101
|
Zhang W, Mi Y, Jiao K, Xu J, Guo T, Zhou D, Zhang X, Ni H, Sun Y, Wei K, Li N, Hou Y. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother Res 2020; 34:2258-2274. [DOI: 10.1002/ptr.6676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenqiang Zhang
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Kun Wei
- School of Chemical Science and Technology Yunnan University Kunming China
| | - Ning Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| |
Collapse
|
102
|
Sawada R, Nakano-Doi A, Matsuyama T, Nakagomi N, Nakagomi T. CD44 expression in stem cells and niche microglia/macrophages following ischemic stroke. Stem Cell Investig 2020; 7:4. [PMID: 32309418 DOI: 10.21037/sci.2020.02.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Background CD44, an adhesion molecule in the hyaluronate receptor family, plays diverse and important roles in multiple cell types and organs. Increasing evidence is mounting for CD44 expression in various types of stem cells and niche cells surrounding stem cells. However, the precise phenotypes of CD44+ cells in the brain under pathologic conditions, such as after ischemic stroke, remain unclear. Methods In the present study, using a mouse model for cerebral infarction by middle cerebral artery (MCA) occlusion, we examined the localization and traits of CD44+ cells. Results In sham-mice operations, CD44 was rarely observed in the cortex of MCA regions. Following ischemic stroke, CD44+ cells emerged in ischemic areas of the MCA cortex during the acute phase. Although CD44 at ischemic areas was, in part, expressed in stem cells, it was also expressed in hematopoietic lineages, including activated microglia/macrophages, surrounding the stem cells. CD44 expression in microglia/macrophages persisted through the chronic phase following ischemic stroke. Conclusions These data demonstrate that CD44 is expressed in stem cells and cells in the niches surrounding them, including inflammatory cells, suggesting that CD44 may play an important role in reparative processes within ischemic areas under neuroinflammatory conditions; in particular, strokes.
Collapse
Affiliation(s)
- Rikako Sawada
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
103
|
Fang YY, Zhang JH. MFG-E8 alleviates oxygen-glucose deprivation-induced neuronal cell apoptosis by STAT3 regulating the selective polarization of microglia. Int J Neurosci 2020; 131:15-24. [PMID: 32098538 DOI: 10.1080/00207454.2020.1732971] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4 h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.
Collapse
Affiliation(s)
- Ying-Ying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, P.R. China
| | - Jing-Hui Zhang
- Department of Rehabilitation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China.,Guangdong Association of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China
| |
Collapse
|
104
|
Liao R, Wood TR, Nance E. Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (Rij) 2020; 7:1849543520970819. [PMID: 35186151 PMCID: PMC8855450 DOI: 10.1177/1849543520970819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity is a primary pathological process that occurs during stroke, traumatic brain injury (TBI), and global brain ischemia such as perinatal asphyxia. Excitotoxicity is triggered by an overabundance of excitatory neurotransmitters within the synapse, causing a detrimental cascade of excessive sodium and calcium influx, generation of reactive oxygen species, mitochondrial damage, and ultimately cell death. There are multiple potential points of intervention to combat excitotoxicity and downstream oxidative stress, yet there are currently no therapeutics clinically approved for this specific purpose. For a therapeutic to be effective against excitotoxicity, the therapeutic must accumulate at the disease site at the appropriate concentration at the right time. Nanotechnology can provide benefits for therapeutic delivery, including overcoming physiological obstacles such as the blood-brain barrier, protect cargo from degradation, and provide controlled release of a drug. This review evaluates the use of nano-based therapeutics to combat excitotoxicity in stroke, TBI, and hypoxia-ischemia with an emphasis on mitigating oxidative stress, and consideration of the path forward toward clinical translation.
