs blend increased susceptibility to infection, autoimmunity, and malignancy and are known collectively as primary immune regulatory disorders (PIRDs). While many aspects of immune function are altered in PIRDs, one key impact is on T-cell function. By their nature, PIRDs provide unique insights into human T-cell signaling; alterations in individual signaling molecules tune downstream signaling pathways and effector function. Quantifying T-cell dysfunction in PIRDs and the underlying causative mechanisms is critical to identifying existing therapies and potential novel therapeutic targets to treat our rare patients and gain deeper insight into the basic mechanisms of T-cell function. Though there are many types of T-cell dysfunction, here we will focus on T-cell exhaustion, a key pathophysiological state. Exhaustion has been described in both human and mouse models of disease, where the chronic presence of antigen and inflammation (e.g., chronic infection or malignancy) induces a state of altered immune profile, transcriptional and epigenetic states, as well as impaired T-cell function. Since a subset of PIRDs amplify T-cell receptor (TCR) signaling and/or inflammatory cytokine signaling cascades, it is possible that they could induce T-cell exhaustion by genetically mimicking chronic infection. Here, we review the fundamentals of T-cell exhaustion and its possible role in IEIs in which genetic mutations mimic prolonged or amplified T-cell receptor and/or cytokine signaling. Given the potential insight from the many forms of PIRDs in understanding T-cell function and the challenges in obtaining primary cells from these rare disorders, we also discuss advances in CRISPR-Cas9 genome-editing technologies and potential applications to edit healthy donor T cells that could facilitate further study of mechanisms of immune dysfunctions in PIRDs. Editing T cells to match PIRD patient genetic variants will allow investigations into the mechanisms underpinning states of dysregulated T-cell function, including T-cell exhaustion.
Collapse
Affiliation(s)
- Jose S. Campos
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
122
|
Bloomfield M, Zentsova I, Milota T, Sediva A, Parackova Z. Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis. Front Immunol 2022; 13:983977. [PMID: 36172362 PMCID: PMC9510987 DOI: 10.3389/fimmu.2022.983977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) mutations suffer from an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). The pathogenesis behind this complex and heterogeneous disease is still incompletely understood. Beyond the well-recognized Th17 failure, linked to the STAT1/STAT3 dysbalance-driven abrogation of antifungal defense, only little is known about the consequences of augmented STAT1 signaling in other cells, including, interestingly, the innate immune cells. STAT1-mediated signaling was previously shown to be increased in STAT1 GOF CD14+ monocytes. Therefore, we hypothesized that monocytes might represent important co-orchestrators of antifungal defense failure, as well as various immunodysregulatory phenomena seen in patients with STAT1 GOF CMC, including autoimmunity. In this article, we demonstrate that human STAT1 GOF monocytes are characterized by proinflammatory phenotypes and a strong inflammatory skew of their secretory cytokine profile. Moreover, they exhibit diminished CD16 expression, and reduction of classical (CD14++C16-) and expansion of intermediate (CD14++16+) subpopulations. Amongst the functional aberrations, a selectively enhanced responsiveness to TLR7/8 stimulation, but not to other TLR ligands, was noted, which might represent a contributing mechanism in the pathogenesis of STAT1 GOF-associated autoimmunity. Importantly, some of these features extend to STAT1 GOF monocyte-derived dendritic cells and to STAT1 GOF peripheral myeloid dendritic cells, suggesting that the alterations observed in monocytes are, in fact, intrinsic due to STAT1 mutation, and not mere bystanders of chronic inflammatory environment. Lastly, we observe that the proinflammatory bias of STAT1 GOF monocytes may be ameliorated with JAK inhibition. Taken together, we show that monocytes likely play an active role in both the microbial susceptibility and autoimmunity in STAT1 GOF CMC.
Collapse
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- Department of Paediatrics, Thomayer University Hospital, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Zuzana Parackova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- *Correspondence: Zuzana Parackova,
| |
Collapse
|
123
|
Lyra PT, Falcão ACAM, Cruz RA, Coelho AVC, Souza EDS, Alencar LCAD, Oliveira JB. Gain-of-function STAT1 mutation and visceral leishmaniasis. EINSTEIN-SAO PAULO 2022; 20:eRC0048. [PMID: 36102410 PMCID: PMC9444186 DOI: 10.31744/einstein_journal/2022rc0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
|
124
|
Xie Y, Shao F, Lei J, Huang N, Fan Z, Yu H. Case report: A STAT1 gain-of-function mutation causes a syndrome of combined immunodeficiency, autoimmunity and pure red cell aplasia. Front Immunol 2022; 13:928213. [PMID: 36105803 PMCID: PMC9464931 DOI: 10.3389/fimmu.2022.928213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited autosomal dominant gain-of-function (GOF) mutations of signal transducer and activator of transcription 1 (STAT1) cause a wide range of symptoms affecting multiple systems, including chronic mucocutaneous candidiasis (CMC), infections, and autoimmune disorders. We describe a rare case of STAT1 mutation with recurrent CMC, lung infections, and anemia. According to the whole-exome sequencing (WES), the patient was genetically mutated in STAT1 GOF (c.854A>G, p.Q285R), and bone marrow biopsy suggested pure red cell aplasia (PRCA). As a functional verification, STAT1 levels and phosphorylation (p-STAT1) of peripheral blood mononuclear cells (PBMCs) following IFN-γ stimulation in STAT1 GOF patient was higher than in the healthy control. Combination therapy of blood transfusion, antimicrobials, intravenous immunoglobulin, methylprednisolone, and the Janus Kinase (JAK) specific inhibitor ruxolitinib was used during treatment of patients. The patient also received a hematopoietic stem cell transplant (HSCT) to help with infections and anemia. This is the first reported case of STAT1 GOF disease complicated with PRCA. This complication might be attributed to immune disorders caused by STAT1 GOF. Furthermore, ruxolitinib may be a viable therapeutic option before HSCT to improve disease management.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Huang
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Haiguo Yu, ; Zhidan Fan,
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Haiguo Yu, ; Zhidan Fan,
| |
Collapse
|
125
|
Chen X, Chen J, Chen R, Mou H, Sun G, Yang L, Jia Y, Zhao Q, Wen W, Zhou L, Ding Y, Tang X, Yang J, An Y, Zhao X. Genetic and Functional Identifying of Novel STAT1 Loss-of-Function Mutations in Patients with Diverse Clinical Phenotypes. J Clin Immunol 2022; 42:1778-1794. [PMID: 35976469 DOI: 10.1007/s10875-022-01339-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Mutations in signal transducer and activator of transcription 1 (STAT1) cause a broad spectrum of disease phenotypes. Heterozygous STAT1 loss-of-function (LOF) mutations cause Mendelian susceptibility to mycobacterial diseases (MSMD) infection, which is attributable to impaired IFN-γ signaling. The identification of novel mutations may extend the phenotypes associated with autosomal dominant (AD) STAT1 deficiency. METHODS Five patients with heterozygous STAT1 variations were recruited and their clinical and immunologic phenotypes were analyzed, with particular reference to JAK-STAT1 signaling pathways. RESULTS Four, heterozygous STAT1 deficiency mutations were identified, three of which were novel mutations. Two of the mutations were previously unreported mRNA splicing mutations in AD STAT1-deficient patients. Patients with heterozygous STAT1 deficiency suffered not only mycobacterial infection, but also intracellular non-mycobacterial bacterial infection and congenital multiple malformations. AD-LOF mutation impaired IFN-γ-mediated STAT1 phosphorylation, gamma-activated sequence (GAS), and IFN-stimulated response element (ISRE) transcription activity and IFN-induced gene expression to different extents, which might account for the diverse clinical manifestations observed in these patients. CONCLUSION The infectious disease susceptibility and phenotypic spectrum of patients with AD STAT1-LOF are broader than simply MSMD. The susceptibility to infections and immunological deficiency phenotypes, observed in AD-LOF patients, confirms the importance of STAT1 in host-pathogen interaction and immunity. However, variability in the nature and extent of these phenotypes suggests that functional analysis is required to identify accurately novel, heterozygous STAT1 mutations, associated with pathogenicity. Aberrant splice of STAT1 RNA could result in AD-LOF for STAT1 signaling which need more cases for confirmation.