101
|
Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando WGD, Borhan MH. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. MOLECULAR PLANT PATHOLOGY 2018; 19:1754-1764. [PMID: 29330918 PMCID: PMC6638032 DOI: 10.1111/mpp.12658] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Department of Plant ScienceUniversity of ManitobaWinnipegMBCanada R3T 2N2
| | - Lisong Ma
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | - Nicholas J. Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Armatus Genetics Inc.SaskatoonSKCanada S7J 4M2
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | | | - Mohammad Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| |
Collapse
|
102
|
Prihatna C, Barbetti MJ, Barker SJ. A Novel Tomato Fusarium Wilt Tolerance Gene. Front Microbiol 2018; 9:1226. [PMID: 29937759 PMCID: PMC6003170 DOI: 10.3389/fmicb.2018.01226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The reduced mycorrhizal colonization (rmc) tomato mutant is unable to form mycorrhiza and is more susceptible to Fusarium wilt compared with its wild-type isogenic line 76R. The rmc mutant has a chromosomal deletion affecting five genes, one of which is similar to CYCLOPS. Loss of this gene is responsible for non-mycorrhizality in rmc but not enhanced Fusarium wilt susceptibility. Here, we describe assessment of a second gene in the rmc deletion, designated Solyc08g075770 that is expressed in roots. Sequence analyses show that Solyc08g075770 encodes a small transmembrane protein with putative phosphorylation and glycosylation sites. It is predicted to be localized in the plasma membrane and may function in transmembrane ion transport and/or as a cell surface receptor. Complementation and knock-out strategies were used to test its function. Some putative CRISPR/Cas-9 knock-out transgenic events exhibited Fusarium wilt susceptibility like rmc and some putative complementation lines were 76R-like, suggesting that the tomato Solyc08g075770 functions in Fusarium wilt tolerance. This is the first study to demonstrate that Solyc08g075770 is the contributor to the Tfw locus, conferring tolerance to Fusarium wilt in 76R which was lost in rmc.
Collapse
Affiliation(s)
- Cahya Prihatna
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Indonesia
| | - Martin J. Barbetti
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Susan J. Barker
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
103
|
Genome-Wide Association Mapping Uncovers Fw1, a Dominant Gene Conferring Resistance to Fusarium Wilt in Strawberry. G3-GENES GENOMES GENETICS 2018; 8:1817-1828. [PMID: 29602808 PMCID: PMC5940171 DOI: 10.1534/g3.118.200129] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fusarium wilt, a soil-borne disease caused by the fungal pathogen Fusarium oxysporum f. sp. fragariae, threatens strawberry (Fragaria × ananassa) production worldwide. The spread of the pathogen, coupled with disruptive changes in soil fumigation practices, have greatly increased disease pressure and the importance of developing resistant cultivars. While resistant and susceptible cultivars have been reported, a limited number of germplasm accessions have been analyzed, and contradictory conclusions have been reached in earlier studies to elucidate the underlying genetic basis of resistance. Here, we report the discovery of Fw1, a dominant gene conferring resistance to Fusarium wilt in strawberry. The Fw1 locus was uncovered in a genome-wide association study of 565 historically and commercially important strawberry accessions genotyped with 14,408 SNP markers. Fourteen SNPs in linkage disequilibrium with Fw1 physically mapped to a 2.3 Mb segment on chromosome 2 in a diploid F. vesca reference genome. Fw1 and 11 tightly linked GWAS-significant SNPs mapped to linkage group 2C in octoploid segregating populations. The most significant SNP explained 85% of the phenotypic variability and predicted resistance in 97% of the accessions tested-broad-sense heritability was 0.96. Several disease resistance and defense-related gene homologs, including a small cluster of genes encoding nucleotide-binding leucine-rich-repeat proteins, were identified in the 0.7 Mb genomic segment predicted to harbor Fw1 DNA variants and candidate genes identified in the present study should facilitate the development of high-throughput genotyping assays for accurately predicting Fusarium wilt phenotypes and applying marker-assisted selection.
Collapse
|
104
|
Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, Chuma I, Tosa Y. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. MOLECULAR PLANT PATHOLOGY 2018; 19:1252-1256. [PMID: 28846191 PMCID: PMC6638012 DOI: 10.1111/mpp.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 05/11/2023]
Abstract
Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.
Collapse
Affiliation(s)
- Vu Lan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yoshihiro Inoue
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
- Present address:
Graduate School of AgricultureKyoto UniversityKyoto 606‐8224Japan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | | | - Nguyen Tuan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Shizhen Wang
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Izumi Chuma
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yukio Tosa
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| |
Collapse
|
105
|
Czislowski E, Fraser‐Smith S, Zander M, O'Neill WT, Meldrum RA, Tran‐Nguyen LTT, Batley J, Aitken EAB. Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense, reveals evidence of horizontal gene transfer. MOLECULAR PLANT PATHOLOGY 2018; 19:1155-1171. [PMID: 28802020 PMCID: PMC6638072 DOI: 10.1111/mpp.12594] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 05/03/2023]
Abstract
It is hypothesized that the virulence of phytopathogenic fungi is mediated through the secretion of small effector proteins that interfere with the defence responses of the host plant. In Fusarium oxysporum, one family of effectors, the Secreted In Xylem (SIX) genes, has been identified. We sought to characterize the diversity and evolution of the SIX genes in the banana-infecting lineages of F. oxysporum f. sp. cubense (Foc). Whole-genome sequencing data were generated for the 23 genetic lineages of Foc, which were subsequently queried for the 14 known SIX genes (SIX1-SIX14). The sequences of the identified SIX genes were confirmed in a larger collection of Foc isolates. Genealogies were generated for each of the SIX genes identified in Foc to further investigate the evolution of the SIX genes in Foc. Within Foc, variation of the SIX gene profile, including the presence of specific SIX homologues, correlated with the pathogenic race structure of Foc. Furthermore, the topologies of the SIX gene trees were discordant with the topology of an infraspecies phylogeny inferred from EF-1α/RPB1/RPB2 (translation elongation factor-1α/RNA polymerase II subunit I/RNA polymerase II subunit II). A series of topological constraint models provided strong evidence for the horizontal transmission of SIX genes in Foc. The horizontal inheritance of pathogenicity genes in Foc counters previous assumptions that convergent evolution has driven the polyphyletic phylogeny of Foc. This work has significant implications for the management of Foc, including the improvement of diagnostics and breeding programmes.