Collapse
Affiliation(s)
- Rick Liao
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
105
|
Liu Z, Ran Y, Qie S, Gong W, Gao F, Ding Z, Xi J. Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther 2019; 25:1353-1362. [PMID: 31793209 PMCID: PMC6887673 DOI: 10.1111/cns.13261] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Microglia and infiltrated macrophages play important roles in inflammatory processes after ischemic stroke. Modulating microglia/macrophage polarization from pro-inflammatory phenotype to anti-inflammatory state has been suggested as a potential therapeutic approach in the treatment of ischemic stroke. Melatonin has been shown to be neuroprotective in experimental stroke models. However, the effect of melatonin on microglia polarization after stroke and underlying mechanisms remain unknown. METHODS In vivo, cerebral ischemia was induced by distal middle cerebral artery occlusion (dMCAO) in C57BL/6J mice. Melatonin was injected intraperitoneally (20 mg/kg) at 0 and 24 hours after ischemia. In vitro, the microglial cell line BV2 was stimulated to the pro-inflammatory state with conditioned media (CM) collected from oxygen-glucose deprivation (OGD) challenged neuronal cell line Neuro-2a (N2a). Real-time PCR was utilized to detect the mRNA expression of microglia phenotype markers. Activation of signal transducer and activator of transcription 3 (STAT3) pathway was determined by Western blot of phosphorylated STAT3 (pSTAT3). A neuron-microglia co-culture system was used to determine whether melatonin can inhibit the neurotoxic effect of pro-inflammatory microglia to post-OGD neurons. RESULTS Melatonin treatment reduced brain infarct and improved neurological functions 3 days after dMCAO, which was accompanied by decreased expression of pro-inflammatory markers and increased expression of anti-inflammatory markers in the ischemic brain. In vitro studies confirmed that melatonin directly inhibited the pro-inflammatory responses in BV2 cells upon exposure to OGD neuron CM. The microglia possessing pro-inflammatory phenotype exacerbated post-OGD N2a cells death, whereas melatonin reduced such neurotoxic effect. Further, melatonin enhanced the otherwise inhibited pSTAT3 expression in BV2 cells treated with OGD neuron CM. STAT3 blockade significantly reduced the effect of melatonin on microglial phenotype shift. CONCLUSION Melatonin treatment ameliorates brain damage at least partially through shifting microglia phenotype from pro-inflammatory to anti-inflammatory polarity in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Zong‐Jian Liu
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Yuan‐Yuan Ran
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Shu‐Yan Qie
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Wei‐Jun Gong
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Fu‐Hai Gao
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Zi‐Tong Ding
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Jia‐Ning Xi
- Department of RehabilitationBeijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
106
|
Gao Y, Zhuang Z, Lu Y, Tao T, Zhou Y, Liu G, Wang H, Zhang D, Wu L, Dai H, Li W, Hang C. Curcumin Mitigates Neuro-Inflammation by Modulating Microglia Polarization Through Inhibiting TLR4 Axis Signaling Pathway Following Experimental Subarachnoid Hemorrhage. Front Neurosci 2019; 13:1223. [PMID: 31803007 PMCID: PMC6872970 DOI: 10.3389/fnins.2019.01223] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) elicits destruction of neuronal cells and neurological function, which is exacerbated by neuro-inflammation in EBI, and toll-like receptor 4 (TLR4) plays an important role in inflammatory cascade via modulation microglia polarization. Curcumin (Cur), as a natural phytochemical compound, has the potential characteristics on anti-inflammatory and microglia phenotype transformation. In this study, we verified the hypothesis curcumin promotes M2 polarization to inhibiting neuro-inflammation, which through suppressing TLR4 signaling pathway after SAH. In tlr4–/– mice and wild type (WT) subjected to prechiasmatic cistern blood injection, Western blotting, brain water content, neurological score, enzyme-linked immunosorbent assay (ELISA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed to investigate the role of TLR4 on neuro-inflammation response and microglia polarization. Curcumin with three different concentrations (50 mg/kg, 100 mg/kg and 200 mg/kg) were injected intraperitoneally (i.p.) at 15 min after SAH. The levels of TLR4, myeloid differentiation factor 88 (MyD88), nuclear factor- κB (NF-κB), Iba-1, CD86, CD206 and pro/anti-inflammation cytokines were measured by Western blotting and immunofluorescence staining at 24 h after SAH. SAH induction increased the protein levels of TLR4, pro-inflammation cytokines and proportion of M1 phenotype. Curcumin with 100 mg/kg treatment dramatically inhibited the release of pro-inflammatory mediators, and elevated the protein levels of anti-inflammatory cytokines and promoted microglia switch to M2. Meanwhile, curcumin treatment also decreased the expressions of TLR4, Myd88 and NF-κB at 24 h post SAH. TLR4 deficiency ameliorated brain water content, neurological deficit and reduced pro-inflammation cytokines after SAH. Moreover, curcumin treatment in tlr4–/– mice further induced M2 polarization, while had no statistic difference on brain water content and neurological score at 24 h post SAH. Our results indicated that curcumin treatment alleviated neuro-inflammation response through promoting microglia phenotype shift toward M2, and which might inhibiting TLR4/MyD88/NF-κB signaling pathway after SAH.
