101
|
Valentini V, Santi R, Silvestri V, Saieva C, Roviello G, Amorosi A, Compérat E, Ottini L, Nesi G. CD44 Methylation Levels in Androgen-Deprived Prostate Cancer: A Putative Epigenetic Modulator of Tumor Progression. Int J Mol Sci 2025; 26:2516. [PMID: 40141159 PMCID: PMC11942495 DOI: 10.3390/ijms26062516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Epigenetic changes have been reported to promote the development and progression of prostate cancer (PCa). Compared to normal prostate tissue, tumor samples from patients treated with androgen-deprivation therapy (ADT) show the hypermethylation of genes primarily implicated in PCa progression. A series of 90 radical prostatectomies was retrospectively analyzed. A total of 46 patients had undergone surgery alone (non-treated) and 44 had received ADT prior to surgery (treated). Promoter methylation analysis of the candidate genes possibly involved in PCa response to ADT (AR, ESR1, ESR2, APC, BCL2, CD44, CDH1, RASSF1, ZEB1) was conducted by pyrosequencing. The mRNA expression of differentially methylated genes was investigated by quantitative real-time PCR. Intratumoral microvessel density and ERG expression were also assessed using immunohistochemistry. A statistically significant difference in CD44 promoter methylation levels was found, with higher levels in the non-treated cases, which accordingly showed lower CD44 gene expression than the treated cases. Moreover, lower ESR1 methylation levels were associated with higher ERG expression, and the CD44 methylation levels were increased in ERG-overexpressing tumors, particularly in the treated cases. Our data suggest an interplay between ERG expression and the epigenetic modifications in key genes of prostate tumorigenesis, and that CD44 promoter methylation could serve as a promising molecular biomarker of PCa progression under androgen-deprived conditions.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Raffaella Santi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Calogero Saieva
- Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research and Clinical Network (ISPRO), 50134 Florence, Italy;
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | - Andrea Amorosi
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Eva Compérat
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (V.S.); (L.O.)
| | - Gabriella Nesi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| |
Collapse
|
102
|
Vitorelli-Venancio DC, Matias R, Ganassin AR, Venancio FA, Perdomo RT, Gomes GB, Kwiatkowski A, de Andrade Dos Santos JV, Chang MR. Bioactives derived from Brazilian native flora with antimicrobial and anticancer activity. BMC Complement Med Ther 2025; 25:102. [PMID: 40069678 PMCID: PMC11900633 DOI: 10.1186/s12906-025-04787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The development of new drugs that act against multidrug-resistant microorganisms and malignant tumors is necessary owing to the limited therapeutic options and high mortality rates associated with these pathologies. In this study, we evaluated the phytochemical groups present in seven plants from the Brazilian Cerrado even as their antioxidant, antiproliferative and antimicrobial activities. METHODS The extracts were obtained by the maceration technique and secondary metabolites were determined by phytochemical analysis. The antioxidant activity was assessed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging method. The antiproliferative activity of the extracts was assessed using human breast, kidney, and liver neoplastic cells. Cytotoxicity was evaluated in a non-neoplastic cell line - NIH/3T3. The antimicrobial activity of the plant extracts against resistant bacteria and yeasts was determined using disk diffusion assays, and the minimum inhibitory concentration (MIC) was determined by the broth microdilution technique. RESULTS Phytochemical analysis revealed the presence of phenolic compounds, flavonoids, steroids, tannins, and saponins in all of the extracts, with Smilax fluminensis showing the highest levels of phenolic compounds and flavonoids. All tested extracts exhibited antioxidant activity above 50%, notably Tapiria obtusa (82.36 ± 0.44). The T. obtusa extract showed potent antiproliferative activity against the 786-0 cell line (GI50 10.16 ± 2.33 µg/mL) and a significantly greater SI (SI = 24.61) than the control (SI = 3.23, doxorubicin), indicating its selective cytotoxicity against cancer cells and its potential as a therapeutic agent against renal cancer. No cytotoxicity was observed in non-tumor cells. Extracts of S. fluminensis leaves showed fungicidal effects on Candida glabrata (MIC = 500 µg/mL). This study is the first to demonstrate the antibacterial activity of T. obtusa leaf ethanolic extract against MRSA (MIC = 1,000 µg/mL). CONCLUSIONS The ethanolic extract of T. obtusa demonstrated antioxidant activity, antiproliferative effects against the 786-0 cell line, and antibacterial activity against MRSA. The ethanolic extract of S. fluminensis leaves exhibited a fungicidal effect against C. glabrata. These findings may pave the way for more effective and safer treatments for managing oncological and infectious diseases.
Collapse
Affiliation(s)
- Daniele Cristina Vitorelli-Venancio
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
- Faculdade de Medicina, Centro Universitário de Adamantina, Adamantina, SP, Brazil
| | - Rosemary Matias
- Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera- Uniderp, Campo Grande, MS, Brazil
| | - Amanda Rodrigues Ganassin
- Programa de Pós-Graduação em Meio Ambiente e Desenvolvimento Regional, Universidade Anhanguera- Uniderp, Campo Grande, MS, Brazil
| | - Fabio Antonio Venancio
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
- Faculdade de Medicina, Centro Universitário de Adamantina, Adamantina, SP, Brazil
| | - Renata Trentin Perdomo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Giovana Bicudo Gomes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Angela Kwiatkowski
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso do Sul, Coxim, MS, Brasil
| | | | - Marilene Rodrigues Chang
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
103
|
Glevitzky M, Bostan R, Vică ML, Dumitrel GA, Corcheş MT, Popa M, Glevitzky I, Matei HV. Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania. PLANTS (BASEL, SWITZERLAND) 2025; 14:866. [PMID: 40265771 PMCID: PMC11945197 DOI: 10.3390/plants14060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/24/2025]
Abstract
Contamination with heavy metal ions from mining activities presents a major environmental issue. This study investigates pollution caused by heavy metals from mining, with a particular emphasis on toxic ions and essential ions for living organisms. It starts by analyzing the sources of pollution and its effects on soil, vegetation, water, and wildlife (propolis produced by honey bees living in natural environments). Propolis is an indicator of environmental contamination by metals, a natural and valuable product of natural ecosystems. As part of the investigation, the contamination with metal cations (Pb2+, Cu2+, Cd2+, Zn2+, As3+, Fe2+, and Sr2+) of the soil, cultivated vegetables (carrot, turnip, onion, potato) was monitored in 9 points in the Roșia Montană area, Romania, as well as the river that runs through the area. The maximum values of the parameters investigated were recorded in soil (108.32 mg/kg Pb2+, 23.06 mg/kg Cd2+, 102.17 mg/kg As3+), river water (11.00 µg/L Pb2+, 903.47 µg/L Cu2+, 60.13 µg/L Cd2+, 1903.08 µg/L Zn2+, 148.07 µg/L As3+, 44,024.08 µg/L Fe2+), vegetables (0.72 mg/kg Pb2+, 0.17 mg/kg Cd2+) and it was followed whether the same heavy metals are found in propolis (maximum values 10.14 mg/kg Pb2+, 6.32 mg/kg Cu2+, 0.158 mg/kg Cd2+, 6.0 Zn2+, 1.04 mg/kg As3+, 12.06 mg/kg Sr2+). The parameters analyzed for the river waters were pH, sulfates, the oxygen and nutrient regime, and microbial load. Additional investigations were carried out into the quality of these propolis samples: water activity, moisture, hygroscopicity, water solubility, volatile oils, oxidation index, measuring point, density, dry matter, material insoluble in ethanol, extractable with ethanol, ash, and wax. The highest values were 189.4 mg GAE/g for phenols, 84.31 mg QE/g for flavonoids, and 0.086 µg/mL for IC50 antioxidant activity. This study indicates that bee products, such as propolis, can be an indicator of pollution in mining areas.