Collapse
Affiliation(s)
- Elizabeth Czislowski
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
| | - Sam Fraser‐Smith
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
| | - Manuel Zander
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
| | - Wayne T. O'Neill
- Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences PrecinctBrisbaneQld 4001Australia
| | - Rachel A. Meldrum
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
- Department of Primary Industry and ResourcesNorthern Territory GovernmentDarwinNT 0801Australia
| | - Lucy T. T. Tran‐Nguyen
- Department of Primary Industry and ResourcesNorthern Territory GovernmentDarwinNT 0801Australia
| | - Jacqueline Batley
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
- School of Plant BiologyThe University of Western AustraliaCrawleyWA 6009Australia
| | - Elizabeth A. B. Aitken
- School of Agriculture and Food SciencesThe University of QueenslandSt. LuciaQld 4072Australia
| |
Collapse
|
106
|
Woods-Tör A, Studholme DJ, Cevik V, Telli O, Holub EB, Tör M. A Suppressor/Avirulence Gene Combination in Hyaloperonospora arabidopsidis Determines Race Specificity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:265. [PMID: 29545818 PMCID: PMC5838922 DOI: 10.3389/fpls.2018.00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 05/23/2023]
Abstract
The pathosystem of Arabidopsis thaliana and diploid biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) has been a model for investigating the molecular basis of Flor's gene-for-gene hypothesis. The isolates Hpa-Noks1 and Hpa-Cala2 are virulent on Arabidopsis accession RMX-A02 whilst an F1 generated from a cross between these two isolates was avirulent. The F2 progeny segregated 3,1 (avirulent, virulent), indicating a single major effect AVR locus in this pathogen. SNP-based linkage mapping confirmed a single AVR locus within a 14 kb map interval containing two genes encoding putative effectors. The Hpa-Cala2 allele of one gene, designated H. arabidopsidiscryptic1 (HAC1), encodes a protein with a signal peptide and an RxLR/dEER motif, and triggers a defense response in RMX-A02. The second gene is heterozygous in Hpa-Cala2. One allele, designated Suppressor ofHAC1Cala2 (S-HAC1Cala2 ) encodes a protein with a signal peptide and a dKEE motif with no RxLR motif; the other allele (s-hac1Cala2 ) encodes a protein with a signal peptide, a dEEE motif and is divergent in sequence from the S-HAC1Cala2 allele. In selfed progeny from Hpa-Cala2, dominant S-HAC1Cala2 allele carrying progeny correlates with virulence in RMX-A02, whereas homozygous recessive s-hac1Cala2 carrying progeny were avirulent. Genetic investigations suggested other heterozygous suppressor loci might exist in the Hpa-Cala2 genome.
Collapse
Affiliation(s)
- Alison Woods-Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Osman Telli
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Eric B. Holub
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mahmut Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
107
|
Debbi A, Boureghda H, Monte E, Hermosa R. Distribution and Genetic Variability of Fusarium oxysporum Associated with Tomato Diseases in Algeria and a Biocontrol Strategy with Indigenous Trichoderma spp. Front Microbiol 2018; 9:282. [PMID: 29515557 PMCID: PMC5826367 DOI: 10.3389/fmicb.2018.00282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/07/2018] [Indexed: 11/28/2022] Open
Abstract
Fifty fungal isolates were sampled from diseased tomato plants as result of a survey conducted in seven tomato crop areas in Algeria from 2012 to 2015. Morphological criteria and PCR-based identification, using the primers PF02 and PF03, assigned 29 out of 50 isolates to Fusarium oxysporum (Fo). The banding patterns amplified for genes SIX1, SIX3 and SIX4 served to identify races 2 and 3 of Fo f. sp. lycopersici (FOL), and Fo f. sp. radicis lycopersici (FORL) among the Algerian isolates. All FOL isolates showed pathogenicity on the susceptible tomato cv. "Super Marmande," while nine of out 10 Algerian FORL isolates were pathogenic on tomato cv. "Rio Grande." Inter simple sequence repeat (ISSR) fingerprints showed high genetic diversity among Algerian Fo isolates. Seventeen Algerian Trichoderma isolates were also obtained and assigned to the species T. asperellum (12 isolates), T. harzianum (four isolates) and T. ghanense (one isolate) based on ITS and tef1α gene sequences. Different in vitro tests identified the antagonistic potential of native Trichoderma isolates against FORL and FOL. Greenhouse biocontrol assays performed on "SM" tomato plants with T. ghanense T8 and T. asperellum T9 and T17, and three Fo isolates showed that isolate T8 performed well against FORL and FOL. This finding was based on an incidence reduction of crown and root rot and Fusarium wilt diseases by 53.1 and 48.3%, respectively.
Collapse
Affiliation(s)
- Ali Debbi
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, National Superior School of Agronomy, Algiers, Algeria
- Laboratory of Mycology, Center of Biotechnology Research, Constantine, Algeria
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Houda Boureghda
- Laboratory of Phytopathology and Molecular Biology, Department of Botany, National Superior School of Agronomy, Algiers, Algeria
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
108
|
Die JV, Román B, Qi X, Rowland LJ. Genome-scale examination of NBS-encoding genes in blueberry. Sci Rep 2018; 8:3429. [PMID: 29467425 PMCID: PMC5821885 DOI: 10.1038/s41598-018-21738-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/08/2018] [Indexed: 01/07/2023] Open
Abstract
Blueberry is an important crop worldwide. It is, however, susceptible to a variety of diseases, which can lead to losses in yield and fruit quality. Although screening studies have identified resistant germplasm for some important diseases, still little is known about the molecular basis underlying that resistance. The most predominant type of resistance (R) genes contains nucleotide binding site and leucine rich repeat (NBS-LRR) domains. The identification and characterization of such a gene family in blueberry would enhance the foundation of knowledge needed for its genetic improvement. In this study, we searched for and found a total of 106 NBS-encoding genes (including 97 NBS-LRR) in the current blueberry genome. The NBS genes were grouped into eleven distinct classes based on their domain architecture. More than 22% of the NBS genes are present in clusters. Ten genes were mapped onto seven linkage groups. Phylogenetic analysis grouped these genes into two major clusters based on their structural variation, the first cluster having toll and interleukin-1 like receptor (TIR) domains and most of the second cluster containing a coiled-coil domain. Our study provides new insight into the NBS gene family in blueberry and is an important resource for the identification of functional R-genes.
Collapse
Affiliation(s)
- Jose V Die
- Genetic Improvement Fruits and Vegetables Lab. U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
| | - Belén Román
- Crop Breeding and Biotechnology Department, IFAPA Research Centre Alameda del Obispo, Córdoba, Spain
| | - Xinpeng Qi
- Genetic Improvement Fruits and Vegetables Lab. U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Lisa J Rowland
- Genetic Improvement Fruits and Vegetables Lab. U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| |
Collapse
|
109
|
Li J, Chitwood J, Menda N, Mueller L, Hutton SF. Linkage between the I-3 gene for resistance to Fusarium wilt race 3 and increased sensitivity to bacterial spot in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:145-155. [PMID: 28986627 DOI: 10.1007/s00122-017-2991-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The negative association between the I - 3 gene and increased sensitivity to bacterial spot is due to linkage drag (not pleiotropy) and may be remedied by reducing the introgression size. Fusarium wilt is one of the most serious diseases of tomato (Solanum lycopersicum L.) throughout the world. There are three races of the pathogen (races 1, 2 and 3), and the deployment of three single, dominant resistance genes corresponding to each of these has been the primary means of controlling the disease. The I-3 gene was introgressed from S. pennellii and confers resistance to race 3. Although I-3 provides effective control, it is negatively associated with several horticultural traits, including increased sensitivity to bacterial spot disease (Xanthomonas spp.). To test the hypothesis that this association is due to linkage with unfavorable alleles rather than to pleiotropy, we used a map-based approach to develop a collection of recombinant inbred lines varying for portions of I-3 introgression. Progeny of recombinants were evaluated for bacterial spot severity in the field for three seasons, and disease severities were compared between I-3 introgression haplotypes for each recombinant. Results indicated that increased sensitivity to bacterial spot is not associated with the I-3 gene, but rather with an upstream region of the introgression. A survey of public and private inbred lines and hybrids indicates that the majority of modern I-3 germplasm contains a similarly sized introgression for which the negative association with bacterial spot likely persists. In light of this, it is expected that the development and utilization of a reduced I-3 introgression will significantly improve breeding efforts for resistance to Fusarium wilt race 3.