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junjie Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ran Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huilin Mou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Gan Sun
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lu Yang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanjun Jia
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qin Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wen Wen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
126
|
Akar-Ghibril N. Defects of the Innate Immune System and Related Immune Deficiencies. Clin Rev Allergy Immunol 2022; 63:36-54. [PMID: 34417936 DOI: 10.1007/s12016-021-08885-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
The innate immune system is the host's first line of defense against pathogens. Toll-like receptors (TLRs) are pattern recognition receptors that mediate recognition of pathogen-associated molecular patterns. TLRs also activate signaling transduction pathways involved in host defense, inflammation, development, and the production of inflammatory cytokines. Innate immunodeficiencies associated with defective TLR signaling include mutations in NEMO, IKBA, MyD88, and IRAK4. Other innate immune defects have been associated with susceptibility to herpes simplex encephalitis, viral infections, and mycobacterial disease, as well as chronic mucocutaneous candidiasis and epidermodysplasia verruciformis. Phagocytes and natural killer cells are essential members of the innate immune system and defects in number and/or function of these cells can lead to recurrent infections. Complement is another important part of the innate immune system. Complement deficiencies can lead to increased susceptibility to infections, autoimmunity, or impaired immune complex clearance. The innate immune system must work to quickly recognize and eliminate pathogens as well as coordinate an immune response and engage the adaptive immune system. Defects of the innate immune system can lead to failure to quickly identify pathogens and activate the immune response, resulting in susceptibility to severe or recurrent infections.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Immunology, Allergy, and Rheumatology, Joe DiMaggio Children's Hospital, 1311 N 35th Ave, Suite 220, 33021, Hollywood, FL, USA. .,Department of Pediatrics, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA.
| |
Collapse
|
127
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
128
|
Main human inborn errors of immunity leading to fungal infections. Clin Microbiol Infect 2022; 28:1435-1440. [PMID: 35863627 DOI: 10.1016/j.cmi.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND The host molecular and genetic features are essential in providing susceptibility to a broad spectrum of fungal infections; most of these do not cause disease in healthy individuals because of mutual benefits with opportunistic fungi besides the host's capacity to control the infections. In contrast, patients with primary immunodeficiency (PID) can develop mild superficial to life-threatening invasive infections. In the last years, thanks to next-generation sequencing (NGS), several inborn-error variants have been discovered in genes encoding protein acting against fungal infections, contributing to better defining the role of innate and adaptive immunity cooperation during infection resolution. Candida fungal infection, that sometimes-striking healthy subjects, is responsible for the chronic mucocutaneous candidiasis (CMC) that is one of the principal clinical manifestations occurring in several rare PIDs associated with an inborn error of IL17-immunity. OBJECTIVE This review aimed to provide an overview of CMC-derived genetic defects, including IL17-deficiencies (IL17A, IL17F, IL17RA, IL17RC), STAT1 gain-of-function (GOF)- deficiency, STAT3-HIES and CARD9-deficiency. SOURCES We carried out detailed research work to identify interesting articles, commentaries, and reviews in the PubMed literature to ensure a correct and updated for this narrative review. CONTENT We propose an in-depth description and an update of genetic and cellular mechanisms underlying fungal infections, focusing on the IL17-mediated response, a report of clinical manifestations and describe therapeutic options. IMPLICATION This narrative review will help clinician to identify the correct management of patients based on molecular and cellular findings underlying pathogenic mechanisms of different IEIs. Moreover achieve the genetic diagnosis will be useful to offer genetic counselling intra- and inter-family and to ensure a personalized treatment of patients.
Collapse
|
129
|
Kaviany S, Bartkowiak T, Dulek DE, Khan YW, Hayes MJ, Schaefer SG, Ye X, Dahunsi DO, Connelly JA, Irish JM, Rathmell JC. Systems Immunology Analyses of STAT1 Gain-of-Function Immune Phenotypes Reveal Heterogeneous Response to IL-6 and Broad Immunometabolic Roles for STAT1. Immunohorizons 2022; 6:447-464. [PMID: 35840326 PMCID: PMC9623573 DOI: 10.4049/immunohorizons.2200041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) pathogenic variants have enhanced or prolonged STAT1 phosphorylation following cytokine stimulation and exhibit increased yet heterogeneous susceptibility to infections, autoimmunity, and cancer. Although disease phenotypes are diverse and other genetic factors contribute, how STAT1 GOF affects cytokine sensitivity and cell biology remains poorly defined. In this study, we analyzed the immune and immunometabolic profiles of two patients with known pathogenic heterozygous STAT1 GOF mutation variants. A systems immunology approach of peripheral blood cells from these patients revealed major changes in multiple immune cell compartments relative to healthy adult and pediatric donors. Although many phenotypes of STAT1 GOF donors were shared, including increased Th1 cells but decreased class-switched B cells and plasmacytoid dendritic cell populations, others were heterogeneous. Mechanistically, hypersensitivity for cytokine-induced STAT1 phosphorylation in memory T cell populations was particularly evident in response to IL-6 in one STAT1 GOF patient. Immune cell metabolism directly influences cell function, and the STAT1 GOF patients shared an immunometabolic phenotype of heightened glucose transporter 1 (GLUT1) and carnitine palmitoyl transferase 1A (CPT1a) expression across multiple immune cell lineages. Interestingly, the metabolic phenotypes of the pediatric STAT1 GOF donors more closely resembled or exceeded those of healthy adult than healthy age-similar pediatric donors, which had low expression of these metabolic markers. These results define new features of STAT1 GOF patients, including a differential hypersensitivity for IL-6 and a shared increase in markers of metabolism in many immune cell types that suggests a role for STAT1 in metabolic regulation of immunity.