Collapse
Affiliation(s)
- Mirel Glevitzky
- Faculty of Informatics and Engineering, “1 Decembrie 1918” University of Alba Iulia, 15-17 Unirii Street, 510009 Alba Iulia, Romania; (M.G.); (R.B.); (M.-T.C.); (M.P.)
- Sanitary Veterinary and Food Safety Directorate of Alba County, 7A Lalelor Street, 510217 Alba Iulia, Romania
| | - Roxana Bostan
- Faculty of Informatics and Engineering, “1 Decembrie 1918” University of Alba Iulia, 15-17 Unirii Street, 510009 Alba Iulia, Romania; (M.G.); (R.B.); (M.-T.C.); (M.P.)
| | - Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania;
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timişoara, 2 Victoriei Square, 300006 Timişoara, Romania;
| | - Mihai-Teopent Corcheş
- Faculty of Informatics and Engineering, “1 Decembrie 1918” University of Alba Iulia, 15-17 Unirii Street, 510009 Alba Iulia, Romania; (M.G.); (R.B.); (M.-T.C.); (M.P.)
| | - Maria Popa
- Faculty of Informatics and Engineering, “1 Decembrie 1918” University of Alba Iulia, 15-17 Unirii Street, 510009 Alba Iulia, Romania; (M.G.); (R.B.); (M.-T.C.); (M.P.)
| | - Ioana Glevitzky
- Sanitary Veterinary and Food Safety Directorate of Alba County, 7A Lalelor Street, 510217 Alba Iulia, Romania
| | - Horea-Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania;
- Institute of Legal Medicine, 400006 Cluj-Napoca, Romania
| |
Collapse
|
104
|
Liu Y, Zhu J, Liu Z, Zhi Y, Mei C, Wang H. Flavonoids as Promising Natural Compounds for Combating Bacterial Infections. Int J Mol Sci 2025; 26:2455. [PMID: 40141099 PMCID: PMC11942443 DOI: 10.3390/ijms26062455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 03/28/2025] Open
Abstract
The increasing emergence and dissemination of multidrug-resistant (MDR) bacterial pathogens have intensified the need for new antibiotics and alternative therapeutic strategies. Flavonoids, a diverse group of bioactive natural compounds found in plants, have shown significant promise as antibacterial agents. Flavonoids inhibit bacterial growth through various mechanisms, including disruption of cell wall synthesis, prevention of biofilm formation, disruption of cell membrane integrity, and inhibition of bacterial efflux pumps. These actions not only reduce bacterial viability but also enhance the efficacy of conventional antibiotics, offering a potential solution to antibiotic resistance. However, challenges such as poor bioavailability limit their clinical application. Recent advances in nanotechnology-based drug delivery systems, chemical modifications, and formulation techniques have shown promise in improving flavonoid bioavailability and therapeutic efficacy. This review evaluates the antibacterial mechanisms of flavonoids, explores their potential synergistic effects with antibiotics, and highlights strategies to overcome bioavailability issues. Our findings underscore the importance of continued research on flavonoids as promising candidates for innovative antibacterial therapies aimed at combating MDR bacterial infections.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.L.); (Z.L.); (Y.Z.)
| | - Jiajia Zhu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China;
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.L.); (Z.L.); (Y.Z.)
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.L.); (Z.L.); (Y.Z.)
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.L.); (Z.L.); (Y.Z.)
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Y.L.); (Z.L.); (Y.Z.)
| |
Collapse
|
105
|
Vieira CSP, Freitas M, Palmeira A, Fernandes E, Araújo AN. How Plant Polyhydroxy Flavonoids Can Hinder the Metabolism of Cytochrome 3A4. Biomedicines 2025; 13:655. [PMID: 40149631 PMCID: PMC11940229 DOI: 10.3390/biomedicines13030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Recent interest in dietary components and their effects on xenobiotic metabolism has highlighted their role in modulating drug pharmacokinetics. Cytochrome P450 3A4, a key isoform of the cytochrome P450 superfamily, is involved in the metabolism of over 50% of xenobiotics. Flavonoids, present in various foods and supplements, exhibit diverse biological activities influenced by the structural modifications in their scaffold. Methods: Fifteen polyhydroxy-flavonoid compounds were firstly tested by a high-throughput fluorimetric method for their ability to inhibit CYP3A4, where scutellarein and gossypetin were assessed for the first time. A molecular docking analysis was performed for the most active inhibitors to gain insight on their interaction with the active site of the enzyme. Results: Baicalein, luteolin, and scutellarein were the most potent flavones, presenting an IC50 of 15 ± 5, 31 ± 10, and 19 ± 7 μmol/L, respectively. Gossypetin, herbacetin, and quercetin were the most potent flavonols with IC50 of 40 ± 8, 32 ± 8, and 23 ± 5 μmol/L, respectively. The molecular docking analysis showed that hydroxyl groups at C6, C7, C8 (ring A), and C3' (ring B) on the flavone structure affect CYP3A4 enzyme catalysis by binding to its substrate-binding site as strong as known antiviral and antifungal drugs. Conclusions: Binding to the enzyme's active site with a strength comparable to known antifungal and antiviral drugs, baicalein and scutellarein were identified as the most active flavonoids. The vicinal hydroxyls in those molecules were pivotal to positioning and stabilization in the catalytic site pocket.
Collapse
Affiliation(s)
- Carina S. P. Vieira
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.S.P.V.); (M.F.); (E.F.)
| | - Marisa Freitas
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.S.P.V.); (M.F.); (E.F.)
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4450-208 Matosinhos, Portugal
| | - Eduarda Fernandes
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.S.P.V.); (M.F.); (E.F.)
| | - Alberto N. Araújo
- Associated Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.S.P.V.); (M.F.); (E.F.)
| |
Collapse
|
106
|
Bhattacharjee S, Rastogi V, Durgapal S, Verma A, Singh B, Chandra A. Nanotherapy targeting anti-aging skin cells: harnessing ursolic acid from Ocimum sanctum Linn for precision skin rejuvenation - a molecular perspective. Nat Prod Res 2025:1-16. [PMID: 40047211 DOI: 10.1080/14786419.2025.2474157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
The necessity of this work lies in the innovative application of nanotherapy to target anti-ageing skin cells, utilising ursolic acid from Ocimum sanctum Linn for precise and effective skin rejuvenation at a molecular level. Ursolic acid (UA), a pentacyclic triterpenoid compound, found in abundance in the plant O. sanctum Linn, has long been recognised for its potential anti-inflammatory, antioxidant, and anti-ageing properties. Despite its promising benefits, the direct application of UA in skincare has been limited, primarily due to its low aqueous solubility and poor skin penetration. This study explores a groundbreaking molecular approach, employing nanotechnology to enhance the delivery of UA, targeting skin cells for effective anti-ageing treatment. Through a comprehensive investigation, UA was encapsulated into biocompatible nanocarriers, ensuring increased stability, improved dermal penetration, and sustained release of the compound at the targeted site. By harnessing the specificity and efficiency of nanodelivery systems, the study achieved significant improvement in the absorption of UA in the deeper layers of the skin. This targeted intervention at the cellular and molecular level paved the way for maximising the potential of UA as an anti-ageing agent. In conclusion, the nanotherapeutic delivery of UA from O. sanctum Linn offers a paradigm shift in skincare, bringing forth a promising molecular strategy to combat skin ageing. With further advancements, this approach has the potential to revolutionise anti-ageing treatments, integrating traditional botanical wisdom with cutting-edge nanotechnology.