Collapse
Affiliation(s)
- YongYue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - GuangJie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical Medical College of Southern Medical University, Guangzhou, China
| | - DingDing Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - LingYun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - HaiBin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| | - ChunHua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital Nanjing University Medicine School, Nanjing, China
| |
Collapse
|
107
|
Davoodvandi A, Sahebnasagh R, Mardanshah O, Asemi Z, Nejati M, Shahrzad MK, Mirzaei HR, Mirzaei H. Medicinal Plants As Natural Polarizers of Macrophages: Phytochemicals and Pharmacological Effects. Curr Pharm Des 2019; 25:3225-3238. [DOI: 10.2174/1381612825666190829154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Macrophages are one of the crucial mediators of the immune response in different physiological and
pathological conditions. These cells have critical functions in the inflammation mechanisms that are involved in
the inhibition or progression of a wide range of diseases including cancer, autoimmune diseases, etc. It has been
shown that macrophages are generally divided into two subtypes, M1 and M2, which are distinguished on the
basis of their different gene expression patterns and phenotype. M1 macrophages are known as pro-inflammatory
cells and are involved in inflammatory mechanisms, whereas M2 macrophages are known as anti-inflammatory
cells that are involved in the inhibition of the inflammatory pathways. M2 macrophages help in tissue healing via
producing anti-inflammatory cytokines. Increasing evidence indicated that the appearance of different macrophage
subtypes is associated with the fate of diseases (progression versus suppression). Hence, polarization of
macrophages can be introduced as an important venue in finding, designing and developing novel therapeutic
approaches. Albeit, there are different pharmacological agents that are used for the treatment of various disorders,
it has been shown that several natural compounds have the potential to regulate M1 to M2 macrophage polarization
and vice versa. Herein, for the first time, we summarized new insights into the pharmacological effects of
natural compounds on macrophage polarization.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad K. Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid R. Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
108
|
Rocha-Ferreira E, Sisa C, Bright S, Fautz T, Harris M, Contreras Riquelme I, Agwu C, Kurulday T, Mistry B, Hill D, Lange S, Hristova M. Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Front Physiol 2019; 10:1351. [PMID: 31798458 PMCID: PMC6863777 DOI: 10.3389/fphys.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 μg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sisa
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Sarah Bright
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tessa Fautz
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Michael Harris
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Ingrid Contreras Riquelme
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Chinedu Agwu
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tugce Kurulday
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Beenaben Mistry
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Daniel Hill
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Visual Neuroscience, Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sigrun Lange
- School of Life Sciences, Tissue Architecture and Regeneration Research Group, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| |
Collapse
|
109
|
Fais RS, Rodrigues FL, Pereira CA, Mendes AC, Mestriner F, Tostes RC, Carneiro FS. The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation. Sci Rep 2019; 9:16224. [PMID: 31700106 PMCID: PMC6838322 DOI: 10.1038/s41598-019-52831-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
NLRP3 plays a role in vascular diseases. Corpora cavernosa (CC) is an extension of the vasculature. We hypothesize that NLRP3 plays a deleterious role in CC relaxation. Male C57BL/6 (WT) and NLRP3 deficient (NLRP3−/−) mice were used. Intracavernosal pressure (ICP/MAP) measurement was performed. Functional responses were obtained from CC strips of WT and NLRP3−/− mice before and after MCC950 (NLRP3 inhibitor) or LPS + ATP (NLRP3 stimulation). NLRP3, caspase-1, IL-1β, eNOS, nNOS, guanylyl cyclase-β1 (GCβ1) and PKG1 protein expressions were determined. ICP/MAP and sodium nitroprusside (SNP)-induced relaxation in CC were decreased in NLRP3−/− mice. Caspase-1, IL-1β and eNOS activity were increased, but PKG1 was reduced in CC of NLRP3−/−. MCC950 decreased non-adrenergic non-cholinergic (NANC), acetylcholine (ACh), and SNP-induced relaxation in WT mice. MCC950 did not alter NLRP3, caspase-1 and IL-1β, but reduced GCβ1 expression. Although LPS + ATP decreased ACh- and SNP-, it increased NANC-induced relaxation in CC from WT, but not from NLRP3−/− mice. LPS + ATP increased NLRP3, caspase-1 and interleukin-1β (IL-1β). Conversely, it reduced eNOS activity and GCβ1 expression. NLRP3 plays a dual role in CC relaxation, with its inhibition leading to impairment of nitric oxide-mediated relaxation, while its activation by LPS + ATP causes decreased CC sensitivity to NO and endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Rafael S Fais
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda L Rodrigues
- Departments of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila A Pereira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Allan C Mendes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Mestriner
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
110
|
Rojas A, Banik A, Chen D, Flood K, Ganesh T, Dingledine R. Novel Microglia Cell Line Expressing the Human EP2 Receptor. ACS Chem Neurosci 2019; 10:4280-4292. [PMID: 31469538 DOI: 10.1021/acschemneuro.9b00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, EP2 signaling pathways were shown to regulate the classical activation and death of microglia in rat primary microglial culture. The study of microglial cells has been challenging because they are time-consuming to isolate in culture, they are demanding in their growth requirements, and they have a limited lifespan. To circumvent these difficulties, we created a murine BV2 microglial cell line stably expressing human EP2 receptors (BV2-hEP2) and further explored EP2 modulation of microglial functions. The BV2-hEP2 cells displayed cAMP elevation when exposed to the selective EP2 receptor agonists (ONO-AE1-259-1 and CP544326), and this response was competitively inhibited by TG4-155, a selective EP2 antagonist (Schild KB = 2.6 nM). By contrast, untransfected BV2 cells were unresponsive to selective EP2 agonists. Similar to the case of rat primary microglia, BV2-hEP2 microglia treated with lipopolysaccharide (LPS) (100 ng/mL) displayed rapid and robust induction of the inflammatory mediators COX-2, IL-1β, TNFα, and IL-6. EP2 activation depressed TNFα induction but exacerbated that of the other inflammatory mediators. Like primary microglia, classically activated BV2 microglia phagocytose fluorescent-labeled latex microspheres. The presence of EP2, but not its activation by agonists, in BV2-hEP2 microglia reduced phagocytosis and proliferation by 65% and 32%, respectively, compared to BV2 microglia. Thus, BV2-hEP2 is the first microglial cell line that retains the EP2 modulation of immune regulation and phagocytic ability of native microglia. Suppression of phagocytosis by the EP2 protein appears unrelated to classical EP2 signaling pathways, which has implications for therapeutic development of EP2 antagonists.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Avijit Banik