Collapse
Affiliation(s)
- Saara Kaviany
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Todd Bartkowiak
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Daniel E Dulek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Yasmin W Khan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Madeline J Hayes
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Samuel G Schaefer
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O Dahunsi
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - James A Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan M Irish
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Jeffrey C Rathmell
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
130
|
Wobma H, Perkins R, Bartnikas L, Dedeoğlu F, Chou J, Vleugels RA, Lo MS, Janssen E, Henderson LA, Whangbo J, Vargas SO, Fishman M, Krone KA, Casey A. Genetic diagnosis of immune dysregulation can lead to targeted therapy for interstitial lung disease: A case series and single center approach. Pediatr Pulmonol 2022; 57:1577-1587. [PMID: 35426264 PMCID: PMC9627679 DOI: 10.1002/ppul.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022]
Abstract
In recent years, a growing number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these "primary immune regulatory disorders" can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories, but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverse pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic variants in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan Perkins
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lisa Bartnikas
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoğlu
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ruth Ann Vleugels
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Whangbo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Martha Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
131
|
Impact of JAK Inhibitors in Pediatric Patients with STAT1 Gain of Function (GOF) Mutations-10 Children and Review of the Literature. J Clin Immunol 2022; 42:1071-1082. [PMID: 35486339 PMCID: PMC9402491 DOI: 10.1007/s10875-022-01257-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Since the first description of gain of function (GOF) mutations in signal transducer and activator of transcription (STAT) 1, more than 300 patients have been described with a broad clinical phenotype including infections and severe immune dysregulation. Whilst Jak inhibitors (JAKinibs) have demonstrated benefits in several reported cases, their indications, dosing, and monitoring remain to be established. METHODS A retrospective, multicenter study recruiting pediatric patients with STAT1 GOF under JAKinib treatment was performed and, when applicable, compared with the available reports from the literature. RESULTS Ten children (median age 8.5 years (3-18), receiving JAKinibs (ruxolitinib (n = 9) and baricitinib (n = 1)) with a median follow-up of 18 months (2-42) from 6 inborn errors of immunity (IEI) reference centers were included. Clinical profile and JAKinib indications in our series were similar to the previously published 14 pediatric patients. 9/10 (our cohort) and 14/14 patients (previous reports) showed partial or complete responses. The median immune deficiency and dysregulation activity scores were 15.99 (5.2-40) pre and 7.55 (3-14.1) under therapy (p = 0.0078). Infection, considered a likely adverse event of JAKinib therapy, was observed in 1/10 patients; JAKinibs were stopped in 3/10 children, due to hepatotoxicity, pre-HSCT, and absence of response. CONCLUSIONS Our study supports the potentially beneficial use of JAKinibs in patients with STAT1 GOF, in line with previously published data. However, consensus regarding their indications and timing, dosing, treatment duration, and monitoring, as well as defining biomarkers to monitor clinical and immunological responses, remains to be determined, in form of international prospective multicenter studies using established IEI registries.
Collapse
|
132
|
Eskandarian Boroujeni M, Sekrecka A, Antonczyk A, Hassani S, Sekrecki M, Nowicka H, Lopacinska N, Olya A, Kluzek K, Wesoly J, Bluyssen HAR. Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy. Front Immunol 2022; 13:888897. [PMID: 35663932 PMCID: PMC9156796 DOI: 10.3389/fimmu.2022.888897] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
A disease outbreak in December 2019, caused by a novel coronavirus SARS-CoV-2, was named COVID-19. SARS-CoV-2 infects cells from the upper and lower respiratory tract system and is transmitted by inhalation or contact with infected droplets. Common clinical symptoms include fatigue, fever, and cough, but also shortness of breath and lung abnormalities. Still, some 5% of SARS-CoV-2 infections progress to severe pneumonia and acute respiratory distress syndrome (ARDS), with pulmonary edema, acute kidney injury, and/or multiple organ failure as important consequences, which can lead to death. The innate immune system recognizes viral RNAs and triggers the expression of interferons (IFN). IFNs activate anti-viral effectors and components of the adaptive immune system by activating members of the STAT and IRF families that induce the expression of IFN-stimulated genes (ISG)s. Among other coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, common strategies have been identified to antagonize IFN signaling. This typically coincides with hyperactive inflammatory host responses known as the “cytokine storm” that mediate severe lung damage. Likewise, SARS-CoV-2 infection combines a dysregulated IFN response with excessive production of inflammatory cytokines in the lungs. This excessive inflammatory response in the lungs is associated with the local recruitment of immune cells that create a pathogenic inflammatory loop. Together, it causes severe lung pathology, including ARDS, as well as damage to other vulnerable organs, like the heart, spleen, lymph nodes, and kidney, as well as the brain. This can rapidly progress to multiple organ exhaustion and correlates with a poor prognosis in COVID-19 patients. In this review, we focus on the crucial role of different types of IFN that underlies the progression of SARS-CoV-2 infection and leads to immune cell hyper-activation in the lungs, exuberant systemic inflammation, and multiple organ damage. Consequently, to protect from systemic inflammation, it will be critical to interfere with signaling cascades activated by IFNs and other inflammatory cytokines. Targeting members of the STAT family could therefore be proposed as a novel therapeutic strategy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Agata Sekrecka
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Aleksandra Antonczyk
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sanaz Hassani
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Michal Sekrecki
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hanna Nowicka
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Lopacinska
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arta Olya
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Kluzek
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Hans A R Bluyssen
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
133
|
Rudra S, Shaul E, Conrad M, Patel T, Moore A, Dawany N, Canavan MC, Sullivan KE, Behrens E, Kelsen JR. Ruxolitinib: Targeted Approach for Treatment of Autoinflammatory Very Early Onset Inflammatory Bowel Disease. Clin Gastroenterol Hepatol 2022; 20:1408-1410.e2. [PMID: 34329777 PMCID: PMC8792097 DOI: 10.1016/j.cgh.2021.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD), diagnosed <6 years old, can be genetically and phenotypically distinct and more refractory than older-onset IBD. Identified causal monogenic defects have been targeted therapeutically in a small subset of VEO-IBD1; however, for most of these children, treatment strategies, such as phenotypic profiles, are critically needed to improve outcomes.