Collapse
Affiliation(s)
| | | | | | - Anurag Verma
- TMCOP, Teerthanker Mahaveer University, Bagadpur, India
| | - Bhavana Singh
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Amrish Chandra
- School of Pharmacy, Sharda University, Greater Noida, India
| |
Collapse
|
107
|
BenSouf I, Saidani M, Maazoun A, Bejaoui B, Larbi MB, M’Hamdi N, Aggad H, Joly N, Rojas J, Morillo M, Martin P. Use of Natural Biomolecules in Animal Feed to Enhance Livestock Reproduction. Int J Mol Sci 2025; 26:2328. [PMID: 40076947 PMCID: PMC11900002 DOI: 10.3390/ijms26052328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Feed additives are crucial in livestock production, enhancing performance, health, and reproductive efficiency. Recently, there has been a shift toward natural biomolecules as feed additives, specifically targeting improved reproductive outcomes and sperm quality. This transition arises from concerns about antibiotic misuse, antimicrobial resistance, and consumer preferences for eco-friendly products, along with the superior bioavailability, lower toxicity, and reduced environmental impact of natural biomolecules compared to synthetic alternatives. Collaboration among researchers, veterinarians, nutritionists, and regulators is essential to ensure safe and effective livestock management. The review explores advancements in using vital biomolecules in reproductive processes, including plant-derived bioactives such as phytochemicals and antioxidants. It investigates not only the mechanisms but also the intricate interactions of these compounds with animals' hormonal and physiological systems. Additionally, the review critically assesses challenges and prospects related to incorporating natural biomolecules into livestock practices. The potential benefits include enhanced reproductive efficiency and improved sperm quality. However, successful implementation requires understanding factors like precise dosing, potential interactions, and long-term health impacts. Overall, this comprehensive review highlights recent research, technological strides, and the future potential of integrating natural biomolecules into animal diets.
Collapse
Affiliation(s)
- Ikram BenSouf
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Mariem Saidani
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Asma Maazoun
- Horticultural Science Laboratory, LR13AGR01, National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia;
| | - Bochra Bejaoui
- Laboratory of Useful Materials, National Institute of Research and Pysico-Chemical Analysis (INRAP), Technopark of Sidi Thabet, Ariana 2020, Tunisia;
- Department of Chemistry, Faculty of Sciences of Bizerte, Zarzouna, University of Carthage, Bizerte 7021, Tunisia
| | - Manel Ben Larbi
- Research Unit of Biodiversity and Resource Development in Mountain Areas of Tunisia, UR17AGR14, Higher School of Agriculture of Mateur, University of Carthage, Tunis 1082, Tunisia; (M.S.); (M.B.L.)
| | - Naceur M’Hamdi
- Animal and Food Resources Laboratory (LRAA), National Agronomic Institute of Tunisia, University of Carthage, 43 Av. Charles Nicolle, Tunis 1082, Tunisia; (I.B.); (N.M.)
| | - Hebib Aggad
- Laboratory of Hygiene and Animal Pathology, Institute of Veterinary Science, University of Tiaret, Route d’Alger BP 78, Tiaret 14000, Algeria;
| | - Nicolas Joly
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| | - Janne Rojas
- Biomoléculas Orgánicas Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Marielba Morillo
- Ecology and Nutrition Research Group, Faculty of Pharmacy and Bioanalysis, University of Los Andes, Mérida 5101, Venezuela;
| | - Patrick Martin
- Unité Transformations &Agroressources, ULR7519, Université d’Artois, UniLaSalle, F-62408 Béthune, France;
| |
Collapse
|
108
|
Šutković J. Neutrophils and COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:347-384. [PMID: 40246349 DOI: 10.1016/bs.pmbts.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Neutrophils are the first line of defense against pathogens, most effectively by forming Neutrophil Extracellular Traps (NETs). Neutrophiles are further classified into several subpopulations during their development, eliminating pathogens through various mechanisms. However, due to the chaotic and uncontrolled immune response, NETs are often severely resulting in tissue damage and lung infections. The uncontrolled and poorly acknowledged host response regarding the cytokine storm is one of the major causes of severe COVID-19 conditions. Specifically, the increased formation of low-density neutrophils (LDNs), together with neutrophil extracellular traps (NETs) is closely linked with the severity and poor prognosis in patients with COVID-19. In this review, we discuss in detail the ontogeny of neutrophils at different stages and their recruitment and activation after infections, focusing on SARS-CoV-2. In addition, this chapter summarized the research progress on potential targeted drugs (NETs and Cytokine inhibitors) for neutrophil medical therapy and hoped to provide reference for the development of related therapeutic drugs for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Jasmin Šutković
- Department Genetics and Bioegnineering, International University of Sarajevo, Hrasnička cesta, Bosnia & Herzegovina.
| |
Collapse
|
109
|
Persaud M, Lewis A, Kisiala A, Smith E, Azimychetabi Z, Sultana T, Narine SS, Emery RJN. Untargeted Metabolomics and Targeted Phytohormone Profiling of Sweet Aloes ( Euphorbia neriifolia) from Guyana: An Assessment of Asthma Therapy Potential in Leaf Extracts and Latex. Metabolites 2025; 15:177. [PMID: 40137143 PMCID: PMC11943701 DOI: 10.3390/metabo15030177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives:Euphorbia neriifolia is a succulent plant from the therapeutically rich family of Euphorbia comprising 2000 species globally. E. neriifolia is used in Indigenous Guyanese asthma therapy. Methods: To investigate E. neriifolia's therapeutic potential, traditionally heated leaf, simple leaf, and latex extracts were evaluated for phytohormones and therapeutic compounds. Full scan, data-dependent acquisition, and parallel reaction monitoring modes via liquid chromatography Orbitrap mass spectrometry were used for screening. Results: Pathway analysis of putative features from all extracts revealed a bias towards the phenylpropanoid, terpenoid, and flavonoid biosynthetic pathways. A total of 850 compounds were annotated using various bioinformatics tools, ranging from confidence levels 1 to 3. Lipids and lipid-like molecules (34.35%), benzenoids (10.24%), organic acids and derivatives (12%), organoheterocyclic compounds (12%), and phenylpropanoids and polyketides (10.35%) dominated the contribution of compounds among the 13 superclasses. Semi-targeted screening revealed 14 out of 16 literature-relevant therapeutic metabolites detected, with greater upregulation in traditional heated extracts. Targeted screening of 39 phytohormones resulted in 25 being detected and quantified. Simple leaf extract displayed 4.4 and 45 times greater phytohormone levels than traditional heated leaf and latex extracts, respectively. Simple leaf extracts had the greatest nucleotide and riboside cytokinin and acidic phytohormone levels. In contrast, traditional heated extracts exhibited the highest free base and glucoside cytokinin levels and uniquely contained methylthiolated and aromatic cytokinins while lacking acidic phytohormones. Latex samples had trace gibberellic acid levels, the lowest free base, riboside, and nucleotide levels, with absences of aromatic, glucoside, or methylthiolated cytokinin forms. Conclusions: In addition to metabolites with possible therapeutic value for asthma treatment, we present the first look at cytokinin phytohormones in the species and Euphorbia genus alongside metabolite screening to present a comprehensive assessment of heated leaf extract used in Indigenous Guyanese asthma therapy.