Collapse
Affiliation(s)
- Jian Li
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - Jessica Chitwood
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - Naama Menda
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, 14853, USA
| | - Lukas Mueller
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, 14853, USA
| | - Samuel F Hutton
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA.
| |
Collapse
|
110
|
Yang Y, Zhang Y, Li B, Yang X, Dong Y, Qiu D. A Verticillium dahliae Pectate Lyase Induces Plant Immune Responses and Contributes to Virulence. FRONTIERS IN PLANT SCIENCE 2018; 9:1271. [PMID: 30271415 PMCID: PMC6146025 DOI: 10.3389/fpls.2018.01271] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/14/2018] [Indexed: 05/13/2023]
Abstract
Verticillium dahliae is a wide-host-range fungal pathogen that causes soil-borne disease in hundreds of dicotyledonous hosts. In search of V. dahliae Vd991 cell death-inducing proteins, we identified a pectate lyase (VdPEL1) that exhibited pectin hydrolytic activity, which could induce strong cell death in several plants. Purified VdPEL1 triggered defense responses and conferred resistance to Botrytis cinerea and V. dahliae in tobacco and cotton plants. Our results demonstrated that the mutant VdPEL1rec lacking the enzymatic activity lacked functions to induce both cell death and plant resistance, implying that the enzymatic activity was necessary. In addition, VdPEL1 was strongly induced in V. dahliae infected Nicotiana benthamiana and cotton roots, and VdPEL1 deletion strains severely compromised the virulence of V. dahliae. Our data suggested that VdPEL1 contributed to V. dahliae virulence and induced plant defense responses. These findings provide a new insight for the function of pectate lyase in the host-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Dewen Qiu
- *Correspondence: Yijie Dong, Dewen Qiu,
| |
Collapse
|
111
|
Prasanth CN, Viswanathan R, Krishna N, Malathi P, Ramesh Sundar A, Tiwari T. Unraveling the Genetic Complexities in Gene Set of Sugarcane Red Rot Pathogen Colletotrichum falcatum Through Transcriptomic Approach. SUGAR TECH 2017; 19:604-615. [DOI: 10.1007/s12355-017-0529-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
112
|
Di X, Cao L, Hughes RK, Tintor N, Banfield MJ, Takken FLW. Structure-function analysis of the Fusarium oxysporum Avr2 effector allows uncoupling of its immune-suppressing activity from recognition. THE NEW PHYTOLOGIST 2017; 216:897-914. [PMID: 28857169 PMCID: PMC5659127 DOI: 10.1111/nph.14733] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/03/2017] [Indexed: 05/09/2023]
Abstract
Plant pathogens employ effector proteins to manipulate their hosts. Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, produces effector protein Avr2. Besides being a virulence factor, Avr2 triggers immunity in I-2 carrying tomato (Solanum lycopersicum). Fol strains that evade I-2 recognition carry point mutations in Avr2 (e.g. Avr2R45H ), but retain full virulence. Here we investigate the virulence function of Avr2 and determine its crystal structure. Transgenic tomato and Arabidopsis expressing either wild-type ΔspAvr2 (deleted signal-peptide) or the ΔspAvr2R45H variant become hypersusceptible to fungal, and even bacterial infections, suggesting that Avr2 targets a conserved defense mechanism. Indeed, Avr2 transgenic plants are attenuated in immunity-related readouts, including flg22-induced growth inhibition, ROS production and callose deposition. The crystal structure of Avr2 reveals that the protein shares intriguing structural similarity to ToxA from the wheat pathogen Pyrenophora tritici-repentis and to TRAF proteins. The I-2 resistance-breaking Avr2V41M , Avr2R45H and Avr2R46P variants cluster on a surface-presented loop. Structure-guided mutagenesis enabled uncoupling of virulence from I-2-mediated recognition. We conclude that I-2-mediated recognition is not based on monitoring Avr2 virulence activity, which includes suppression of immune responses via an evolutionarily conserved effector target, but by recognition of a distinct epitope.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Lingxue Cao
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Richard K. Hughes
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nico Tintor
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Frank L. W. Takken
- Molecular Plant PathologySILSUniversity of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| |
Collapse
|
113
|
Zhang Y, Ma LJ. Deciphering Pathogenicity of Fusarium oxysporum From a Phylogenomics Perspective. ADVANCES IN GENETICS 2017; 100:179-209. [PMID: 29153400 DOI: 10.1016/bs.adgen.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fusarium oxysporum is a large species complex of both plant and human pathogens that attack a diverse array of species in a host-specific manner. Comparative genomic studies have revealed that the host-specific pathogenicity of the F. oxysporum species complex (FOSC) was determined by distinct sets of supernumerary (SP) chromosomes. In contrast to common vertical transfer, where genetic materials are transmitted via cell division, SP chromosomes can be transmitted horizontally between phylogenetic lineages, explaining the polyphyletic nature of the host-specific pathogenicity of the FOSC. The existence of a diverse array of SP chromosomes determines the broad host range of this species complex, while the conserved core genome maintains essential house-keeping functions. Recognition of these SP chromosomes enables the functional and structural compartmentalization of F. oxysporum genomes. In this review, we examine the impact of this group of cross-kingdom pathogens on agricultural productivity and human health. Focusing on the pathogenicity of F. oxysporum in the phylogenomic framework of the genus Fusarium, we elucidate the evolution of pathogenicity within the FOSC. We conclude that a population genomics approach within a clearly defined phylogenomic framework is essential not only for understanding the evolution of the pathogenicity mechanism but also for identifying informative candidates associated with pathogenicity that can be developed as targets in disease management programs.