Collapse
Affiliation(s)
- Sharmistha Rudra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eliana Shaul
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maire Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Trusha Patel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Astrela Moore
- Division of Clinical Pharmacy, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Noor Dawany
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Megan C Canavan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Edward Behrens
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
134
|
Bernatowska E, Pac M, Heropolitańska-Pliszka E, Pietrucha B, Dąbrowska-Leonik N, Skomska-Pawliszak M, Bernat-Sitarz K, Krzysztopa-Grzybowska K, Wolska-Kuśnierz B, Bohynikova N, Augustynowicz E, Augustynowicz-Kopeć E, Korzeniewska-Koseła M, Wieteska-Klimczak A, Książyk J, Jackowska T, van den Burg M, Casanova JL, Picard C, Mikołuć B. BCG Moreau Polish Substrain Infections in Patients With Inborn Errors of Immunity: 40 Years of Experience in the Department of Immunology, Children's Memorial Health Institute, Warsaw. Front Pediatr 2022; 10:839111. [PMID: 35664873 PMCID: PMC9161164 DOI: 10.3389/fped.2022.839111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Objective We aimed to assess BCG (Bacillus Calmette-Guérin) complications in patients with Inborn Errors of Immunity (IEI), according to the inherited disorders and associated immunological defects, as well as the different BCG substrains. Material We studied adverse reactions to the locally-produced BCG Moreau vaccine, analyzed in patients with IEI diagnosed between 1980 and 2020 in the Department of Immunology, Children's Memorial Health Institute (CMHI), Warsaw. These results were compared with previously published studies. Results Significantly fewer disseminated BCG infections (BCGosis) were found in 11 of 72 (15%) SCID (Severe Combined Immunodeficiency) NK (Natural Killer)-phenotype patients, when compared with the 119 out of 349 (34%) (p = 0.0012) patients with SCID with BCG in other countries. Significantly fewer deaths caused by BCGosis were observed (p = 0.0402). A significantly higher number of hematopoietic stem cell transplantations (HSCTs) were performed in the CMHI study (p = 0.00001). BCGosis was found in six patients with Mendelian susceptibility to mycobacterial diseases (MSMD). Other patients with IEI prone to BCG complications, such as CGD (Chronic Granulomatous Disease), showed no case of BCGosis. Conclusion The BCG Moreau substrain vaccine, produced in Poland since 1955, showed genetic differences with its parental Brazilian substrain together with a superior clinical safety profile in comparison with the other BCG substrains, with no BCGosis in patients with IEI other than SCID and MSMD. Our data also confirmed significantly fewer cases of BCGosis and deaths caused by BCG infection in patients with SCID with this vaccine substrain. Finally, they confirmed the protecting role of NK cells, probably via their production of IFN-γ.
Collapse
Affiliation(s)
- Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | - Katarzyna Krzysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
| | | | - Nadia Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Augustynowicz
- Department of Epidemiology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Maria Korzeniewska-Koseła
- Department of Tuberculosis Epidemiology and Surveillance, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Anna Wieteska-Klimczak
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Janusz Książyk
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Teresa Jackowska
- Department of Paediatrics, Medical Centre of Postgraduate Education, Warsaw, Poland
- Department of Paediatrics, Bielanski Hospital, Warsaw, Poland
| | - Mirjam van den Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute, New York, NY, United States
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University Hospital, New York, NY, United States
- Necker Hospital for Sick Children, Paris Descartes University, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Necker Hospital and School of Medicine, University Paris Descartes, Paris, France
| | - Capucine Picard
- Imagine Institute, Université de paris, Paris, France
- Study Centre for Primary Immunodeficiency, Necker-Enfants, Malades Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Bożena Mikołuć
- Department of Paediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
135
|
Lobo PB, Guisado-Hernández P, Villaoslada I, de Felipe B, Carreras C, Rodriguez H, Carazo-Gallego B, Méndez-Echevarria A, Lucena JM, Aljaro PO, Castro MJ, Noguera-Uclés JF, Milner JD, McCann K, Zimmerman O, Freeman AF, Lionakis MS, Holland SM, Neth O, Olbrich P. Ex vivo effect of JAK inhibition on JAK-STAT1 pathway hyperactivation in patients with dominant-negative STAT3 mutations. J Clin Immunol 2022; 42:1193-1204. [PMID: 35507130 DOI: 10.1007/s10875-022-01273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE STAT1 gain-of-function (GOF) and dominant-negative (DN) STAT3 syndromes share clinical manifestations including infectious and inflammatory manifestations. Targeted treatment with Janus-kinase (JAK) inhibitors shows promising results in treating STAT1 GOF-associated symptoms while management of DN STAT3 patients has been largely supportive. We here assessed the impact of ruxolitinib on the JAK-STAT1/3 pathway in DN STAT3 patients' cells. METHODS Using flow cytometry, immunoblot, qPCR, and ELISA techniques, we examined the levels of basal STAT1 and phosphorylated STAT1 (pSTAT1) of cells obtained from DN STAT3, STAT1 GOF patients, and healthy donors following stimulation with type I/II interferons (IFNs) or interleukin (IL)-6. We also describe the impact of ruxolitinib on cytokine-induced STAT1 signaling in these patients. RESULTS DN STAT3 and STAT1 GOF resulted in a similar phenotype characterized by increased STAT1 and pSTAT1 levels in response to IFNα (CD3+ cells) and IFNγ (CD14+ monocytes). STAT1-downstream gene expression and C-X-C motif chemokine 10 secretion were higher in most DN STAT3 patients upon stimulation compared to healthy controls. Ex vivo treatment with the JAK1/2-inhibitor ruxolitinib reduced cytokine responsiveness and normalized STAT1 phosphorylation in DN STAT3 and STAT1 GOF patient' cells. In addition, ex vivo treatment was effective in modulating STAT1 downstream signaling in DN STAT3 patients. CONCLUSION In the absence of effective targeted treatment options for AD-HIES at present, modulation of the JAK/STAT1 pathway with JAK inhibitors may be further explored particularly in those AD-HIES patients with autoimmune and/or autoinflammatory manifestations.
Collapse
Affiliation(s)
- Pilar Blanco Lobo
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Paloma Guisado-Hernández
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Isabel Villaoslada
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Beatriz de Felipe
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Carmen Carreras
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Hector Rodriguez
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Begoña Carazo-Gallego
- Pediatric Infectology and Immunodeficiencies Unit, IBIMA, Department of Pediatrics, Hospital Regional Universitario Málaga, Malaga, Spain
| | - Ana Méndez-Echevarria
- Pediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | | | | | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla - IBiS/HUVR/US/CSIC, Seville, Spain
| | | | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katelyn McCann
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ofer Zimmerman
- Department of Medicine, Division of Allergy/Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain.
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| |
Collapse
|
136
|
Alidrisi D, Maksood L, Alqahtani W, Minshawi F, Aburziza A, Janem WF, Almatrafi MA. A child with bronchiectasis, chronic mucocutaneous candidiasis, and hypothyroidism secondary to STAT1 gain‐of‐function mutation: A case report and review of the literature. Clin Case Rep 2022; 10:e05791. [PMID: 35498362 PMCID: PMC9040560 DOI: 10.1002/ccr3.5791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
STAT 1 GOF mutations are a rare cause of childhood primary immunodeficiency. Recurrent mucocutaneous candidiasis, chest infections, and autoimmune disease are all classic phenotype presentations. Rapid identification and diagnosis of this debilitating disease using whole exon sequencing may improve outcomes and minimize long‐term sequelae. STAT 1 gain‐of‐function mutation is a rare cause of immunodeficiency in children. A high index of clinical suspicion is crucial for early diagnosis and to minimize long‐term complications.