Collapse
Affiliation(s)
- Malaika Persaud
- Sustainability Studies Graduate Program, Faculty of Arts and Science, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Ainsely Lewis
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Kisiala
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| | - Ewart Smith
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Zeynab Azimychetabi
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 0G2, Canada; (E.S.); (Z.A.)
| | - Tamanna Sultana
- Department of Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada;
| | - Suresh S. Narine
- Trent Centre for Biomaterials Research, Trent University, Peterborough, ON K9J 0G2, Canada;
- Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, ON K9J 0G2, Canada
| | - R. J. Neil Emery
- Department of Biology, Trent University, Peterborough, ON K9J 0G2, Canada; (A.K.); (R.J.N.E.)
| |
Collapse
|
110
|
Liu Y, Li B, Yi C, Chen X, Yu X. Application of polydopamine as antibacterial and anti-inflammatory materials. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022005. [PMID: 39970533 DOI: 10.1088/2516-1091/adb81d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Polydopamine (PDA), as a material mimicking the adhesive proteins of mussels in nature, has emerged as a strong candidate for developing novel antibacterial and anti-inflammatory materials due to its outstanding biomimetic adhesion, effective photothermal conversion, excellent biocompatibility and antioxidant capabilities. This review discussed in detail the intricate structure and polymerization principles of PDA, elucidated its mechanisms in combating bacterial infections and inflammation, as well as explored the innovative use of PDA-based composite materials for antibacterial and anti-inflammatory applications. By providing an in-depth analysis of PDA's capabilities and future research directions, this review addresses a crucial need for safer, more effective, and controllable antimicrobial and anti-inflammatory strategies, which aim to contribute to the development of advanced materials that can significantly impact public health.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Chuan Yi
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Xiaolin Yu
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| |
Collapse
|
111
|
Chen D, Xiao Y, Zheng X, Sun H, Zhang C, Zhu J, Xue T. Seasonal dynamics and molecular regulation of flavonoid biosynthesis in Cyclocarya paliurus (Batal.) Iljinsk. FRONTIERS IN PLANT SCIENCE 2025; 16:1525226. [PMID: 40104034 PMCID: PMC11917369 DOI: 10.3389/fpls.2025.1525226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025]
Abstract
Introduction Cyclocarya paliurus, an economically important species known for its high flavonoid content, has potential for industrial applications. Understanding the seasonal dynamics and molecular regulation of flavonoid biosynthesis in this species is crucial for optimizing its production. Methods We conducted an integrated analysis of transcriptomic and metabolomic data to identify key genes involved in flavonoid biosynthesis and regulation. Seasonal variation in flavonoid content and gene expression was examined, with a focus on the genes involved in the flavonoid synthesis pathway and their correlation with flavonoid levels. Results Flavonoid content peaked in August and declined towards November, with quercetin and kaempferol glycosides being the most abundant compounds. Pearson correlation analysis revealed significant relationships between the functional genes of the flavonoid synthesis pathway and flavonoid content. Seasonal variations in the expression of key biosynthetic genes (CHS, CHI, F3H, DFR, FLS) and regulatory transcription factors (MYB11, MYB12, MYB111, MYB75, MYB90, bHLH, WD40) were strongly correlated with flavonoid levels, particularly under environmental stress. Discussion These findings provide insights into the genetic regulation of flavonoid biosynthesis in C. paliurus and highlight the importance of seasonal and environmental factors. This knowledge has practical implications for industrial breeding and biotechnological applications, particularly in enhancing the functional properties of C. paliurus for industrial use. Our study establishes a foundation for future research aimed at optimizing flavonoid production in this species and exploring its potential for bioactive compound production.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yixin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huamiao Sun
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Cifeng Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the Department of Natural Resources, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
112
|
Munisha M, Huang R, Schimenti JC. Chronic replication stress-mediated genomic instability disrupts placenta development in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640689. [PMID: 40093167 PMCID: PMC11908151 DOI: 10.1101/2025.02.28.640689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Abnormal placentation drives many pregnancy-related pathologies and poor fetal outcomes, but the underlying molecular causes are understudied. Here, we show that persistent replication stress due to mutations in the MCM2-7 replicative helicase disrupts placentation and reduces embryo viability in mice. MCM-deficient embryos exhibited normal morphology but their placentae had a drastically diminished junctional zone (JZ). Whereas cell proliferation in the labyrinth zone (LZ) remained unaffected, JZ cell proliferation was reduced, independent of cell death during early development. Mouse trophoblast stem cells (TSCs) with high genomic instability failed to maintain stemness, suggesting that replication stress affects the initial trophoblast progenitor pool in a manner that preferentially impacts the developing JZ. Genetically increasing chromatin-bound MCM levels in the mutants rescued placental defects and embryo viability. Developing female mice deficient for FANCM, a protein involved in replication-associated DNA repair, also had placentae with a diminished JZ. These findings indicate that replication stress-induced genomic instability compromises embryo outcomes by impairing placentation.
Collapse
Affiliation(s)
| | | | - John C. Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
113
|
Huang H, Liu S, Peng Z, Wang B, Zhan S, Huang S, Li W, Liu D, Yang X, Zhu Y, Xiao W. Comparative effects of different sugar substitutes: Mogroside V, stevioside, sucralose, and erythritol on intestinal health in a type 2 diabetes mellitus mouse. Food Funct 2025; 16:2108-2123. [PMID: 39969196 DOI: 10.1039/d4fo04446k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Intestinal health disorders significantly contribute to the development of type 2 diabetes mellitus (T2DM). Sugar substitutes such as mogroside V (MOG), stevioside (ST), sucralose (TGS), and erythritol (ERT), are increasingly used in T2DM management as alternatives to sucrose (SUC). However, their effects on intestinal health in T2DM have not been fully compared. In the present study, we established a T2DM mouse model using a high-fat diet and streptozotocin injection. These mice were treated with equal doses of SUC, MOG, ST, TGS, or ERT for 4 weeks to evaluate the effects of these sugar substitutes on intestinal health in T2DM. T2DM mice exhibited increased intestinal permeability, reduced goblet cell numbers, elevated pro-inflammatory cytokine levels, and alterations in both gut microbiota and metabolite composition. After 4 weeks of treatment, MOG showed the most significant benefits. MOG activates the PI3K/AKT pathway, enhancing the expression of tight junction proteins, which improves intestinal barrier function and reduces permeability. This is accompanied by NF-κB inhibition, leading to reduced pro-inflammatory cytokine production and increased mucus secretion. These changes help maintain healthy gut microbiota and metabolites, preventing pathogenic bacteria from entering the bloodstream. ST downregulates NF-κB to alleviate intestinal inflammation and improves gut microbiota and metabolic homeostasis in T2DM. ERT has less beneficial effects. TGS and SUC reduce intestinal inflammation and have a better effect on the duodenum. However, TGS has a negative effect on the colon microbiota and metabolites, whereas SUC has a negative effect on the colon microbiota alone. MOG improved intestinal health in T2DM by modulating the PI3K/AKT and NF-κB pathways, whereas ST primarily modulated NF-κB to alleviate intestinal inflammation. Both treatments were effective, with MOG showing the best performance. Therefore, MOG can be considered a viable alternative to SUC for T2DM management.
Collapse
Affiliation(s)
- Huaxue Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China.