Collapse
Affiliation(s)
- Yong Zhang
- University of Massachusetts Amherst, Amherst, MA, United States
| | - Li-Jun Ma
- University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
114
|
van Dam P, Fokkens L, Ayukawa Y, van der Gragt M, Ter Horst A, Brankovics B, Houterman PM, Arie T, Rep M. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci Rep 2017; 7:9042. [PMID: 28831051 PMCID: PMC5567276 DOI: 10.1038/s41598-017-07995-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
The genome of Fusarium oxysporum (Fo) consists of a set of eleven 'core' chromosomes, shared by most strains and responsible for housekeeping, and one or several accessory chromosomes. We sequenced a strain of Fo f.sp. radicis-cucumerinum (Forc) using PacBio SMRT sequencing. All but one of the core chromosomes were assembled into single contigs, and a chromosome that shows all the hallmarks of a pathogenicity chromosome comprised two contigs. A central part of this chromosome contains all identified candidate effector genes, including homologs of SIX6, SIX9, SIX11 and SIX 13. We show that SIX6 contributes to virulence of Forc. Through horizontal chromosome transfer (HCT) to a non-pathogenic strain, we also show that the accessory chromosome containing the SIX gene homologs is indeed a pathogenicity chromosome for cucurbit infection. Conversely, complete loss of virulence was observed in Forc016 strains that lost this chromosome. We conclude that also a non-wilt-inducing Fo pathogen relies on effector proteins for successful infection and that the Forc pathogenicity chromosome contains all the information necessary for causing root rot of cucurbits. Three out of nine HCT strains investigated have undergone large-scale chromosome alterations, reflecting the remarkable plasticity of Fo genomes.
Collapse
Affiliation(s)
- Peter van Dam
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Yu Ayukawa
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Michelle van der Gragt
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneliek Ter Horst
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Petra M Houterman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
115
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
116
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
117
|
Jelinski NA, Broz K, Jonkers W, Ma LJ, Kistler HC. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato. PHYTOPATHOLOGY 2017; 107:842-851. [PMID: 28323535 DOI: 10.1094/phyto-12-16-0437-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.
Collapse
Affiliation(s)
- Nicolas A Jelinski
- First author: Department of Soil, Water and Climate, University of Minnesota-Twin Cities, 1991 Upper Buford Circle, Saint Paul 55108; second and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, 1551 Lindig Street, University of Minnesota-Twin Cities, Saint Paul 55108; third author: Bejo Zaden BV, Trambaan 1, 1749CZ Warmenhuizen, The Netherlands; and fourth author: Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst 01003
| | - Karen Broz
- First author: Department of Soil, Water and Climate, University of Minnesota-Twin Cities, 1991 Upper Buford Circle, Saint Paul 55108; second and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, 1551 Lindig Street, University of Minnesota-Twin Cities, Saint Paul 55108; third author: Bejo Zaden BV, Trambaan 1, 1749CZ Warmenhuizen, The Netherlands; and fourth author: Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst 01003
| | - Wilfried Jonkers
- First author: Department of Soil, Water and Climate, University of Minnesota-Twin Cities, 1991 Upper Buford Circle, Saint Paul 55108; second and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, 1551 Lindig Street, University of Minnesota-Twin Cities, Saint Paul 55108; third author: Bejo Zaden BV, Trambaan 1, 1749CZ Warmenhuizen, The Netherlands; and fourth author: Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst 01003
| | - Li-Jun Ma
- First author: Department of Soil, Water and Climate, University of Minnesota-Twin Cities, 1991 Upper Buford Circle, Saint Paul 55108; second and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, 1551 Lindig Street, University of Minnesota-Twin Cities, Saint Paul 55108; third author: Bejo Zaden BV, Trambaan 1, 1749CZ Warmenhuizen, The Netherlands; and fourth author: Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst 01003
| | - H Corby Kistler
- First author: Department of Soil, Water and Climate, University of Minnesota-Twin Cities, 1991 Upper Buford Circle, Saint Paul 55108; second and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, 1551 Lindig Street, University of Minnesota-Twin Cities, Saint Paul 55108; third author: Bejo Zaden BV, Trambaan 1, 1749CZ Warmenhuizen, The Netherlands; and fourth author: Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst 01003
| |
Collapse
|
118
|
Zhang L, Ni H, Du X, Wang S, Ma XW, Nürnberger T, Guo HS, Hua C. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. THE NEW PHYTOLOGIST 2017; 215:368-381. [PMID: 28407259 DOI: 10.1111/nph.14537] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/21/2017] [Indexed: 05/05/2023]
Abstract
Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection.
Collapse
Affiliation(s)
- Lisha Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hao Ni
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Wei Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Hua
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, D-72076, Germany
| |
Collapse
|
119
|
Ayukawa Y, Hanyuda S, Fujita N, Komatsu K, Arie T. Novel loop-mediated isothermal amplification (LAMP) assay with a universal QProbe can detect SNPs determining races in plant pathogenic fungi. Sci Rep 2017; 7:4253. [PMID: 28652587 PMCID: PMC5484703 DOI: 10.1038/s41598-017-04084-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici (Fol) is grouped into three races based on their pathogenicity to different host cultivars. Rapid detection and discrimination of Fol races in field soils is important to prevent tomato wilt disease. Although five types of point mutations in secreted in xylem 3 (SIX3) gene, which are characteristic of race 3, have been reported as a molecular marker for the race, detection of these point mutations is laborious. The aim of this study is to develop a rapid and accurate method for the detection of point mutations in SIX3 of Fol. Loop-mediated isothermal amplification (LAMP) of SIX3 gene with the universal QProbe as well as two joint DNAs followed by annealing curve analysis allowed us to specifically detect Fol and discriminate race 3 among other races in about one hour. Our developed method is applicable for detection of races of other plant pathogenic fungi as well as their pesticide-resistant mutants that arise through point mutations in a particular gene.
Collapse
Affiliation(s)
- Yu Ayukawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
| | - Saeri Hanyuda
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
| | - Naoko Fujita
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan.
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan.
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
120
|
Petit-Houdenot Y, Fudal I. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. FRONTIERS IN PLANT SCIENCE 2017; 8:1072. [PMID: 28670324 PMCID: PMC5472840 DOI: 10.3389/fpls.2017.01072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/02/2017] [Indexed: 05/07/2023]
Abstract
During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R) proteins from the plant and are then called avirulence (AVR) proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R-AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene). These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops). In this review, we describe some complex R-AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.