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Di Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kevin Flood
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
111
|
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. Biofactors 2019; 45:666-689. [PMID: 31185140 DOI: 10.1002/biof.1533] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif A Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Esther Manthiannem
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Jagadeeswari Padamati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
112
|
Zhang H, Lu M, Zhang X, Kuai Y, Mei Y, Tan Q, Zhong K, Sun X, Tan W. Isosteviol Sodium Protects against Ischemic Stroke by Modulating Microglia/Macrophage Polarization via Disruption of GAS5/miR-146a-5p sponge. Sci Rep 2019; 9:12221. [PMID: 31434993 PMCID: PMC6704123 DOI: 10.1038/s41598-019-48759-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that transforming microglia phenotype from pro-inflammation of M1 phenotype to anti-inflammation and tissue-repairing M2 phenotype may be an effective therapeutic strategy for preventing ischemic stroke brain injury. Isosteviol Sodium (STV-Na) has shown promise as a neuroprotective agent in cerebral ischemia model, although its effect on microglial polarization and chronic recovery after stroke is not clear. Here, we demonstrated that STV-Na treatment significantly reduced cerebral ischemic damage at both acute and chronic time points. STV-Na has a profound regulatory effect on microglia response after stroke. It can promote M2 polarization and inhibit microglia-mediated inflammation (M1) response following stroke in vivo and in vitro. Furthermore, we also found that Growth Arrest-Specific 5 (GAS5) altered OGD/R-induced microglial activation by increasing Notch1 expression via miR-146a-5p, the mRNA level of GAS5 and the protein level of Notch1 in vivo and in vitro, were discovered that both downgraded with STV-Na. Taken together, the present study demonstrated that STV-Na exerted neuroprotective effects by modulating microglia/macrophage polarization in ischemic stroke via the GAS5/miR-146a-5p sponge. These findings provide new evidence that targeting STV-Na could be a treatment for the prevention of stroke-related brain damage.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Minyi Lu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaofeng Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ying Mei
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qiwen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Kailun Zhong
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
113
|
Dietary Curcumin Prevented Astrocytosis, Microgliosis, and Apoptosis Caused by Acute and Chronic Exposure to Ozone. Molecules 2019; 24:molecules24152839. [PMID: 31387223 PMCID: PMC6696019 DOI: 10.3390/molecules24152839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Ozone is the most oxidant tropospheric pollutant gas, causing damage through the formation of reactive oxygen and nitrogen species. Reactive species induce the nuclear factor-kappa B (NF-κB) activation leading to neuroinflammation characterized by astrocytosis, microgliosis, and apoptotic cell death. There is interest in evaluating the pharmacological activity of natural antioxidants to confer neuroprotection against the damage caused by ozone in highly polluted cities. Curcumin has been proven to exert a protective action in the central nervous system (CNS) of diverse experimental models, with no side effects. The aim of this work is to evaluate the effect of curcumin in a preventive and therapeutic manner against the astrocytosis, microgliosis, and apoptosis induced by ozone in rat hippocampus. Fifty Wistar rats were distributed into five experimental groups: The intact control, curcumin fed control, ozone-exposed group, and the preventive and therapeutic groups receiving the curcumin supplementation while exposed to ozone. Ozone caused astrocytosis and microgliosis, as well as apoptosis in the hippocampus. Meanwhile, curcumin was able to decrease the activation of microglia and astrocytes, and apoptotic cell death in both periods of exposure. Therefore, we propose that curcumin could be used as a molecule capable of counteracting the damage caused by ozone in the CNS.
Collapse
|
114
|
Zhu J, Cao D, Guo C, Liu M, Tao Y, Zhou J, Wang F, Zhao Y, Wei J, Zhang Y, Fang W, Li Y. Berberine Facilitates Angiogenesis Against Ischemic Stroke Through Modulating Microglial Polarization via AMPK Signaling. Cell Mol Neurobiol 2019; 39:751-768. [PMID: 31020571 PMCID: PMC11462843 DOI: 10.1007/s10571-019-00675-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Evidence suggests that microglia/macrophages can change their phenotype to M1 or M2 and participate in tissue damage or repair. Berberine (BBR) has shown promise in experimental stroke models, but its effects on microglial polarization and long-term recovery after stroke are elusive. Here, we investigated the effects of BBR on angiogenesis and microglial polarization through AMPK signaling after stroke. In the present study, C57BL/6 mice were subjected to transient middle cerebral artery occlusion (tMCAO), intragastrically administrated with BBR at 50 mg/kg/day. Neo-angiogenesis was observed by 68Ga-NODAGA-RGD micro-PET/CT and immunohistochemistry. Immunofluorescent staining further exhibited an increase of M2 microglia and a reduction of M1 microglia at 14 days after stroke. In vitro studies, the lipopolysaccharide (LPS)-induced BV2 microglial cells were used to confirm the AMPK activation effect of BBR. RT-PCR, Flow cytometry, and ELISA all demonstrated that BBR could inhibit M1 polarization and promote M2 polarization. Furthermore, treatment of human umbilical vein endothelial cells (HUVEC) with conditioned media collected from BBR-treated BV2 cells promoted angiogenesis. All effects stated above were reversed by AMPK inhibitor (Compound C) and AMPK siRNA. In conclusion, BBR treatment improves functional recovery and promotes angiogenesis following tMCAO via AMPK-dependent microglial M2 polarization.