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Sha Liu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zhi Peng
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Bin Wang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Shuang Zhan
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Sirui Huang
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Wei Li
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Dai Liu
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Xiulian Yang
- Hunan Huacheng Biological Resources Co. Ltd, Changsha, Hunan, 410000, China
- Hunan Natural Sweetener Engineering Technology Research Center, Changsha, Hunan, 410000, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China.
| | - Wenjun Xiao
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
114
|
Lin KA, Su CC, Lee KI, Liu SH, Fang KM, Tang CH, Lia WC, Kuo CY, Chang KC, Huang CF, Chen YW, Yang CY. The herbicide 2,4-dichlorophenoxyacetic acid induces pancreatic β-cell death via oxidative stress-activated AMPKα signal downstream-regulated apoptotic pathway. Toxicol Lett 2025; 405:16-29. [PMID: 39921193 DOI: 10.1016/j.toxlet.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of commonly and widely used organic herbicides in agriculture. It has been reported that 2,4-D can induce adverse effects in mammalian cells. Epidemiological and animal studies have indicated that exposure to 2,4-D is associated with poorer glycemic control and impaired pancreatic β-cell function. However, limited information is available on 2,4-D-induced toxicological effects in β-cells, with the underlying toxicological mechanisms remains unclear. Herein, our results showed that 2,4-D exposure (30-500 μg/mL) significantly reduced cell viability, induced mitochondria dysfunction (including the mitochondrial membrane potential (MMP) loss, the increase in cytosolic cytochrome c release, and the change in Bcl-2 and Bax protein expression), and triggered apoptotic events (including the increased population of apoptotic cells, caspase-3 activity, and caspase-3/-7 and PAPR activation) in RIN-m5F β-cells, accompanied with insulin secretion inhibition. Exposure of cells to 2,4-D could also evoke JNK, ERK1/2, p38, and AMP-activated protein kinase (AMPK)α activation as well as reactive oxygen species (ROS) generation. Pretreatment of cells with compound C (an AMPK inhibitor) and the antioxidantN-acetylcysteine (NAC), but not that SP600125/PD98059/SB203580 (the inhibitors of JNK/ERK/p38, respectively), obviously attenuated the 2,4-D-triggered AMPKα phosphorylation, MMP loss, apoptotic events, and insulin secretion dysfunction,as similar effects with the transfection with AMPKα1-specific siRNA. Of note, buffering the ROS production with NAC obviously prevented the 2,4-D-induced ROS generation as well as AMPKα activation, but the either compound C and AMPKα1-specific siRNA transfection could not effectively reduce 2,4-D-induced ROS generation. Collectively, these findings indicate that the induction of oxidative stress-activated AMPKα signaling is a crucial mechanism underlying 2,4-D-triggered mitochondria-dependent apoptosis, ultimately leading to β-cell death.
Collapse
Affiliation(s)
- Ken-An Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Wei-Cheng Lia
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
115
|
Nath R, Manna S, Panda S, Maity A, Bandyopadhyay K, Das A, Khan SA, Debnath B, Akhtar MJ. Flavonoid Based Development of Synthetic Drugs: Chemistry and Biological Activities. Chem Biodivers 2025; 22:e202401899. [PMID: 39462980 DOI: 10.1002/cbdv.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The toxicity associated with synthetic drugs used for treating various diseases is common. This led to a growing interest in searching and incorporating natural functional core structures such as flavonoid and their derivatives via chemical modifications to overcome the toxicity problems and enhance their biological spectrum. Natural core structures such as flavonoids are accepted due to their safety to the environment and owing to their varieties of biological activities such as anti-Alzheimer, antimicrobial, anticancer, anti-inflammatory, antidiabetics, and antiviral properties. Based on their chemical structure, flavonoids are classified into various classes such as flavone, flavanol, flavanone, isoflavone, and Anthocyanin, etc. The present review focuses on the potential role of the flavonoid ring-containing derivatives, highlighting their ability to prevent and treat non-communicable diseases such as diabetes, Alzheimer's, and cancer. The pharmacological activities of the flavonoid's derivatives are mainly attributed to their antioxidant effects against free radicals, and reactive oxygen species as well as their ability to act as enzymes inhibitors. The review covers the synthetic strategies of flavonoid derivatives, structure activity relationship (SAR), and in silico studies to improve the efficacy of these compounds. The SAR, molecular docking analysis will enable medicinal chemists to search further, develop potent and newer therapeutic agents.
Collapse
Affiliation(s)
- Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Swarup Manna
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Arindam Maity
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Krishnalekha Bandyopadhyay
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, Bangalore-Mysore Road, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Arijit Das
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| |
Collapse
|
116
|
Wang L, Lu G, Wang F, Tao Y, Dai C. Kurarinone Attenuates LPS-Induced Pneumonia by Inhibiting MAPK and NF-κB Signaling Pathways. APMIS 2025; 133:e70013. [PMID: 40083172 DOI: 10.1111/apm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Kurarinone is a prenylated flavanone isolated from Sophora flavescens Aiton. This investigation aimed to elucidate whether kurarinone could ameliorate lipopolysaccharide (LPS)-induced pneumonia and explore the underlying mechanism. C57BL/6 mice were treated with LPS (50 μg/20 μL) to establish pneumonia models. Kurarinone (100 mg/kg) or dexamethasone (DEX, 5 mg/kg) was administered for 7 days before LPS inhalation. BEAS-2B cells were incubated with kurarinone at 1, 2, and 5 μM for 2 h before LPS stimulation for 24 h. We found that kurarinone ameliorated lung injury and inflammatory cell infiltration in the mouse lung (p < 0.001). Kurarinone decreased MPO activity (47.6%, p < 0.001) and alleviated the inflammatory response by reducing the levels of IL-1β (34.9%, p < 0.001), TNF-α (55.1%, p < 0.001), and IL-6 (36.2%, p < 0.001) in the lung. Kurarinone reduced the levels of IL-1β, TNF-α, IL-6, iNOS, and COX2 in LPS-treated BEAS-2B cells in a concentration-dependent manner (p < 0.05). Mechanistically, kurarinone restrained LPS-induced activation of MAPK and NF-κB pathways in vivo and in vitro (p < 0.05). Overall, kurarinone alleviates LPS-induced pneumonia in mice by reducing inflammation via MAPK and NF-κB pathways, suggesting that kurarinone might be a potential therapeutic agent for pneumonia. This study provides new research ideas for the discovery of natural flavonoids that can treat pneumonia.
Collapse
Affiliation(s)
- Lili Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Guoyu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Fangli Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Yanyan Tao
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Changyuan Dai
- Department of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
117
|
Sofianovich O, Willis-Urena K, Dong Y, Ignea C. Bioengineered yeast for preventing age-related diseases. Trends Biotechnol 2025; 43:586-600. [PMID: 39358048 DOI: 10.1016/j.tibtech.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
The aging process entails a multifaceted decline in the capacity to restore homeostasis in response to stress. A prevalent characteristic of many age-related diseases is the presence of low-grade chronic inflammation, a risk factor contributing significantly to morbidity and mortality in the elderly population. Specific lifestyle interventions, such as regular physical activity, targeted diet, and supplementation, can delay the accumulation of chronic age-associated conditions by mitigating inflammation processes. Bioengineered yeast-producing compounds with distinctive bioactivities, including anti-inflammatory properties, have the potential to provide rich dietary alternatives for the prevention of age-related diseases. This review highlights recent achievements in engineering effective yeast platforms, namely Saccharomyces cerevisiae and Yarrowia lipolytica, that hold promise in retarding the onset of aging and age-related ailments.
Collapse
Affiliation(s)
- Olga Sofianovich
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Kate Willis-Urena
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3.
| |
Collapse
|
118
|
Shi T, Chang W, Wei X, Kong Y, Wei Y. Based on Molecular Docking, Molecular Dynamics Simulation and MM/PB(GB)SA to Study Potential Inhibitors of PRRSV-Nsp4. Proteins 2025; 93:598-607. [PMID: 39392104 DOI: 10.1002/prot.26754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most serious infectious immunosuppressive diseases in the world. The nonstructural protein Nsp4 can be used as an ideal target for anti-PRRSV replication inhibitors. However, little is known about potential inhibitors that target Nsp4 to affect PRRSV replication. The purpose of this study was to screen potential natural inhibitors that affect PRRSV replication by inhibiting Nsp4. Five compounds with strong binding affinity to Nsp4 were selected by structure-based molecular docking method. The complexes of naringin dihydrochalcone (NDC), agathisflavone (AGT), and amentoflavone (AMF) with Nsp4 were stable throughout the molecular dynamics simulation. According to MM/PBSA analysis, the free energies of binding of NDC, AGT, and AMF to Nsp4 were less than-30 Kcal/mol. In conclusion, these three compounds are worthy of further investigation as novel inhibitors of PRRSV. This study provides a theoretical basis for the development of anti-PRRSV natural drugs.