Collapse
Affiliation(s)
- Yohann Petit-Houdenot
- UMR BIOGER, Institut National De La Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| | - Isabelle Fudal
- UMR BIOGER, Institut National De La Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| |
Collapse
|
121
|
Santhanam P, Boshoven JC, Salas O, Bowler K, Islam MT, Saber MK, van den Berg GCM, Bar‐Peled M, Thomma BPHJ. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2017; 18:347-362. [PMID: 26996832 PMCID: PMC6638212 DOI: 10.1111/mpp.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/05/2023]
Abstract
The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Jordi C. Boshoven
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Omar Salas
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Md Tohidul Islam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Mojtaba Keykha Saber
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Maor Bar‐Peled
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
122
|
Rouxel T, Balesdent MH. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. THE NEW PHYTOLOGIST 2017; 214:526-532. [PMID: 28084619 DOI: 10.1111/nph.14411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
Contents 526 I. 526 II. 527 III. 527 IV. 529 V. 529 VI. 530 VII. 530 531 References 531 SUMMARY: In agricultural systems, major (R) genes for resistance in plants exert strong selection pressure on cognate/corresponding avirulence effector genes of phytopathogens. However, a complex interplay often exists between trade-offs linked to effector function and the need to escape R gene recognition. Here, using the Leptosphaeria maculans-oilseed rape pathosystem we review evolution of effectors submitted to multiple resistance gene selection. Characteristics of this pathosystem include a crop in which resistance genes have been deployed intensively resulting in 'boom and bust' cycles; a fungal pathogen with a high adaptive potential in which seven avirulence genes are cloned and for which population surveys have been coupled with molecular analysis of events responsible for virulence. The mode of evolution of avirulence genes, all located in dispensable parts of the 'two-speed' genome, is a highly dynamic gene-specific process. In some instances, avirulence genes are readily deleted under selection. However, others, even when located in the most plastic genome regions, undergo only limited point mutations or their avirulence phenotype is 'camouflaged' by another avirulence gene. Thus, while hundreds of effector genes are present, some effectors are likely to have an important and nonredundant function, suggesting functional redundancy and dispensability of effectors might not be the rule.
Collapse
Affiliation(s)
- Thierry Rouxel
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Marie-Hélène Balesdent
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| |
Collapse
|
123
|
Plissonneau C, Blaise F, Ollivier B, Leflon M, Carpezat J, Rouxel T, Balesdent MH. Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans. Mol Ecol 2017; 26:2183-2198. [PMID: 28160497 DOI: 10.1111/mec.14046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
Leptosphaeria maculans is the fungus responsible for the stem canker disease of oilseed rape (Brassica napus). AvrLm3 and AvrLm4-7, two avirulence effector genes of L. maculans, are involved in an unusual relationship: AvrLm4-7 suppresses the Rlm3-mediated resistance. Here, we assessed AvrLm3 polymorphism in a collection of 235 L. maculans isolates. No field isolates exhibited deletion or inactivating mutations in AvrLm3, as observed for other L. maculans avirulence genes. Eleven isoforms of the AvrLm3 protein were found. In isolates virulent towards both Rlm3 and Rlm7 (a3a7), the loss of the Rlm3-mediated resistance response was due to two distinct mechanisms. First, when AvrLm4-7 was inactivated (deletion or inactivating mutations), amino acid substitutions in AvrLm3 generated virulent isoforms of the protein. Second, when only point mutations were observed in AvrLm4-7, a3a7 isolates still contained an avirulent allele of AvrLm3. Directed mutagenesis confirmed that some point mutations in AvrLm4-7 were sufficient for the fungus to escape Rlm7-mediated resistance while maintaining the suppression of the AvrLm3 phenotype. Signatures of positive selection were also identified in AvrLm3. The complex evolutionary mechanisms enabling L. maculans to escape Rlm3-mediated resistance while preserving AvrLm3 integrity, along with observed reduced aggressiveness of isolates silenced for AvrLm3, serves to emphasize the importance of this effector in pathogenicity towards B. napus. While the common response to resistance gene pressure is local selection of isolates depleted in the cognate avirulence gene, this example contributes to complexify the gene-for-gene concept of plant-pathogen evolution with a 'camouflaged' model allowing retention of nondispensable avirulence effectors.
Collapse
Affiliation(s)
- C Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France.,Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - F Blaise
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - B Ollivier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M Leflon
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - J Carpezat
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - T Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M-H Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
124
|
Catanzariti AM, Do HTT, Bru P, de Sain M, Thatcher LF, Rep M, Jones DA. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1195-1209. [PMID: 27995670 DOI: 10.1111/tpj.13458] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 05/06/2023]
Abstract
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane-anchored leucine-rich repeat receptor-like protein (LRR-RLP). Unlike most other LRR-RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR-RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR-RLPs, recognition specificity is determined in the C-terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1-dependent necrosis in Nicotiana benthamiana depends on the LRR receptor-like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR-RLPs involved in plant defence all carry residues in their last LRR and C-terminal LRR capping domain that are conserved with SERK3/BAK1-interacting residues in the same relative positions in the LRR-RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1-dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.
Collapse
Affiliation(s)
- Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Huong T T Do
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Pierrick Bru
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Mara de Sain
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise F Thatcher
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, WA, Australia
| | - Martijn Rep
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - David A Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
125
|
Multiple Evolutionary Trajectories Have Led to the Emergence of Races in Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol 2017; 83:AEM.02548-16. [PMID: 27913420 DOI: 10.1128/aem.02548-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023] Open
Abstract
Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times.
Collapse
|
126
|
Stam R, Scheikl D, Tellier A. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ 2017; 5:e2910. [PMID: 28133579 PMCID: PMC5248578 DOI: 10.7717/peerj.2910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| |
Collapse
|
127
|
Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D. Using Population and Comparative Genomics to Understand the Genetic Basis of Effector-Driven Fungal Pathogen Evolution. FRONTIERS IN PLANT SCIENCE 2017; 8:119. [PMID: 28217138 PMCID: PMC5289978 DOI: 10.3389/fpls.2017.00119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry 100s of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution.
Collapse
Affiliation(s)
- Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- UMR, BIOGER, INRA, AgroParisTech, Université Paris-SaclayThiverval-Grignon, France
| | - Juliana Benevenuto
- College of Agriculture “Luiz de Queiroz”, University of São PauloSão Paulo, Brazil
| | - Norfarhan Mohd-Assaad
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan MalaysiaSelangor, Malaysia
| | - Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
| | - Fanny E. Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH ZurichZurich, Switzerland
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchatelNeuchatel, Switzerland
- *Correspondence: Daniel Croll,
| |
Collapse
|
128
|
Zuluaga P, Szurek B, Koebnik R, Kroj T, Morel JB. Effector Mimics and Integrated Decoys, the Never-Ending Arms Race between Rice and Xanthomonas oryzae. FRONTIERS IN PLANT SCIENCE 2017; 8:431. [PMID: 28400786 PMCID: PMC5368246 DOI: 10.3389/fpls.2017.00431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/14/2017] [Indexed: 05/19/2023]
Abstract
Plants are constantly challenged by a wide range of pathogens and have therefore evolved an array of mechanisms to defend against them. In response to these defense systems, pathogens have evolved strategies to avoid recognition and suppress plant defenses (Brown and Tellier, 2011). Three recent reports dealing with the resistance of rice to Xanthomonas oryzae have added a new twist to our understanding of this fascinating co-evolutionary arms race (Ji et al., 2016; Read et al., 2016; Triplett et al., 2016). They show that pathogens also develop sophisticated effector mimics to trick recognition.