Collapse
Affiliation(s)
- Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dingwen Cao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710000, People's Republic of China
| | - Manman Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yifu Tao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yanli Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jing Wei
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China
| | - Yingdong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, People's Republic of China.
| | - Weirong Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yunman Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
115
|
Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A. Effects of Curcumin on Microglial Cells. Neurotox Res 2019; 36:12-26. [PMID: 30949950 DOI: 10.1007/s12640-019-00030-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Microglia are innate immune system cells which reside in the central nervous system (CNS). Resting microglia regulate the homeostasis of the CNS via phagocytic activity to clear pathogens and cell debris. Sometimes, however, to protect neurons and fight invading pathogens, resting microglia transform to an activated-form, producing inflammatory mediators, such as cytokines, chemokines, iNOS/NO and cyclooxygenase-2 (COX-2). Excessive inflammation, however, leads to damaged neurons and neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Curcumin is a phytochemical isolated from Curcuma longa. It is widely used in Asia and has many therapeutic properties, including antioxidant, anti-viral, anti-bacterial, anti-mutagenic, anti-amyloidogenic and anti-inflammatory, especially with respect to neuroinflammation and neurological disorders (NDs). Curcumin is a pleiotropic molecule that inhibits microglia transformation, inflammatory mediators and subsequent NDs. In this mini-review, we discuss the effects of curcumin on microglia and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Morgayn I Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
116
|
Li C, Bian Y, Feng Y, Tang F, Wang L, Hoi MPM, Ma D, Zhao C, Lee SMY. Neuroprotective Effects of BHDPC, a Novel Neuroprotectant, on Experimental Stroke by Modulating Microglia Polarization. ACS Chem Neurosci 2019; 10:2434-2449. [PMID: 30839193 DOI: 10.1021/acschemneuro.8b00713] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study mainly investigated the therapeutic effects of BHDPC on ischemic stroke and its underlying mechanisms. In vivo, the transient middle cerebral artery occlusion (MCAO) was used to induce ischemic model. In vitro, oxygen and glucose deprivation/reperfusion (OGD/R)-induced ischemic stroke in BV-2 microglia and primary neurons, and bEnd.3 mouse cerebral microvascular endothelial cells (ECs) were also used. First, we found that BHDPC exerts considerable neuroprotection against MCAO-induced ischemic injury to mice via alleviating neurological deficits and brain infarcts, inhibiting neuronal cell loss and apoptosis, and attenuating blood-brain barrier disruption and tight junction protein changes. Next, we observed that BHDPC significantly reduced microglial M1 activation but enhanced M2 polarization in MCAO-induced ischemic brain. Further experiments in vitro indicated that BHDPC suppressed microglial activation but promoted M2 microglial polarization in OGD/R-induced BV-2 microglia. In addition, conditioned medium (CM) experiments showed that CM from BHDPC-treated BV-2 microglia provided protections against OGD/R-induced ischemic damage in primary neurons and bEnd.3 ECs. Moreover, we found that BHDPC actions on microglial inflammation were associated with the inactivation of NF-κB signaling. Interestingly, we also found that BHDPC enhanced phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). The pharmacological inhibition or gene knockdown of PKA/CREB signaling diminished BHDPC-promoted microglial M2 polarization. In summary, BHDPC conferred neuroprotection against ischemic injury in experimental stroke models. Modulating microglial activation and polarization contributes to BHDPC-mediated neuroprotective actions, which in part were mediated by nuclear factor kappa B and PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Chuwen Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 510182, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dan Ma
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
117
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Gao H, Wei MJ. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 2019; 145:104253. [PMID: 31059788 DOI: 10.1016/j.phrs.2019.104253] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of structure and function of neurons most common in elderly population, mainly including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Neuroinflammation caused by microglia as the resident macrophages of the central nervous system (CNS) plays a contributory role in the onset and progression of NDs. Activated microglia, as in macrophages, to be heterogeneous, can polarize into M1 (pro-inflammatory) and M2 (anti-inflammatory) functional phenotypes. The former elaborate pro-inflammatory mediators promoting neuroinflammation and neuronal damage. In contrast, the latter generate anti-inflammatory mediators and neurotrophins that inhibit neuroinflammation and promote neuronal healing. Consistently, the regulation of microglial polarization from M1 to M2 phenotype appears as an outstanding therapeutic and preventive approach for NDs treatment. Although non-steroidal anti-inflammatory drugs (NSAIDs) currently used to alleviate M1 microglia-associated neuroinflammation responsible for the development of NDs, these drugs have different degrees of adverse effects and limited efficacy. As the advantages of novel structure, multi-target, high efficiency and low toxicity, natural products as the modulators of microglial polarization have attracted considerable concerns in the therapeutic areas of NDs. In this review, we mainly summarized the therapeutic potential of natural products and their various molecular mechanisms for NDs treatment through modulating microglial polarization. The aim of the current review is expected to be useful to develop innovative modulators of microglial polarization from natural products for the amelioration and treatment of NDs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China.