Collapse
Affiliation(s)
- Dhuha Alidrisi
- Department of Pediatrics Security Forces Hospital Makkah Saudi Arabia
| | - Lama Maksood
- Medical College of Umm Al‐Qura University Makkah Saudi Arabia
| | - Wed Alqahtani
- Medical College of Umm Al‐Qura University Makkah Saudi Arabia
| | - Faisal Minshawi
- Department of Laboratory Medicine Faculty of Applied Medical Sciences Umm Al‐Qura University Makkah Saudi Arabia
| | | | - Waleed F. Janem
- Department of Pediatrics Security Forces Hospital Makkah Saudi Arabia
| | | |
Collapse
|
137
|
Jhala G, Krishnamurthy B, Brodnicki TC, Ge T, Akazawa S, Selck C, Trivedi PM, Pappas EG, Mackin L, Principe N, Brémaud E, De George DJ, Boon L, Smyth I, Chee J, Kay TWH, Thomas HE. Interferons limit autoantigen-specific CD8 + T-cell expansion in the non-obese diabetic mouse. Cell Rep 2022; 39:110747. [PMID: 35476975 DOI: 10.1016/j.celrep.2022.110747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon gamma (IFNγ) is a proinflammatory cytokine implicated in autoimmune diseases. However, deficiency or neutralization of IFNγ is ineffective in reducing disease. We characterize islet antigen-specific T cells in non-obese diabetic (NOD) mice lacking all three IFN receptor genes. Diabetes is minimally affected, but at 125 days of age, antigen-specific CD8+ T cells, quantified using major histocompatibility complex class I tetramers, are present in 10-fold greater numbers in Ifngr-mutant NOD mice. T cells from Ifngr-mutant mice have increased proliferative responses to interleukin-2 (IL-2). They also have reduced phosphorylated STAT1 and its target gene, suppressor of cytokine signaling 1 (SOCS-1). IFNγ controls the expansion of antigen-specific CD8+ T cells by mechanisms which include increased SOCS-1 expression that regulates IL-2 signaling. The expanded CD8+ T cells are likely to contribute to normal diabetes progression despite reduced inflammation in Ifngr-mutant mice.
Collapse
Affiliation(s)
- Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Prerak M Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Nicola Principe
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Erwan Brémaud
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Louis Boon
- Polpharma Biologics, 3584 CM Utrecht, the Netherlands
| | - Ian Smyth
- Australian Phenomics Network, Monash Genome Modification Platform, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jonathan Chee
- National Centre of Asbestos-Related Diseases, Institute of Respiratory Health, School of Biomedical Science, University of Western Australia, Nedlands, WA 6009, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC 3065, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
138
|
Goupil de Bouillé J, Epelboin L, Henaff F, Migaud M, Abboud P, Blanchet D, Aznar C, Djossou F, Lortholary O, Elenga N, Puel A, Lanternier F, Demar M. Case Report: Invasive Cryptococcosis in French Guiana: Immune and Genetic Investigation in Six Non-HIV Patients. Front Immunol 2022; 13:881352. [PMID: 35558066 PMCID: PMC9088011 DOI: 10.3389/fimmu.2022.881352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We describe the clinical, mycological, immunological, and genetic characteristics of six HIV-negative patients presenting with invasive cryptococcosis. Methods Patients with cryptococcosis without any of the classical risk factors, such as HIV infection, followed at Cayenne Hospital, were prospectively included. An immunologic and genetic assessment was performed. Results Five male patients and one female patient, 5 adults and one child, were investigated. All presented a neuromeningeal localization. Cryptococcus neoformans var. gattii and C. neoformans var. grubii were isolated in two and three patients, respectively, whereas one patient could not be investigated. Overall, we did not observe any global leukocyte defect. Two patients were found with high levels of circulating autoantibodies against Granulocyte macrophage-colony stimulating factor (GM-CSF), and none had detectable levels of autoantibodies against Interferon gamma (IFN-γ) Sequencing of STAT1 exons and flanking regions performed for four patients was wild type. Conclusion To better understand cryptococcosis in patients with cryptococcosis but otherwise healthy, further explorations are needed with repeated immune checkups and strain virulence studies.
Collapse
Affiliation(s)
- Jeanne Goupil de Bouillé
- Avicenne Hospital, Assistance Publique des Hôpitaux de Paris, Bobigny, France
- Laboratoire Éducation et Pratique de Santé, University of Sorbonne Paris Nord, Bobigny, France
| | - Loïc Epelboin
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| | | | | | | | - Denis Blanchet
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| | - Christine Aznar
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| | - Felix Djossou
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| | - Olivier Lortholary
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital, Assitance Publique des hôpitaux de Paris (APHP), Paris, France
| | - Narcisse Elenga
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| | - Anne Puel
- Imagine Institute, Paris Cité University, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital, Assitance Publique des hôpitaux de Paris (APHP), Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Fanny Lanternier
- Imagine Institute, Paris Cité University, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital, Assitance Publique des hôpitaux de Paris (APHP), Paris, France
- Unité Mixte de Recherche 2000, Pasteur Institute Paris, University of Paris, Paris, France
| | - Magalie Demar
- Cayenne Hospital, Cayenne, French Guiana
- University of French Guiana, Cayenne, French Guiana
| |
Collapse
|
139
|
Bierman-Chow S, Freeman AF, Holland SM, Lynch J, Cho HJ. Cerebral aneurysm in three pediatric patients with STAT1 gain-of-function mutations. J Neurol 2022; 269:5638-5642. [DOI: 10.1007/s00415-022-11131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
|
140
|
Martin-Fernandez M, Buta S, Le Voyer T, Li Z, Dynesen LT, Vuillier F, Franklin L, Ailal F, Muglia Amancio A, Malle L, Gruber C, Benhsaien I, Altman J, Taft J, Deswarte C, Roynard M, Nieto-Patlan A, Moriya K, Rosain J, Boddaert N, Bousfiha A, Crow YJ, Jankovic D, Sher A, Casanova JL, Pellegrini S, Bustamante J, Bogunovic D. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J Exp Med 2022; 219:213053. [PMID: 35258551 PMCID: PMC8908790 DOI: 10.1084/jem.20211273] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 11/05/2022] Open
Abstract
Human USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease.