Collapse
Affiliation(s)
- Paola Zuluaga
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet,Montpellier, France
| | - Boris Szurek
- UMR – Interactions Plantes-Microorganismes-Environnement, IRD–Cirad–Université Montpellier, Institut de Recherche pour le Développement,Montpellier, France
| | - Ralf Koebnik
- UMR – Interactions Plantes-Microorganismes-Environnement, IRD–Cirad–Université Montpellier, Institut de Recherche pour le Développement,Montpellier, France
| | - Thomas Kroj
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet,Montpellier, France
| | - Jean-Benoit Morel
- INRA, UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet,Montpellier, France
- *Correspondence: Jean-Benoit Morel,
| |
Collapse
|
129
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
130
|
Kashiwa T, Kozaki T, Ishii K, Turgeon BG, Teraoka T, Komatsu K, Arie T. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum. Fungal Genet Biol 2016; 98:46-51. [PMID: 27919652 DOI: 10.1016/j.fgb.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/19/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
Abstract
A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates.
Collapse
Affiliation(s)
- Takeshi Kashiwa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; Present address: Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Toshinori Kozaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Kazuo Ishii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - B Gillian Turgeon
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Tohru Teraoka
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
131
|
De Wit PJGM. Apoplastic fungal effectors in historic perspective; a personal view. THE NEW PHYTOLOGIST 2016; 212:805-813. [PMID: 27523582 DOI: 10.1111/nph.14144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Pierre J G M De Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
132
|
Ökmen B, Doehlemann G. Clash between the borders: spotlight on apoplastic processes in plant-microbe interactions. THE NEW PHYTOLOGIST 2016; 212:799-801. [PMID: 27874988 DOI: 10.1111/nph.14311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Bilal Ökmen
- The Terrestrial Microbiology Laboratory, Center of Excellence on Plant Science (CEPLAS), Institute of Botany, University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- The Terrestrial Microbiology Laboratory, Center of Excellence on Plant Science (CEPLAS), Institute of Botany, University of Cologne, Cologne, Germany
| |
Collapse
|
133
|
van der Does HC, Fokkens L, Yang A, Schmidt SM, Langereis L, Lukasiewicz JM, Hughes TR, Rep M. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes. PLoS Genet 2016; 12:e1006401. [PMID: 27855160 PMCID: PMC5140021 DOI: 10.1371/journal.pgen.1006401] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022] Open
Abstract
Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes.
Collapse
Affiliation(s)
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, The Netherlands
| | - Ally Yang
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Sarah M. Schmidt
- Molecular Plant Pathology, University of Amsterdam, The Netherlands
| | - Léon Langereis
- Molecular Plant Pathology, University of Amsterdam, The Netherlands
| | | | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, Canada
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
134
|
Thatcher LF, Williams AH, Garg G, Buck SAG, Singh KB. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics 2016; 17:860. [PMID: 27809762 PMCID: PMC5094085 DOI: 10.1186/s12864-016-3192-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. RESULTS High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. CONCLUSION Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity protein features facilitated the identification of differentially expressed pathogenicity associated genes and novel effector candidates expressed during infection of a resistant or susceptible M. truncatula host. The knowledge from this first in depth in planta transcriptome sequencing of any F. oxysporum ff. spp. pathogenic on legumes will facilitate the dissection of Fusarium wilt pathogenicity mechanisms on many important legume crops.
Collapse
Affiliation(s)
- Louise F. Thatcher
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Angela H. Williams
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Sally-Anne G. Buck
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
| | - Karam B. Singh
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Wembley, Western Australia 6913 Australia
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
| |
Collapse
|
135
|
Lanubile A, Ellis ML, Marocco A, Munkvold GP. Association of Effector Six6 with Vascular Wilt Symptoms Caused by Fusarium oxysporum on Soybean. PHYTOPATHOLOGY 2016; 106:1404-1412. [PMID: 27349740 DOI: 10.1094/phyto-03-16-0118-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) is a widely distributed group of fungi that includes both pathogenic and nonpathogenic isolates. In a previous study, isolates within the FOSC collected primarily from soybean were assessed for the presence of 12 fungal effector genes. Although none of the assayed genes was significantly associated with wilt symptoms on soybean, the secreted in xylem 6 (Six6) gene was present only in three isolates, which all produced high levels of vascular wilt on soybean. In the current study, a collection of F. oxysporum isolates from soybean roots and F. oxysporum f. sp. phaseoli isolates from common bean was screened for the presence of the Six6 gene. Interestingly, all isolates for which the Six6 amplicon was generated caused wilt symptoms on soybean, and two-thirds of the isolates showed high levels of aggressiveness, indicating a positive association between the presence of the effector gene Six6 and induction of wilt symptoms. The expression profile of the Six6 gene analyzed by quantitative reverse-transcription polymerase chain reaction revealed an enhanced expression for the isolates that caused more severe wilt symptoms on soybean, as established by the greenhouse assay. These findings suggest the suitability of the Six6 gene as a possible locus for pathogenicity-based molecular diagnostics across the various formae speciales.
Collapse
Affiliation(s)
- Alessandra Lanubile
- First and third authors: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; first and fourth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; and second author: Department of Plant Science, California State University, Fresno 93740
| | - Margaret L Ellis
- First and third authors: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; first and fourth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; and second author: Department of Plant Science, California State University, Fresno 93740
| | - Adriano Marocco
- First and third authors: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; first and fourth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; and second author: Department of Plant Science, California State University, Fresno 93740
| | - Gary P Munkvold
- First and third authors: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; first and fourth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011; and second author: Department of Plant Science, California State University, Fresno 93740
| |
Collapse
|
136
|
Dai Y, Cao Z, Huang L, Liu S, Shen Z, Wang Y, Wang H, Zhang H, Li D, Song F. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum. Front Microbiol 2016; 7:1449. [PMID: 27695445 PMCID: PMC5025516 DOI: 10.3389/fmicb.2016.01449] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.
Collapse
Affiliation(s)
- Yi Dai
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhongye Cao
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lihong Huang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhihui Shen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yuyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Hui Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
137
|
Niño-Sánchez J, Casado-Del Castillo V, Tello V, De Vega-Bartol JJ, Ramos B, Sukno SA, Díaz Mínguez JM. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2016; 17:1124-39. [PMID: 26817616 PMCID: PMC6638452 DOI: 10.1111/mpp.12373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 05/08/2023]
Abstract
The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved.
Collapse
Affiliation(s)
- Jonathan Niño-Sánchez
- Instituto Hispano-Luso de Investigaciones Agrarias (Ciale), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Virginia Casado-Del Castillo
- Instituto Hispano-Luso de Investigaciones Agrarias (Ciale), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Vega Tello
- Instituto Hispano-Luso de Investigaciones Agrarias (Ciale), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - José J De Vega-Bartol
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa (IBET/ITQB-UNL), Av. República, 2784-505, Oeiras, Portugal
| | - Brisa Ramos
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-INIA, Campus de Monteganceno, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Serenella A Sukno
- Instituto Hispano-Luso de Investigaciones Agrarias (Ciale), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - José María Díaz Mínguez
- Instituto Hispano-Luso de Investigaciones Agrarias (Ciale), Departamento de Microbiología y Genética, Universidad de Salamanca, C/Río Duero 12, Villamayor, 37185, Salamanca, Spain
| |
Collapse
|
138
|
Taylor A, Vágány V, Jackson AC, Harrison RJ, Rainoni A, Clarkson JP. Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. MOLECULAR PLANT PATHOLOGY 2016; 17:1032-47. [PMID: 26609905 PMCID: PMC4982077 DOI: 10.1111/mpp.12346] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/06/2023]
Abstract
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific.