Collapse
Affiliation(s)
- Tianyu Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Wenzhou Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Xinyu Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yiling Kong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Ying Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, People's Republic of China
- Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
119
|
Lekkala VDVV, Muktinutalapati AV, Lebaka VR, Lomada D, Korivi M, Li W, Reddy MC. Green Synthesis and Characterization of Silver Nanoparticles from Tinospora cordifolia Leaf Extract: Evaluation of Their Antioxidant, Anti-Inflammatory, Antibacterial, and Antibiofilm Efficacies. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:381. [PMID: 40072184 PMCID: PMC11901609 DOI: 10.3390/nano15050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using Tinospora cordifolia (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques. Pharmacological activities, including antioxidant, anti-inflammatory, and antibacterial properties, were evaluated through in vitro studies. In the results, the change in sample color from yellow to brown after adding silver nitrate revealed the synthesis of TcAgNPs, and the UV-visible spectrum confirmed their formation. X-ray diffraction studies showed the presence of reducing agents and the crystalline nature of the nanoparticles. Fourier-transform infrared spectra revealed the existence of essential secondary metabolites, which act as reducing/capping agents and stabilize the nanoparticles. The size of the TcAgNPs was small (range 36-168 nm) based on the measurement method. Their negative zeta potential (-32.3 mV) ensured their stability in water suspensions. The TcAgNPs were predominantly spherical, as evidenced from scanning electron microscopy and transmission electron microscopy. Atomic absorption spectroscopy data further revealed the conversion of silver nitrate into silver nanoparticles, and thermogravimetric analysis data showed their thermal stability. The TcAgNPs showed significant DPPH/ABTS radical scavenging ability in a concentration-dependent manner (25-100 µg/mL). Membrane lysis assays showed an effective anti-inflammatory activity of the TcAgNPs. Furthermore, the TcAgNPs showed potent antibacterial effects against multidrug-resistant bacteria (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, and Staphylococcus aureus). The TcAgNPs treatment also exhibited antibiofilm activity against bacterial strains, in a concentration-dependent manner. Our findings demonstrate the structural characteristics of green-synthesized TcAgNPs using advanced techniques. TcAgNPs can be developed as potential antioxidant, anti-inflammatory, and antibacterial drugs.
Collapse
Affiliation(s)
| | | | | | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa 516005, India; (V.D.V.V.L.); (D.L.)
| | - Mallikarjuna Korivi
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Madhava C. Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, India;
| |
Collapse
|
120
|
Fan X, Han F, Wang H, Shu Z, Qiu B, Zeng F, Chen H, Wu Z, Lin Y, Lan Z, Ye Z, Ying Y, Geng T, Xian Z, Niu X, Wu J, Mo K, Zheng K, Ye Y, Cui C. YTHDF2-mediated m 6A modification of ONECUT2 promotes stemness and oxaliplatin resistance in gastric cancer through transcriptionally activating TFPI. Drug Resist Updat 2025; 79:101200. [PMID: 39823826 DOI: 10.1016/j.drup.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
AIMS Chemoresistance results in poor outcomes of patients with gastric cancer (GC). This study aims to identify oxaliplatin resistance-related cell subpopulations in the tumor microenvironment (TME) and decipher the involved molecular mechanisms. METHODS Through single-cell RNA sequencing, a unique ONECUT2+TFPI+ GC cell subset was identified in the oxaliplatin-resistant TME. The functional roles and molecular mechanisms of ONECUT2 in oxaliplatin resistance were investigated in cellular and mouse models. Therapeutic efficacy of small molecule inhibitor of ONECUT2 was also evaluated. RESULTS The abundance of ONECUT2+TFPI+ GC cell subset was elevated in oxaliplatin-resistant GC tumors. ONECUT2 was up-regulated and associated with undesirable prognostic outcomes of patients with GC. ONECUT2 facilitated GC cell migration, stemness properties and oxaliplatin resistance. YTHDF2, an m6A "reader", was down-regulated in GC, and its overexpression facilitated ONECUT2 mRNA degradation through m6A modification. Furthermore, ONECUT2 transcriptionally activated TFPI through binding to its promoter. Small molecule inhibitor CSRM617 targeting ONECUT2 was well tolerated in GC mouse models, and could effectively improve therapeutic efficacy of oxaliplatin against GC. CONCLUSIONS Our study demonstrates that YTHDF2-mediated m6A modification of ONECUT2 results in stemness and oxaliplatin resistance in GC through transcriptionally activating TFPI, which provides a novel therapeutic target against oxaliplatin-resistant GC.
Collapse
Affiliation(s)
- Xingdi Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fangyi Han
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhilin Shu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hongzhen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yongwei Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhien Lan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhiwei Ye
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tiansu Geng
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ziqian Xian
- The First School of Clinical Medicine, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Junming Wu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong.
| | - Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
121
|
Zheng L, Lin F, Cai D, Zhang L, Yin C, Qi Y, Sun L, Li L, Chen X, Zhu J, Sun J. Single-cell transcriptome sequencing reveals the immune microenvironment in bronchoalveolar lavage fluid of checkpoint inhibitor-related pneumonitis. Cancer Immunol Immunother 2025; 74:128. [PMID: 40024929 PMCID: PMC11872840 DOI: 10.1007/s00262-025-03983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND OBJECTIVES Immune checkpoint inhibitors (ICIs) bring cancer patients tumor control and survival benefits, yet they also trigger immune-related adverse effects (irAEs), notably checkpoint inhibitor-related pneumonitis (CIP), affecting about 5% of patients among whom 1-2% experiencing severe grade 3 or higher pneumonitis. Current research points to potential links with T cell subset dysfunction and autoantibody increase, but the specific mechanisms underlying different grades of CIP are understudied. METHODS Herein, we employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid (BALF) from CIP patients across varying severity levels, aiming to elucidate underlying immune environment and mechanisms of CIP progression at cellular and molecular levels. FINDINGS Totally, 121,409 high qualified cells from BALF of 11 patients were annotated and categorized into five major cell types. Severe CIP (CIP-S) cases have a significant increase in the percentage of unreported epithelial cells in their bronchoalveolar lavage fluid compared with mild CIP (CIP-M) cases. These cells were defined as aberrant basaloid cells. They upregulated SOX9, increased the expression of CXCL3/5, recruited neutrophils, and activated the immune system. Additionally, macrophages in the CIP-S group had stronger antigen-presenting abilities and resulted in more CD8 + effective T cells infiltrated. CONCLUSIONS Utilizing single-cell sequencing of BALF, we discovered an enriched population of aberrant basaloid cells in CIP-S patients, which had not been previously reported. Aberrant basaloid cells may upregulate SOX9 via CXCL3/5-CXCR2 to recruit and activate neutrophils, and further activate the immune system, resulting in CIP-S. This finding could identify new targets for stratified treatment of CIP patients, holding promise of a novel approach for clinical guidance.