Collapse
Affiliation(s)
- Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sofija Buta
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tom Le Voyer
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lasse Toftdal Dynesen
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Françoise Vuillier
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Lina Franklin
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Fatima Ailal
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Alice Muglia Amancio
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Hospital do Cancer de Muriae, Fundacao Cristiano Varella, Muriae, Minas Gerais, Brazil
| | - Louise Malle
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Conor Gruber
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ibtihal Benhsaien
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Jennie Altman
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Justin Taft
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Deswarte
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Manon Roynard
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Alejandro Nieto-Patlan
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Kunihiko Moriya
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Nathalie Boddaert
- University of Paris, Imagine Institute, Paris, France.,Department of Radiology, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Aziz Bousfiha
- Department of Pediatric Infectious Diseases, Clinical Immunology Unit, Children's Hospital, Centre Hospitalo-universitaire Averroes, Casablanca, Morocco.,Laboratory of Clinical Immunology, Inflammation, and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco
| | - Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Institut national de la santé et de la recherche médicale U1224, Paris, France
| | - Jacinta Bustamante
- University of Paris, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Center for the Study of Primary Immunodeficiencies, Assistance Publique - Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.,Microbiology Department, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
141
|
Mahad C, Baghad B, Bousfiha AA, Puel A, Benyahya I. Chronic mucocutaneous candidiasis with severe oral injury associated with a STAT 1 gain-of-function mutation. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2022. [DOI: 10.1016/j.adoms.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
142
|
Lehman HK, Yu KOA, Towe CT, Risma KA. Respiratory Infections in Patients with Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:683-691.e1. [PMID: 34890826 DOI: 10.1016/j.jaip.2021.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Recurrent and life-threatening respiratory infections are nearly universal in patients with primary immunodeficiency diseases (PIDD). Early recognition, aggressive treatment, and prophylaxis with antimicrobials and immunoglobulin replacement have been the mainstays of management and will be reviewed here with an emphasis on respiratory infections. Genetic discoveries have allowed direct translation of research to clinical practice, improving our understanding of clinical patterns of pathogen susceptibilities and guiding prophylaxis. The recent identification of inborn errors in type I interferon signaling as a basis for life-threatening viral infections in otherwise healthy individuals suggests another targetable pathway for treatment and/or prophylaxis. The future of PIDD diagnosis will certainly involve early genetic identification by newborn screening before onset of infections, with early treatment offering the potential of preventing disease complications such as chronic lung changes. Gene editing approaches offer tremendous therapeutic potential, with rapidly emerging delivery systems. Antiviral therapies are desperately needed, and specific cellular therapies show promise in patients requiring hematopoietic stem cell transplantation. The introduction of approved therapies for clinical use in PIDD is limited by the difficulty of studying outcomes in rare patients/conditions with conventional clinical trials.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY.
| | - Karl O A Yu
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY
| | - Christopher T Towe
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly A Risma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
143
|
Martinot M, Korganow AS, Wald M, Second J, Birckel E, Mahé A, Souply L, Mohseni-Zadeh M, Droy L, Tarabeux J, Okada S, Migaud M, Puel A, Guffroy A. Case Report: A New Gain-of-Function Mutation of STAT1 Identified in a Patient With Chronic Mucocutaneous Candidiasis and Rosacea-Like Demodicosis: An Emerging Association. Front Immunol 2022; 12:760019. [PMID: 34987506 PMCID: PMC8721043 DOI: 10.3389/fimmu.2021.760019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Heterozygous missense STAT1 mutations leading to a gain of function (GOF) are the most frequent genetic cause of chronic mucocutaneous candidiasis (CMC). We describe the case of a patient presenting a new GOF mutation of STAT1 with the clinical symptoms of CMC, recurrent pneumonia, and persistent central erythema with papulopustules with ocular involvement related to rosacea-like demodicosis. Methods Genetic analysis via targeted next-generation sequencing (NGS; NGS panel DIPAI v.1) exploring the 98 genes most frequently involved in primary immunodeficiencies, including STAT1, was performed to identify an underlying genetic defect. Results NGS identified a novel variant of STAT1, c.884C>A (exon 10), p.T295Y, not previously described. This variant was found to be gain of function using an in vitro luciferase reporter assay. Rosacea-like demodicosis was confirmed by substantial Demodex proliferation observed via the microscopic examination of a cutaneous sample. A review of literature retrieved 20 other cases of STAT1 GOF mutations associated with early-onset rosacea-like demodicosis, most with ocular involvement. Conclusion We describe a new STAT1 GOF mutation associated with a phenotype of CMC and rosacea-like demodicosis. Rosacea-like demodicosis appears as a novel and important clinical phenotype among patients with STAT1 GOF mutation.
Collapse
Affiliation(s)
- Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Anne Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| | - Mathieu Wald
- Infectious Diseases Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Julie Second
- Dermatology Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Elodie Birckel
- Dermatology Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Antoine Mahé
- Dermatology Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Laurent Souply
- Microbiology Department, Hôpitaux Civils de Colmar, Colmar, France
| | | | - Laure Droy
- Pathology Department, Hôpitaux Civils de Colmar, Colmar, France
| | - Julien Tarabeux
- Genetic Diagnostic Laboratory, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Satoshi Okada
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR 1163, University of Paris, Paris, France
| | - Mélanie Migaud
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, UMR 1163, University of Paris, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Aurelien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
144
|
Davidson L, Van den Reek JMPA, Van Hunsel F, De Jong EMGJ, Kullberg BJ. Global Risk of Bacterial Skin Infections and Herpesviridae Infections with Ustekinumab, Secukinumab, and Tumour Necrosis Factor-alpha Inhibitors: Spontaneous Reports of Adverse Drug Reactions from the World Health Organization Pharmacovigilance Center. Acta Derm Venereol 2022; 102:adv00648. [PMID: 35088874 PMCID: PMC9558332 DOI: 10.2340/actadv.v102.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in interleukin-12/23/17 immunity are associated with an increased risk of Staphylococcus aureus and herpesvirus skin infections. This study analysed spontaneous safety reports from the WHO Pharmacovigilance Center of bacterial skin or herpesvirus infections associated with secukinumab, ustekinumab and tumour necrosis factor-α inhibitors. Associations found in disproportionality analyses were expressed as reporting odds ratios (ROR). For bacterial skin infections, ustekinumab showed the strongest association (ROR 6.09; 95% confidence interval (95% CI) 5.44-6.81), and, among the tumour necrosis factor-α inhibitors, infliximab showed the strongest association (ROR 4.18; 95% CI 3.97-4.40). Risk was comparable between infliximab and secukinumab (ROR 3.51; 95% CI 3.00-4.09). Secukinumab showed the strongest association with herpes simplex infection (ROR 4.80; 95% CI 3.78-6.10). All biologics were equally associated with herpes zoster. Infliximab was the only biologic associated with cytomegalovirus infection (ROR 5.66; 95% CI 5.08-6.31) and had the strongest association with Epstein-Barr virus infection (ROR 6.90; 95% CI 6.03-7.90). All biologics evaluated were positively associated with bacterial skin infections, herpes simplex, and herpes zoster, compared with all other drugs in the WHO database for which individual case safety reports were collected. The possibility of under-reporting, reporting bias and difference in causality assessment between countries and reporters must be taken into account when interpreting the results of disproportionality analyses.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, NL-6525 GA Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
145
|
Forbes LR, Eckstein OS, Gulati N, Peckham-Gregory EC, Ozuah NW, Lubega J, El-Mallawany NK, Agrusa JE, Poli MC, Vogel TP, Chaimowitz NS, Rider NL, Mace EM, Orange JS, Caldwell JW, Aldave-Becerra JC, Jolles S, Saettini F, Chong HJ, Stray-Pedersen A, Heslop HE, Kamdar KY, Rouce RH, Muzny DM, Jhangiani SN, Gibbs RA, Coban-Akdemir ZH, Lupski JR, McClain KL, Allen CE, Chinn IK. Genetic errors of immunity distinguish pediatric nonmalignant lymphoproliferative disorders. J Allergy Clin Immunol 2022; 149:758-766. [PMID: 34329649 PMCID: PMC8795244 DOI: 10.1016/j.jaci.2021.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.