| |
Collapse
|
118
|
Zhang Y, Liu Z, Zhang W, Wu Q, Zhang Y, Liu Y, Guan Y, Chen X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J Neurosci Res 2019; 97:733-743. [PMID: 31006904 DOI: 10.1002/jnr.24409] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, but few drugs have proven to be effective for its treatment. Neuroinflammation exaggerates the secondary injury subsequent to trauma. Emerging evidence suggests that melatonin may help protect neural tissue against secondary injury after SCI, but the underlying mechanisms remain elusive. Microglial/macrophages polarization plays an important role in regulating immune responses. To examine whether melatonin exerts neuroprotective effects after acute SCI by regulating microglial/macrophages polarization in the spinal cord, we administered intraperitoneal injections of melatonin (50 mg/kg) in female rats immediately after SCI and then daily for seven consecutive days (n = 6). Compared with the vehicle-treated group (n = 6), the melatonin-treated group exhibited a greater Basso, Beattie, and Bresnahan locomotor rating score, smaller spinal cavity, and less cleaved caspase 3 immunofluorescence staining in the injured spinal segments. Real-time PCR data revealed decreases in the expression levels of M1 microglia phenotypic markers and increases in M2 markers in the spinal cord of melatonin-treated SCI rats, as compared to levels in the vehicle-treated group. Melatonin increased the number of CD206+ and Arg1+ cells, decreased the number of CD16+ and iNOS+ cells and reduced the levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the spinal cord tissue of female SCI rats. Current findings suggest that melatonin may inhibit pro-inflammatory responses and promote M2 polarization of microglial/macrophages in the spinal cord in the early stage of SCI, facilitating functional recovery. Accordingly, melatonin may represent a promising therapeutic candidate for acute SCI.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Research Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenxiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qichao Wu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanjun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yadong Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland.,Department of Neurological Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Xueming Chen
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
119
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
120
|
Liu C, Yang J, Zhang C, Geng X, Zhao H. The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurol Res 2019; 41:26-36. [PMID: 30281410 DOI: 10.1080/01616412.2018.1523037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/26/2018] [Indexed: 12/31/2022]
Abstract
Objective: Remote limb ischemic postconditioning (RIPostC) protects the brain from damage induced by transient focal ischemia/reperfusion. However, the underlying mechanism remains unclear. Methods: RIPostC induced by 10 min of occlusion and another 10 min releasing of blood flow for three cycles in the hind limbs was performed immediately after the reperfusion in a focal ischemia mice model. Neurological scores, immune cell population in the blood, spleen and lymph node, and inflammatory factors in the blood and brain were analyzed 2 days after the reperfusion. Results: Our results demonstrate that RIPostC reduced cerebral injuries and improved neurological functions 2 days after reperfusion. RIPostC significantly inhibited the reduction in the percentage of CD4 T cells in the spleen and lymph node, CD8 T cells in the blood and lymph node, and natural killer T (NKT) cells in the spleen by flow cytometry analysis. RIPostC attenuated the increase of B cells and NK cells in the spleen and noninflammatory monocytes in the blood. The cytokine assay showed that RIPostC decreased the elevation of IL-10, IL-6, and TNF-α in the blood after ischemia. The quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) results indicated that the mRNA level of IL-4 in the brain increased in the middle cerebral artery occlusion mice after RIPostC treatment. Conclusions: The present study indicates that there were significant changes of inflammatory responses during the neuroprotection induced by RIPostC in stroke mice.
Collapse
Affiliation(s)
- Cuiying Liu
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jian Yang
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Chencheng Zhang
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Xiaokun Geng
- a China-America Institute of Neuroscience, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Heng Zhao
- b Department of Neurosurgery , Stanford University , Stanford , CA , USA
| |
Collapse
|
121
|
Zhang Y, Ma L, Ren C, Liu K, Tian X, Wu D, Ding Y, Li J, Borlongan CV, Ji X. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2018; 234:12637-12645. [PMID: 30536714 PMCID: PMC6590306 DOI: 10.1002/jcp.27858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Remote ischemic postconditioning (RIPC) is a promising neuroprotective strategy for ischemic stroke. Here, we employed a focal ischemic stroke mouse model to test the hypothesis that poststroke collateral circulation as a potent mechanism of action underlying the therapeutic effects of immediate RIPC. During reperfusion of cerebral ischemia, the mice were randomly assigned to receive RIPC, granulocyte colony‐stimulating factor (G‐CSF) as a positive control, or no treatment. At 24 hr, we found RIPC and G‐CSF increased monocytes/macrophages in the dorsal brain surface and in the spleen, coupled with enhanced leptomeningeal collateral flow compared with nontreatment group. Blood monocytes depletion by 5‐fluorouracil (5‐FU) significantly limited the neuroprotection of RIPC or G‐CSF treatment. The protein expression of proangiogenic factors such as Ang‐2 was increased by ischemia, but treatment with either RIPC or G‐CSF showed no further upregulation. Thus, immediate RIPC confers neuroprotection, in part, by enhancing leptomeningeal collateral circulation in a mouse model of ischemic stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurobiology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Longhui Ma
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Kaiyin Liu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Xin Tian
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Di Wu
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
122
|
Li F, Ma Q, Zhao H, Wang R, Tao Z, Fan Z, Zhang S, Li G, Luo Y. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial polarization. Metab Brain Dis 2018; 33:1995-2003. [PMID: 30117100 PMCID: PMC6244772 DOI: 10.1007/s11011-018-0307-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/12/2018] [Indexed: 12/31/2022]
Abstract
Overwhelming evidence suggests that microglia play an important role in ischemic injury and they polarize into two different phenotypes with distinct functions after ischemic stroke. We performed the present study to investigate whether L-3-n butylphthalide (NBP) has an effect on microglial polarization. Mice were subjected to transient middle cerebral artery occlusion (MCAO) for 45 min, and then immediately after reperfusion were treated with NBP or vehicle via the caudal vein for 7 consecutive days. 2,3,5-Triphenyltetrazolium chloride (TTC) staining showed that NBP treatment resulted in a tendency to decrease cerebral infarct volume at 1 day after MCAO, and significant decreased infarct volume at 3 days after MCAO. Sensorimotor function was evaluated by the adhesive removal test and balance beam test, which were superior in NBP-treated mice compared with vehicle-treated mice at 1 and 3 days after MCAO. Immunofluorescent staining further indicated that NBP treatment significantly increased the number of CD206+/Iba1+ M2 microglia/macrophages and reduced the number of CD16+/Iba1+ M1 cells at 3 and 7 days after MCAO reperfusion. Western blot also showed an elevation of M2 marker (arginase-1) in NBP-treated brains at 7 days after MCAO. In conclusion, our results clearly show that NBP treatment significantly mitigates ischemic brain damage and promotes recovery of neurological function in early phase after ischemic stroke, probably by skewing M1 microglia/macrophages polarization towards M2 phenotype. Thus, our study provides new evidence that NBP might be a promising candidate for ameliorating injury caused by ischemic stroke.