Collapse
Affiliation(s)
- Linpeng Zheng
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Fenglin Lin
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dingqin Cai
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
- 921, Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Longyao Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chenrui Yin
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yaxian Qi
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lingyou Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lingchen Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiewan Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
- Department of Basic Medicine, Army Medical University, Chongqing, China
| | - Jianbo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
122
|
Zhao S, Yang L, Li W, Zhang S, Liu X, Zhang Y, Xu X, Zhou P, Meng Q, Pan T, Liu J, Zhang J. The interaction of isoquinoline alkaloid crebanine with immunoglobulin G and cytotoxic effects toward MCF-7 breast cancer cell line. Int J Biol Macromol 2025; 293:139194. [PMID: 39730052 DOI: 10.1016/j.ijbiomac.2024.139194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
In this study, the interaction of crebanine, an isoquinoline alkaloid, with immunoglobulin G (IgG) was evaluated. Subsequently, the anticancer effects of crebanine in MCF-7 breast cancer cells were assessed. The results demonstrate that static quenching plays a key role in the fluorescence quenching of the IgG by crebanine, and some embedded hydrophobic patches of the IgG are exposed upon interaction with crebanine, while the characteristic β-sheet conformation of the IgG was almost preserved. Theoretical studies also show that several hydrophilic and hydrophobic residues play a crucial role in the formation of hydrogen bonds between crebanine and IgG, along with the stability of the complex. Cellular studies indicate that crebanine induces selective anticancer effects in MCF-7 cells (IC50: 36.76 μM) compared to human embryonic kidney cells (HEK-293, IC50: 723.77 μM) through the inhibition of colony formation, induction of oxidative stress and lipid peroxidation, upregulation of the Bax/Bcl-2 ratio, and cytochrome c release, which are indicative of the intrinsic apoptosis pathway. In conclusion, this study provides valuable information regarding the protein binding affinity and anticancer activity of crebanine, which are essential factors for determining the pharmacological activity of small molecules as drug candidates.
Collapse
Affiliation(s)
- Shaorong Zhao
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Yang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenzhu Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Shichao Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xu Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchen Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaotong Xu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Peng Zhou
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qingxiang Meng
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Jingjing Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Jin Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
123
|
Xu Z, Lin R, Ji X, Huang C, Wang C, Yu Y, Bao Z. Physical frailty, genetic predisposition, and type 2 diabetes mellitus. DIABETES & METABOLISM 2025; 51:101618. [PMID: 39900238 DOI: 10.1016/j.diabet.2025.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/05/2025]
Abstract
AIM To examine the association between frailty and incident type 2 diabetes mellitus (T2DM), considering the joint effect of multimorbidity and genetic risk. METHODS The study included 429,022 individuals in the UK Biobank. We used Cox regression with hazard ratio (HR) and 95 % confidence interval (CI) to 1) evaluate the associations of frailty with incident T2DM, 2) explore whether frailty and multimorbidity would have a joint effect, and 3) assess whether the associations were modified by genetic risk. RESULTS Compared with non-frail individuals, prefrail and frail individuals were at higher risk of T2DM: HR[95 %CI] = 1.42 [1.38;1.47] for prefrailty and 1.81[1.70;1.92] for frailty. Five frailty components were associated with increased risk of T2DM: HR[95 %CI] = 1.21[1.17;1.26] for weight loss, 1.35[1.30;1.40] for exhaustion, 1.31[1.26;1.37] for low physical activity, 1.27[1.20;1.33] for low grip strength, and 1.47[1.41;1.52] for slow gait speed. The increased risks were more pronounced among frail individuals with more than three morbidities: HR[95 %CI] = 4.10[3.76;4.46]. Frail individuals at high genetic risk had a four and a half-fold greater risk of T2DM compared with non-frail individuals at low genetic risk: HR[95 %CI] = 4.54[4.14;4.97]. CONCLUSION Frailty was associated with increased risk of T2DM, especially in individuals with higher number of morbidities and high genetic risk. Frailty may be an independent risk factor for T2DM and targeted strategies to prevent and manage frailty would contribute to reducing the risk of T2DM.
Collapse
Affiliation(s)
- Zhenyi Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, PR China; Shanghai institute of geriatric medicine, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Ruilang Lin
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, PR China; Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Xueying Ji
- Department of General practice, Huadong Hospital, Fudan University, Shanghai 200040, PR China
| | - Chen Huang
- Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Ce Wang
- Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, PR China
| | - Yongfu Yu
- Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, PR China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, PR China; Shanghai institute of geriatric medicine, Huadong Hospital, Fudan University, Shanghai, 200040, PR China; Department of Gerontology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
124
|
Esmaeili Z, Shavali Gilani P, Khosravani M, Motamedi M, Maleknejad S, Adabi M, Sadighara P. Nanotechnology-driven EGCG: bridging antioxidant and therapeutic roles in metabolic and cancer pathways. Nanomedicine (Lond) 2025; 20:621-636. [PMID: 39924937 PMCID: PMC11881875 DOI: 10.1080/17435889.2025.2462521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary polyphenol in green tea, is renowned for its potent antioxidant properties. EGCG interacts with various cellular targets, inhibiting cancer cell proliferation through apoptosis and cell cycle arrest induction, while also modulating metabolic pathways. Studies have demonstrated its potential in addressing cancer development, obesity, and diabetes. Given the rising prevalence of metabolic diseases and cancers, EGCG is increasingly recognized as a promising therapeutic agent. This review provides a comprehensive overview of the latest findings on the effects of both free and nano-encapsulated EGCG on mechanisms involved in the management and prevention of hyperlipidemia, diabetes, and gastrointestinal (GI) cancers. The review highlights EGCG role in modulating key signaling pathways, enhancing bioavailability through nano-formulations, and its potential applications in clinical settings.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Shavali Gilani
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Motamedi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokofeh Maleknejad
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
125
|
Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. Diverse roles of MYB transcription factors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:539-562. [PMID: 40013511 DOI: 10.1111/jipb.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
Collapse
Affiliation(s)
- Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Huapeng Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yiyi Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xixian Feng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
126
|
Zhu W, Chen S, Wang Y, Xu X, Huang X, Yang X, Ren F. Investigation into the Quantitative Structure-Biotoxicity Relationship of Antibiotics and their Estrogenic Receptor Disruption Effects. Chem Biodivers 2025; 22:e202401843. [PMID: 39482255 DOI: 10.1002/cbdv.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
In light of antibiotics being classified as environmental hormone-like compounds, their interference with the endocrine system has significantly impacted human health and ecological environments. This study employed Density Functional Theory (DFT) within Gaussian09, conducting structural optimizations and property calculations on 23 typical antibiotic molecules at the B3LYP/3-21G and B3LYP/6-31G(d) levels to obtain structural parameters and acquired physicochemical property parameters through the RDKit database in ChemDes platform for quantitative processing of the compounds. Multiple linear regression analysis identified the primary factors affecting antibiotics' biological toxicity (pLD50), and a QSAR model was established. The model's predictive capability was analyzed using leave-one-out cross-validation, and the binding modes and mechanisms of action between estrogen receptors (ER) and antibiotics were investigated via molecular docking and molecular dynamics simulations. The results indicate that six property parameters significantly influence the biological toxicity of antibiotics, with the established QSAR model C exhibiting regression coefficients R2 and Q2 of 0.92474 and 0.74913, respectively, demonstrating good stability and predictive power. Molecular surface electrostatic potential, frontier molecular orbitals, molecular docking, and molecular dynamics simulations revealed that stable hydrogen bonds and hydrophobic interactions primarily mediate the potential estrogenic disrupting effects between antibiotics and estrogen receptors. Predictions from an anticancer compound library identified ten compounds with strong estrogenic disrupting effects, and molecular docking validated the practical utility of model C. This provides a valuable exploration for discovering and screening PPCPs with potential estrogenic disrupting effects.