Collapse
Affiliation(s)
- Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Immunology/Allergy/Retrovirology, Texas Children's Hospital, Houston, Tex
| | - Olive S Eckstein
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Nitya Gulati
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Erin C Peckham-Gregory
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Nmazuo W Ozuah
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Joseph Lubega
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Nader K El-Mallawany
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Jennifer E Agrusa
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - M Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Universidad del Desarrollo, Clínica Alemana de Santiago, Santiago, Chile
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Natalia S Chaimowitz
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Immunology/Allergy/Retrovirology, Texas Children's Hospital, Houston, Tex
| | - Nicholas L Rider
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Immunology/Allergy/Retrovirology, Texas Children's Hospital, Houston, Tex
| | - Emily M Mace
- New York Presbyterian Morgan Stanley Children's Hospital, Columbia University College of Physicians and Surgeons, Department of Pediatrics, New York, NY
| | - Jordan S Orange
- New York Presbyterian Morgan Stanley Children's Hospital, Columbia University College of Physicians and Surgeons, Department of Pediatrics, New York, NY
| | - Jason W Caldwell
- Section of Pulmonary, Critical Care, Allergic and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Juan C Aldave-Becerra
- Division of Allergy and Immunology, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Francesco Saettini
- Department of Pediatric Hematology, Fondazione MBBM, University of Milan-Bicocca, Monza, Italy
| | - Hey J Chong
- Division of Pediatric Allergy and Immunology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Asbjorg Stray-Pedersen
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Helen E Heslop
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Tex
| | - Kala Y Kamdar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - R Helen Rouce
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Baylor-Hopkins Center for Mendelian Genomics, Houston, Tex
| | - Zeynep H Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Baylor-Hopkins Center for Mendelian Genomics, Houston, Tex
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Baylor-Hopkins Center for Mendelian Genomics, Houston, Tex
| | - Kenneth L McClain
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex
| | - Carl E Allen
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Hematology/Oncology, Texas Children's Hospital Cancer Center, Houston, Tex.
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Texas Children's Hospital, Houston, Tex; Division of Pediatric Immunology/Allergy/Retrovirology, Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
146
|
Bloomfield M, Parackova Z, Hanzlikova J, Lastovicka J, Sediva A. Immunogenicity and Safety of COVID-19 mRNA Vaccine in STAT1 GOF Patients. J Clin Immunol 2022; 42:266-269. [PMID: 34718945 PMCID: PMC8557105 DOI: 10.1007/s10875-021-01163-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Uvalu 84, Prague, 15006, Czech Republic.
- Department of Pediatrics, 1st Faculty of Medicine, Charles University in Prague and Thomayer University Hospital, Prague, Czech Republic.
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Uvalu 84, Prague, 15006, Czech Republic
| | - Jana Hanzlikova
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Jan Lastovicka
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Uvalu 84, Prague, 15006, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Uvalu 84, Prague, 15006, Czech Republic
| |
Collapse
|
147
|
Zhao Q, Dai R, Li Y, Wang Y, Chen X, Shu Z, Zhou L, Ding Y, Tang X, Zhao X. Trends in TREC values according to age and gender in Chinese children and their clinical applications. Eur J Pediatr 2022; 181:529-538. [PMID: 34405301 DOI: 10.1007/s00431-021-04223-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
T cell receptor excision circles (TRECs) are small circularized DNA elements produced during rearrangement of T cell receptor (TCR) genes. Because TRECs are fairly stable, do not replicate during mitosis, and are not diluted during division of naïve T cells (Dion et al. [1]), they are suitable for assessing the number of newly formed T cells (Ping and Denise [2]). In this study, we detected TRECs in 521 healthy Chinese children aged 0-18 years in different clinical settings. The TRECs decrease with aging and show lower levels in preterm and low birth weight (BW) babies compared to those in full-term infants, while the preterm babies can also show comparable levels of TRECs when they have a gestation age (GA)-matched BW. We found a strong correlation between TRECs and peripheral CD4 naïve T cell numbers, which was age-related. We also analyzed the TRECs in different PIDs. Since T cell defects vary in PIDs, TREC levels change inconsistently. For example, in Wiskott-Aldrich syndrome (WAS), combining the level of TREC with lymphocyte subsets can help to distinguish subtypes of disease.Conclusion: We established the reference value range for TRECs by evaluating children below 18 years old in China, which could be used to screen for PIDs during early life. What is Known: • The TREC levels are decreased with age, and there is a positive correlation between TRECs and the numbers of naïve T cells. What is New: • This is the largest study to determine TREC reference levels in healthy Chinese pediatric, we provide solid data showing a correlation between CD4 naïve T cell counts and TREC levels according to age. We point out the GA matched BW is need to be considered during the SCID newborn screening. We are the first group showed that TREC levels can help clinician distinguish different WAS phenotype.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Rongxin Dai
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Yanan Li
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanping Wang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Shu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Department of Health Management, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
148
|
Scott O, Sharfe N, Dadi H, Vong L, Garkaby J, Abrego Fuentes L, Willett Pachul J, Nelles S, Nahum A, Roifman CM. Case Report: Eosinophilic Esophagitis in a Patient With a Novel STAT1 Gain-of-Function Pathogenic Variant. Front Immunol 2022; 13:801832. [PMID: 35126392 PMCID: PMC8812721 DOI: 10.3389/fimmu.2022.801832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background STAT1 gain-of-function (GOF) is a primary immune dysregulatory disorder marked by wide infectious predisposition (most notably chronic mucocutaneous Candidiasis), autoimmunity, vascular disease and malignant predisposition. While atopic features have been described in some STAT1 GOF patients, they are not considered a predominant feature of the disease. Additionally, while eosinophilic gastrointestinal infiltration has been reported in some cases, this has always been described in the context of pre-existing oropharyngeal and/or esophageal Candidiasis. Clinical cases Herein, we report 3 members of a multi-generational family diagnosed with STAT1 GOF caused by a novel mutation in the N-terminal domain, c.194A>C (p.D65A). The proband presented initially with a long-standing history of treatment-refractory eosinophilic esophagitis (EoE) without preceding gastrointestinal tract fungal infections, and her mother was diagnosed with esophagitis as well. Conclusion EoE has been previously associated with alterations to STAT6 and STAT3 signaling pathways. The current report expands the possible association between JAK/STAT-related disorders and EoE, suggesting that EoE could be a primary disease manifestation of STAT1 GOF, even in the absence of oropharyngeal and/or esophageal Candidiasis.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Nigel Sharfe