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhibin Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
123
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
124
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
125
|
Immune Cells After Ischemic Stroke Onset: Roles, Migration, and Target Intervention. J Mol Neurosci 2018; 66:342-355. [DOI: 10.1007/s12031-018-1173-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/14/2018] [Indexed: 01/09/2023]
|
126
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
127
|
Cheon SY, Kim EJ, Kim SY, Kim JM, Kam EH, Park JK, Koo BN. Apoptosis Signal-regulating Kinase 1 Silencing on Astroglial Inflammasomes in an Experimental Model of Ischemic Stroke. Neuroscience 2018; 390:218-230. [PMID: 30172704 DOI: 10.1016/j.neuroscience.2018.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/14/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Activation of the inflammasome complex contributes to the inflammatory response and cell death under pathologic conditions. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 2 (NLRP2) inflammasome is activated in astrocytes after cerebral ischemia, which can aggravate ischemic damage. Apoptosis signal-regulating kinase 1 (ASK1) is an early activator and immune-regulator after ischemic injury, that can lead to cell death. The objective of the present study was to evaluate the role of ASK1 in controlling NLRP2 inflammasomes in astrocytes after cerebral ischemia. In a mouse model of ischemic stroke, the levels of NLRP2 inflammasome components, and interleukin (IL)-1β and IL-18, were quantified in different brain regions. In addition, an astrocyte cell line was subjected to oxygen-glucose deprivation and reperfusion (OGD/R) injury, and the levels of NLRP2 inflammasome factors, IL-1β and IL-18 were evaluated. Ischemic brain injury activated astrocytes. The levels of NLRP2 inflammasome components, IL-1β and IL-18 productions, and cell death increased in the cortex and striatum after ischemic injury. In cultured astrocytes, NLRP2 inflammasome components, IL-1β and IL-18 levels were upregulated after OGD/R. ASK1 silencing or inhibition efficiently reduced NLRP2 inflammasome components and pro-inflammatory cytokine levels in mice and cultured astrocytes. Our findings identify a key role for ASK1 in regulating astroglial inflammasomes after cerebral ischemia. We suggest ASK1 as one of the main targets for astroglial inflammasomes in ischemic stroke.
Collapse
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Kwang Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
128
|
Cheon SY, Kim JM, Kim EJ, Kim SY, Kam EH, Ho CC, Lee SK, Koo BN. Intranuclear delivery of synthetic nuclear factor-kappa B p65 reduces inflammasomes after surgery. Biochem Pharmacol 2018; 158:141-152. [PMID: 30096289 DOI: 10.1016/j.bcp.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Patients undergoing surgery can suffer from various complications, including post-operative bleeding, local or systematic infection, and neurologic disorders. Major surgery can initiate innate immune responses and trigger overproduction of inflammatory mediators, which can contribute to organ dysfunction. Inflammasomes are innate immune complexes, which are connected to the pathogenesis of various diseases, including atherosclerosis, hemorrhagic brain injury, and Alzheimer's disease. In the present study, we hypothesized that nucleotide-binding oligomerization domain-containing-like receptor protein (NLRP) inflammasomes may have a role in the pathological effects of surgery. Therefore, we designed a protein inhibitor of nuclear factor kappa B (NF-κB) p65 transcripts, called nt-p65-TMD (nuclear transducible (nt) transcription modulated domain (TMD) of RelA (p65)), that can penetrate the nucleus, and evaluated its therapeutic efficacy for dampening surgery-induced inflammasome activation. It was found that the nt-p65-TMD significantly reduced the NLRP1 inflammasome complex components (NLRP1, ASC, and Caspase-1) and interleukin (IL)-1β and IL-18 productions in the spleen after surgery. In the spleen, specific cell population and selective mediators were altered after surgery with/without nt-p65-TMD treatment. Also, we found that treatment of nt-p65-TMD decreased cell death in the spleen after surgery. Therefore, nt-p65-TMD is a potential novel strategy for reducing surgery-induced NLRP1 inflammasome and complications.