Collapse
Affiliation(s)
- Andrew Taylor
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Viktória Vágány
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Alison C Jackson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | | | - Alessandro Rainoni
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - John P Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| |
Collapse
|
139
|
Shahi S, Fokkens L, Houterman PM, Rep M. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis. Fungal Genet Biol 2016; 95:49-57. [PMID: 27531696 DOI: 10.1016/j.fgb.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
Abstract
Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.
Collapse
Affiliation(s)
- Shermineh Shahi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra M Houterman
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
140
|
van Dam P, Fokkens L, Schmidt SM, Linmans JHJ, Kistler HC, Ma LJ, Rep M. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ Microbiol 2016; 18:4087-4102. [PMID: 27387256 DOI: 10.1111/1462-2920.13445] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/30/2016] [Indexed: 01/10/2023]
Abstract
Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum.
Collapse
Affiliation(s)
- Peter van Dam
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Sarah M Schmidt
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Jasper H J Linmans
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - H Corby Kistler
- United States Department of Agriculture, ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| |
Collapse
|
141
|
Ayukawa Y, Komatsu K, Kashiwa T, Akai K, Yamada M, Teraoka T, Arie T. Detection and differentiation of Fusarium oxysporum f. sp. lycopersici race 1 using loop-mediated isothermal amplification with three primer sets. Lett Appl Microbiol 2016; 63:202-9. [PMID: 27248357 DOI: 10.1111/lam.12597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
Abstract
UNLABELLED Fusarium oxysporum f. sp. lycopersici (Fol) causes tomato wilt. Based on the difference in pathogenicity towards tomato cultivars, Fol is classified into three races. In this study, a rapid method is developed for the detection and discrimination of Fol race 1 using a loop-mediated isothermal amplification (LAMP) assay with two primer sets targeting a region of the nucleotide sequence of the SIX4 gene specific for race 1 and a primer set targeting the SIX5 gene, conserved in all known Fol isolates. Upon LAMP reaction, amplification using all three primer sets was observed only when DNA of Fol race 1 was used as a template, and not when DNA of other Fol races or other fungal species was used. This method could detect 300 fg of Fol race 1 DNA, a 100-fold higher sensitivity than that obtained by conventional PCR. The method can also detect DNA extracted from soil artificially infested with Fol race 1. It is now possible to detect Fol race 1 in colonies and infected tomato stems without DNA isolation. This method is a rapid and simple tool for discrimination of Fol race 1. SIGNIFICANCE AND IMPACT OF THE STUDY This study developed a loop-mediated isothermal amplification (LAMP) assay for detection and differentiation of Fusarium oxysporum f. sp. lycopersici (Fol) race 1 by using three primer sets targeting for the SIX4 and SIX5 genes. These genes are present together only in Fol race 1. This method can detect Fol race 1 in infected tomato stems without DNA extraction, affording an efficient diagnosis of Fusarium wilt on tomatoes in the field.
Collapse
Affiliation(s)
- Y Ayukawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan.,Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - K Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - T Kashiwa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama, Japan
| | - K Akai
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - M Yamada
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - T Teraoka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - T Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| |
Collapse
|
142
|
Affiliation(s)
- Ren Na
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Mark Gijzen
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
143
|
Ellis ML, Lanubile A, Garcia C, Munkvold GP. Association of Putative Fungal Effectors in Fusarium oxysporum with Wilt Symptoms in Soybean. PHYTOPATHOLOGY 2016; 106:762-73. [PMID: 27146104 DOI: 10.1094/phyto-11-15-0293-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fungi within the Fusarium oxysporum species complex can cause root rot, seedling blight, and wilt of soybean. Isolates recovered from soybean vary in aggressiveness and also the type of symptoms they produce. The aim of this study was to identify genetic markers to detect aggressive soybean wilt isolates. Eighty isolates collected primarily from soybean were tested in the greenhouse for their ability to produce wilt symptoms using susceptible 'Jack' soybean. The same 80 isolates were assessed for the presence of fungal effector genes Fmk1, Fow1, Pda1, PelA, PelD, Pep1, Prt1, Rho1, Sge1, Six1, Six6, and Snf1. All polymerase chain reaction amplicons were sequenced, phylogenies were inferred, and analysis of molecular variance (AMOVA) was performed for 10 of the 12 genes. High incidence of vascular discoloration of roots or stems was observed with 3 isolates, while moderate to low levels of incidence were observed for 25 isolates. Fungal effector genes Fmk1, Fow1, PelA, Rho1, Sge1, and Snf1 were present in all isolates screened, while Pda1, PelD, Pep1, Prt1, Six1, and Six6 were dispersed among isolates. The Bayesian and AMOVA analyses found that the genes Fmk1, Fow1, Pda1, PelA, Rho1, Sge1, and Snf1 corresponded to previously designated clades based on tef1α and mitochondrial small subunit sequences. None of the genes had a significant association with wilt symptoms on soybean. Interestingly, the Six6 gene was only present in three previously known wilt isolates from soybean, common bean, and tomato; of these, the soybean and common bean isolates produced high levels of vascular wilt in our study.
Collapse
Affiliation(s)
- Margaret L Ellis
- First and third authors: Department of Plant Science, California State University, Fresno 93740; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; and fourth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - Alessandra Lanubile
- First and third authors: Department of Plant Science, California State University, Fresno 93740; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; and fourth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - Charlie Garcia
- First and third authors: Department of Plant Science, California State University, Fresno 93740; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; and fourth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - Gary P Munkvold
- First and third authors: Department of Plant Science, California State University, Fresno 93740; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; and fourth author: Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| |
Collapse
|
144
|
Niu X, Zhao X, Ling KS, Levi A, Sun Y, Fan M. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum - watermelon pathosystem. Sci Rep 2016; 6:28146. [PMID: 27320044 PMCID: PMC4913299 DOI: 10.1038/srep28146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022] Open
Abstract
When infecting a host plant, the fungus Fusarium oxysporum secretes several effector proteins into the xylem tissue to promote virulence. However, in a host plant with an innate immune system involving analogous resistance proteins, the fungus effector proteins may trigger resistance, rather than promoting virulence. Identity of the effector genes of Fusarium oxysporum f. sp. niveum (Fon) races that affect watermelon (Citrullus lanatus) are currently unknown. In this study, the SIX6 (secreted in xylem protein 6) gene was identified in Fon races 0 and 1 but not in the more virulent Fon race 2. Disrupting the FonSIX6 gene in Fon race 1 did not affect the sporulation or growth rate of the fungus but significantly enhanced Fon virulence in watermelon, suggesting that the mutant ΔFon1SIX6 protein allowed evasion of R protein-mediated host resistance. Complementation of the wild-type race 2 (which lacks FonSIX6) with FonSIX6 reduced its virulence. These results provide evidence supporting the hypothesis that FonSIX6 is an avirulence gene. The identification of FonSix6 as an avirulence factor may be a first step in understanding the mechanisms of Fon virulence and resistance in watermelon and further elucidating the role of Six6 in Fusarium-plant interactions.