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harjit Dadi
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jenny Garkaby
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Laura Abrego Fuentes
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Jessica Willett Pachul
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Sandra Nelles
- Department of Gastroenterology, Trillium Health Partners, Mississauga Hospital, Mississauga, ON, Canada
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center, Beer Sheva, Israel
- The Primary Immunodeficiency Research Laboratory, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Chaim M. Roifman,
| |
Collapse
|
149
|
Rosenberg JM, Peters JM, Hughes T, Lareau CA, Ludwig LS, Massoth LR, Austin-Tse C, Rehm HL, Bryson B, Chen YB, Regev A, Shalek AK, Fortune SM, Sykes DB. JAK inhibition in a patient with a STAT1 gain-of-function variant reveals STAT1 dysregulation as a common feature of aplastic anemia. MED (NEW YORK, N.Y.) 2022; 3:42-57.e5. [PMID: 35590143 PMCID: PMC9123284 DOI: 10.1016/j.medj.2021.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Idiopathic aplastic anemia is a potentially lethal disease, characterized by T cell-mediated autoimmune attack of bone marrow hematopoietic stem cells. Standard of care therapies (stem cell transplantation or immunosuppression) are effective but associated with a risk of serious toxicities. METHODS An 18-year-old man presented with aplastic anemia in the context of a germline gain-of-function variant in STAT1. Treatment with the JAK1 inhibitor itacitinib resulted in a rapid resolution of aplastic anemia and a sustained recovery of hematopoiesis. Peripheral blood and bone marrow samples were compared before and after JAK1 inhibitor therapy. FINDINGS Following therapy, samples showed a decrease in the plasma concentration of interferon-γ, a decrease in PD1-positive exhausted CD8+ T cell population, and a decrease in an interferon responsive myeloid population. Single-cell analysis of chromatin accessibility showed decreased accessibility of STAT1 across CD4+ and CD8+ T cells, as well as CD14+ monocytes. To query whether other cases of aplastic anemia share a similar STAT1-mediated pathophysiology, we examined a cohort of 9 patients with idiopathic aplastic anemia. Bone marrow from six of nine patients also displayed abnormal STAT1 hyper-activation. CONCLUSIONS These findings raise the possibility that STAT1 hyperactivition defines a subset of idiopathic aplastic anemia patients for whom JAK inhibition may be an efficacious therapy. FUNDING Funding was provided by the Massachusetts General Hospital Department of Medicine Pathways Program and NIH T32 AI007387. A trial registration is at https://clinicaltrials.gov/ct2/show/NCT03906318.
Collapse
Affiliation(s)
- Jacob M. Rosenberg
- Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114,Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Harvard Medical School; Boston, MA,Harvard T.H. Chan School of Public Health; Boston, MA,Corresponding Author and Lead Contact: Jacob M. Rosenberg, 55 Fruit Street, Boston, MA, 02114, USA, , 860-930-5744
| | - Joshua M. Peters
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Broad Institute of MIT and Harvard; Cambridge, MA
| | - Travis Hughes
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Harvard Medical School; Boston, MA,Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA
| | - Caleb A. Lareau
- Harvard Medical School; Boston, MA,Broad Institute of MIT and Harvard; Cambridge, MA
| | - Leif S. Ludwig
- Harvard Medical School; Boston, MA,Broad Institute of MIT and Harvard; Cambridge, MA
| | - Lucas R. Massoth
- Harvard Medical School; Boston, MA,Department of Pathology, Massachusetts General Hospital; Boston, MA
| | - Christina Austin-Tse
- Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114,Center for Genomic Medicine, Massachusetts General Hospital; Boston, MA,Laboratory for Molecular Medicine, Partners Personalized Medicine; Cambridge, MA,Department of Pathology, Massachusetts General Hospital; Boston, MA
| | - Heidi L. Rehm
- Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114,Harvard Medical School; Boston, MA,Broad Institute of MIT and Harvard; Cambridge, MA,Center for Genomic Medicine, Massachusetts General Hospital; Boston, MA,Department of Pathology, Massachusetts General Hospital; Boston, MA
| | - Bryan Bryson
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA
| | - Yi-Bin Chen
- Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114,Massachusetts General Hospital Cancer Center; Boston, MA
| | - Aviv Regev
- Broad Institute of MIT and Harvard; Cambridge, MA,Genentech, South San Francisco, CA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Harvard Medical School; Boston, MA,Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA,Broad Institute of MIT and Harvard; Cambridge, MA
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA,Harvard Medical School; Boston, MA,Harvard T.H. Chan School of Public Health; Boston, MA
| | - David B. Sykes
- Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114,Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital; Boston, MA,Harvard Stem Cell Institute; Cambridge, MA,Massachusetts General Hospital Cancer Center; Boston, MA
| |
Collapse
|
150
|
Knight V. Immunodeficiency and Autoantibodies to Cytokines. J Appl Lab Med 2022; 7:151-164. [PMID: 34996092 DOI: 10.1093/jalm/jfab139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Anti-cytokine autoantibodies (AAbs) associated with an infectious phenotype are now included along with anti-complement AAbs and somatic pathogenic gene variants as a distinct category termed 'phenocopies of primary immunodeficiencies' in the classification of inborn errors of immunity. Anti-cytokine AAbs target specific cytokine pathways, leading to inordinate susceptibility to specific organisms, generally in the setting of immunocompetence. CONTENT Anti-cytokine AAbs are detected in the majority of healthy individuals and may play a regulatory role in limiting exaggerated responses to cytokines. While it is not well understood why some individuals with anti-cytokine AAbs develop increased susceptibility to organisms of low pathogenicity and others do not, it is likely that genetics and environment play a role. To date, AAbs to interferon gamma (IFNγ), interferon alpha (IFNα), interleukins-17 and 22 (IL-17/IL-22), interleukin-6 and granulocyte macrophage colony stimulating factor (GM-CSF) and their association with increased susceptibility to nontuberculous mycobacteria and other intracellular organisms, viral infections, Candida albicans, Staphylococcus aureus and other pyogenic organisms, and fungal infections respectively, have been described. The clinical phenotype of these patients is very similar to that of individuals with pathogenic gene variants in the specific cytokine pathway that the autoantibody targets, hence the term 'phenocopy.' Recognition of anti-cytokine AAbs as a distinct cause of immunodeficiency or immune dysregulation is important for appropriate management of such patients. SUMMARY Understanding the roles that anti-cytokine AAbs play in health and disease continues to be a fascinating area of research. Evaluating generally immunocompetent individuals who present with chronic, treatment refractory, or unusual infections for anti-cytokine AAbs is critical as it may direct therapy and disease management.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital, Colorado, Aurora, CO, USA
| |
Collapse
|