Collapse
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun-Chang Ho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
129
|
Ren C, Li S, Rajah G, Shao G, Lu G, Han R, Huang Q, Li H, Ding Y, Jin K, Ji X. Hypoxia, hibernation and Neuroprotection: An Experimental Study in Mice. Aging Dis 2018; 9:761-768. [PMID: 30090664 PMCID: PMC6065299 DOI: 10.14336/ad.2018.0702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 11/01/2022] Open
Abstract
Hibernation is a unique physiological state that evolved to survive periods of food shortages. It is characterized by profound decreases in metabolic rate, body temperature and physiological functions. Studies have shown that animals in hibernation can resist neurological damage. Here, we aimed to study whether hypoxia can induce a hibernation-like state in a traditionally non-hibernating animal and whether it is neuroprotective. All procedures were conducted according to international guidelines on laboratory animal safety. Mice C57BL/6 (19-21g) were placed into a 125 mL jar with fresh air and the jar was sealed with a rubber plug. For each run, the tolerance limit was judged by the animals' appearance for "air hunger". The animal was removed from the jar as soon as its first gasping breath appeared and was moved to another fresh-air-containing jar of similar volume. This procedure was performed in four runs. The hypoxia exposure significantly decreased oxygen (O2) consumption, carbon dioxide (CO2) production, respiratory rate and heart rate. Meanwhile, rectal temperature reached a minimum of 12.7±2.56°C, which is lower than a wide range of ambient temperatures. The mimicked hibernation decreased the infarct size in a focal cerebral ischemia mouse model. Our findings suggest the possibility of inducing suspended animation-like hibernation states for medical applications post injury.
Collapse
Affiliation(s)
- Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Guo Shao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Rongrong Han
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Qingjian Huang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kunlin Jin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
- Center of Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| |
Collapse
|
130
|
Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 2018; 105:518-525. [PMID: 29883947 DOI: 10.1016/j.biopha.2018.05.143] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023] Open
Abstract
As the first line of defense in the nervous system, resident microglia are the predominant immune cells in the brain. In diseases of the central nervous system such as stroke, Alzheimer's disease, and Parkinson's disease, they often cause inflammation or phagocytosis; however, some studies have found that despite the current controversy over M1, M2 polarization could be beneficial. Ischemic stroke is the third most common cause of death in humans. Patients who survive an ischemic stroke might experience a clear decline in their quality of life, owing to conditions such as hemiplegic paralysis and aphasia. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 and neuroprotective M2 types. Therefore, methods for promoting the differentiation of microglia into the M2 polarized form to alleviate harmful reactions after stroke have become a topic of interest in recent years. Subsequently, the discovery of new drugs related to M2 polarization has enabled the realization of targeted therapies. In the present review, we discussed the neuroprotective effects of microglia M2 polarization and the potential mechanisms and drugs by which microglia can be transformed into the M2 polarized type after stroke.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyi Xing
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wan
- The Children's Hospital of Soochow, Jiangsu, Hematology and Oncology, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
131
|
Taurine protects dopaminergic neurons in a mouse Parkinson's disease model through inhibition of microglial M1 polarization. Cell Death Dis 2018; 9:435. [PMID: 29568078 PMCID: PMC5864871 DOI: 10.1038/s41419-018-0468-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Microglia-mediated neuroinflammation is implicated in multiple neurodegenerative disorders, including Parkinson’s disease (PD). Hence, the modulatioein of sustained microglial activation may have therapeutic potential. This study is designed to test the neuroprotective efficacy of taurine, a major intracellular free β-amino acid in mammalian tissues, by using paraquat and maneb-induced PD model. Results showed that mice intoxicated with paraquat and maneb displayed progressive dopaminergic neurodegeneration and motor deficits, which was significantly ameliorated by taurine. Taurine also attenuated the aggregation of α-synuclein in paraquat and maneb-intoxicated mice. Mechanistically, taurine suppressed paraquat and maneb-induced microglial activation. Moreover, depletion of microglia abrogated the dopaminergic neuroprotective effects of taurine, revealing the role of microglial activation in taurine-afforded neuroprotection. Subsequently, we found that taurine suppressed paraquat and maneb-induced microglial M1 polarization and gene expression levels of proinflammatory factors. Furthermore, taurine was shown to be able to inhibit the activation of NADPH oxidase (NOX2) by interfering with membrane translocation of cytosolic subunit, p47phox and nuclear factor-kappa B (NF-κB) pathway, two key factors for the initiation and maintenance of M1 microglial inflammatory response. Altogether, our results showed that taurine exerted dopaminergic neuroprotection through inactivation of microglia-mediated neuroinflammation, providing a promising avenue and candidate for the potential therapy for patients suffering from PD.
Collapse
|
132
|
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017; 11:680. [PMID: 29311768 PMCID: PMC5733046 DOI: 10.3389/fnins.2017.00680] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research.
Collapse
Affiliation(s)
- Kevin A Clayton
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Alicia A Van Enoo
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Medical School, Boston University, Boston, MA, United States.,Department of Neurology, Medical School, Boston University, Boston, MA, United States
| |
Collapse
|