Collapse
Affiliation(s)
- Xiaowei Niu
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, Zhejiang 310021, China
| | - Xiaoqiang Zhao
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, Zhejiang 310021, China
| | - Kai-Shu Ling
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA
| | - Amnon Levi
- USDA-Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA
| | - Yuyan Sun
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, Zhejiang 310021, China
| | - Min Fan
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
145
|
Kashiwa T, Suzuki T, Sato A, Akai K, Teraoka T, Komatsu K, Arie T. A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiol Lett 2016; 363:fnw132. [PMID: 27190160 DOI: 10.1093/femsle/fnw132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2016] [Indexed: 11/14/2022] Open
Abstract
Emergence of races in Fusarium oxysporum f. sp. lycopersici (Fol) is caused by loss or mutation of at least one avirulence (AVR) gene. The product of AVR1 is a small protein (Avr1) secreted by Fol in tomato xylem sap during infection. This protein triggers Fol race 1 specific resistance (I) in tomato, indicating that AVR1 is an AVR gene. Deletion of AVR1 in race 1 resulted in the emergence of race 2, and an additional mutation in AVR2 generated race 3. Previously, we reported a new biotype of race 3, KoChi-1, in which AVR1 was truncated by a transposon Hormin, which suggested a new route to evolution of races in Fol However, to date no race 2 isolate carrying Hormin-truncated AVR1 has been reported. In this report, we describe such isolates, represented by Chiba-5, in which Hormin insertion occurred in AVR1 at a position different from that in KoChi-1. AVR1 truncation in both isolates resulted in production of defective Avr1 proteins. Chiba-5 and KoChi-1 belong to different phylogenetic clades, A1 and A2, respectively, suggesting that insertion of Hormin in AVR1 in Chiba-5 and KoChi-1 occurred as independent evolutionary events.
Collapse
Affiliation(s)
- Takeshi Kashiwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Tatsuya Suzuki
- Chiba Prefectural Agriculture and Forestry Research Center, 808 Daizenno-cho, Midori-ku, Chiba 266-0006, Japan
| | - Akira Sato
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Kotaro Akai
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Tohru Teraoka
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Arie
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
146
|
Flajsman M, Mandelc S, Radisek S, Stajner N, Jakse J, Kosmelj K, Javornik B. Identification of Novel Virulence-Associated Proteins Secreted to Xylem by Verticillium nonalfalfae During Colonization of Hop Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:362-373. [PMID: 26883488 DOI: 10.1094/mpmi-01-16-0016-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant pathogens employ various secreted proteins to suppress host immunity for their successful host colonization. Identification and characterization of pathogen-secreted proteins can contribute to an understanding of the pathogenicity mechanism and help in disease control. We used proteomics to search for proteins secreted to xylem by the vascular pathogen Verticillium nonalfalfae during colonization of hop plants. Three highly abundant fungal proteins were identified: two enzymes, α-N-arabinofuranosidase (VnaAbf4.216) and peroxidase (VnaPRX1.1277), and one small secreted hypothetical protein (VnaSSP4.2). These are the first secreted proteins so far identified in xylem sap following infection with Verticillium spp. VnaPRX1.1277, classified as a heme-containing peroxidase from Class II, similar to other Verticillium spp. lignin-degrading peroxidases, and VnaSSP4.2, a 14-kDa cysteine-containing protein with unknown function and with a close homolog in related V. alfalfae strains, were further examined. The in planta expression of VnaPRX1.1277 and VnaSSP4.2 genes increased with the progression of colonization, implicating their role in fungal virulence. Indeed, V. nonalfalfae deletion mutants of both genes exhibited attenuated virulence on hop plants, which returned to the level of the wild-type pathogenicity in the knockout complementation lines, supporting VnaPRX1.1277 and VnaSSP4.2 as virulence factors required to promote V. nonalfalfae colonization of hop plants.
Collapse
Affiliation(s)
- Marko Flajsman
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Stanislav Mandelc
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Sebastjan Radisek
- 2 Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, SI-3310 Zalec, Slovenia
| | - Natasa Stajner
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Jernej Jakse
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Katarina Kosmelj
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Branka Javornik
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| |
Collapse
|
147
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
148
|
Vlaardingerbroek I, Beerens B, Rose L, Fokkens L, Cornelissen BJC, Rep M. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum. Environ Microbiol 2016; 18:3702-3713. [PMID: 26941045 DOI: 10.1111/1462-2920.13281] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo horizontal transfer. We combined a directed and a non-biased approach to determine whether such restrictions exist. Selection genes were integrated into the genome of a strain of Fusarium oxysporum pathogenic on tomato, either targeted to specific chromosomes by homologous recombination or integrated randomly into the genome. By testing these strains for transfer of the marker to another strain we could confirm transfer of a previously described mobile pathogenicity chromosome. Surprisingly, we also identified strains in which (parts of) core chromosomes were transferred. Whole genome sequencing revealed that this was accompanied by the loss of the homologous region from the recipient strain. Remarkably, transfer of the mobile pathogenicity chromosome always accompanied this exchange of core chromosomes.
Collapse
Affiliation(s)
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Rose
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben J C Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
149
|
Gonzalez-Cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. MOLECULAR PLANT PATHOLOGY 2016; 17:448-63. [PMID: 26177154 PMCID: PMC6638478 DOI: 10.1111/mpp.12294] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.
Collapse
Affiliation(s)
- Yvonne Gonzalez-Cendales
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Barbara Baker
- Plant Gene Expression Center, University of California-Berkeley, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Des J Mcgrath
- Agri-Science Queensland, Queensland Department of Agriculture and Fisheries, Gatton, Qld, 4343, Australia
| | - David A Jones
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
150
|
Busby PE, Ridout M, Newcombe G. Fungal endophytes: modifiers of plant disease. PLANT MOLECULAR BIOLOGY 2016; 90:645-55. [PMID: 26646287 DOI: 10.1007/s11103-015-0412-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/24/2015] [Indexed: 05/19/2023]
Abstract
Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.
Collapse
Affiliation(s)
- Posy E Busby
- Department of Biology, Duke University, Durham, NC, 287708, USA.
- Department of Forest, Rangelands and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA.
| | - Mary Ridout
- Department of Forest, Rangelands and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA
| | - George Newcombe
- Department of Forest, Rangelands and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA
| |
Collapse
|