Collapse
Affiliation(s)
- Wanhong Zhu
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shuangkou Chen
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yu Wang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xi Xu
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xia Huang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xin Yang
- Department of Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
- Chongqing key laboratory of industrial fermentation microorganisms, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Fengming Ren
- Pharmaceutical Biotechnology Center, Chongqing Institute of drug cultivation, Chongqing, 408435, China
| |
Collapse
|
127
|
Raish M, Ahmad A, Khan S, Kalam MA. Molecular insights into anti-Protozoal action of natural compounds against Cryptosporidium parvum: a molecular simulation study. J Biomol Struct Dyn 2025; 43:2042-2058. [PMID: 38088773 DOI: 10.1080/07391102.2023.2293277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2025]
Abstract
The current study used the major target protein lactate dehydrogenase Cryptosporidium parvum to identify potential binders. Our approach was a comprehensive three-step screening of 2,569 natural compounds. First, we used molecular docking techniques, followed by an advanced DeepPurpose ML model for virtual screening. The final step involved meticulous re-docking and detailed interaction analysis. The known inhibitor FX11 was considered as a control that was used for comparative analysis. Our screening process led to the identification of three promising compounds: 5353794, 18475114, and 25229652. These compounds were chosen due to their exceptional ability to form hydrogen bonds and their high binding scores with the protein. Here, all three hits showed H-bonds with the functional residues (Asn122 and Thr231) of protein, while 25229652 also showed H-bond with the catalytic site residue (His177). RMSD behaviour reflected stable and consistent complex formation for all the compounds in their last 30 ns trajectories. Principal component analysis (PCA) and free energy landscape (FEL) showed a high frequency of favourable low free energy states. Using the MM/GBSA calculation, compounds 5353794 (ΔGTOTAL = -34.92 kcal/mol) and 18475114 (ΔGTOTAL = -34.66 kcal/mol) had the highest binding affinity with the protein however, 25229652 (ΔGTOTAL = -22.62 kcal/mol) had ΔGTOTAL comparable to the control FX11. These natural compounds not only show the potential for hindering C. parvum lactate dehydrogenase but also open new avenues in its drug development. Their strong binding properties and stable interactions mark them as the prime candidates for further research and experimental validation as anti-cryptosporidiosis agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
128
|
Sharma N, Liu W, Tsai XQE, Wang Z, Outtrim C, Tang A, Pieper MP, Reinhart GA, Huang Y. A novel soluble guanylate cyclase activator, avenciguat, in combination with empagliflozin, protects against renal and hepatic injury in diabetic db/db mice. Am J Physiol Endocrinol Metab 2025; 328:E362-E376. [PMID: 39907739 DOI: 10.1152/ajpendo.00254.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 11/15/2024] [Indexed: 02/06/2025]
Abstract
Diabetic complications are linked to oxidative stress, which hampers the cyclic guanosine monophosphate production by inhibiting nitric oxide/soluble guanylate cyclase (sGC) signaling. This study aimed to determine whether the administration of a novel sGC activator avenciguat alone or in combination with an SGLT2 inhibitor could slow the progression of renal and liver fibrosis in the type 2 diabetic and uninephrectomized db/db mouse model. Experiment groups included normal controls, untreated db/db mice terminated at 12 and 18 wk of age, and db/db mice treated with either one of two doses of avenciguat alone, empagliflozin (Empa) alone, or a combination of both from weeks 12 to 18 of age. Untreated db/db mice exhibited obesity, hyperglycemia, elevated levels of HbA1c and triglycerides (TG), and developed progressive albuminuria, glomerulosclerosis, fatty liver, and liver fibrosis between weeks 12 and 18 of age, accompanied by increased renal and liver production of fibronectin, type-IV collagen, laminin, and increased oxidative stress markers. Avenciguat had no effect on body weight but reduced both blood HbA1c and TG levels, whereas Empa reduced HbA1c but not TG levels as compared with untreated db/db. Both avenciguat and Empa alone effectively slowed the progression of diabetes-associated glomerulosclerosis and liver fibrosis. Importantly, avenciguat, especially at high doses in combination with Empa, further lowered these progression markers compared with baseline measurements. These results suggested that either avenciguat alone or in combination with Empa is therapeutic. Avenciguat in combination with Empa shows promise in halting the progression of diabetic complications.NEW & NOTEWORTHY Whether combining an sGC activator with an SGLT2 inhibitor could better control diabetes-associated oxidative stress and NO-cGMP signal deficiency has not yet been explored. Using the type 2 diabetic db/db mouse model, this study underscores the sGC activator avenciguat as a novel therapy for diabetic nephropathy and liver injury beyond sGLT2 inhibitors. It also highlights the need for further investigation into the combined effects of these two treatments in managing diabetic complications.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Wenjin Liu
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Xiao-Qing E Tsai
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Zhou Wang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Connor Outtrim
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Anna Tang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| | - Michael P Pieper
- Global Cardio-metabolic Diseases, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Glenn A Reinhart
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, United States
| | - Yufeng Huang
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah Health, Salt Lake City, Utah, United States
| |
Collapse
|
129
|
He Y, Tang X, Peng Z, Bao X, Wei J. Anthocyanin-rich dark-colored berries: A bibliometric analysis and review of natural ally in combating glucolipid metabolic disorders. Nutrition 2025; 131:112669. [PMID: 39778386 DOI: 10.1016/j.nut.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
The risk of glycolipid metabolic disorders (GLMDs)-which encompass type 2 diabetes mellitus, hyperlipidemia, hypertension, obesity, non-alcoholic fatty liver disease, and atherosclerosis--is rising gradually and posing challenges to health care. With the popularity of healthy lifestyles, anthocyanin-rich berries have emerged as a potential dietary intervention. This review uses bibliometric analysis to synthesize current research on the role of anthocyanins in relieving GLMDs. Our examination of the literature underscores the diverse mechanisms by which anthocyanins exert their beneficial effects, including their intricate bioactivity and functional signaling pathways. The insights gleaned from anthocyanin research offer a promising avenue for harnessing the power of nature to support metabolic health and pave the way for integration into clinical strategies for GLMD management.
Collapse
Affiliation(s)
- Yujing He
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xian Tang
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Ziheng Peng
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xiaochao Bao
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Jie Wei
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China.
| |
Collapse
|
130
|
Martins S, Meireles M, Caetano E, Correia D, Carvalho C, Campos Silva C, Magalhães V, Vilela S, Lopes C, Torres D. Estimated dietary flavonoid intake and major food contributors in the Portuguese population: results from the national food, nutrition and physical activity survey (IAN-AF 2015-2016). Br J Nutr 2025; 133:497-506. [PMID: 39864899 PMCID: PMC12011541 DOI: 10.1017/s0007114525000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Flavonoids are a key class of polyphenols, i.e., phytochemical compounds present in foods and beverages, which have been described as having health benefits in preventing several chronic diseases. Estimating flavonoid intake has already been conducted in several countries but has yet to be performed in Portugal. This study included 5005 participants aged 3-84 years and aimed to estimate dietary flavonoid intake in the Portuguese population, using data from the National Food and Physical Activity Survey 2015-2016, providing information on intake, main food contributors and the socio-demographic factors associated with the intake. Food intake data from the survey was converted to flavonoid intake using a database built to include the most updated USDA databases on flavonoids, isoflavones and proanthocyanidins and the Phenol-Explorer database. The rationale for combining food consumption data and different flavonoid databases using the FoodEx2 classification system was established. Linear regressions assessed the associations between socio-demographic factors and dietary flavonoid intake. The total flavonoid intake of the Portuguese population was estimated to be 107·3 mg/d. Flavanols were the most representative subclass, followed by flavonols, anthocyanidins, flavanones, flavones and isoflavones. Fruits and vegetables were the primary food contributors, providing 31·5 % and 12·4 % of the total flavonoid intake. Adolescents had the lowest total flavonoid intake, and older adults had the highest. This study provides information on the Portuguese population's dietary flavonoids, allowing for international comparisons. It can also streamline forthcoming investigations into the link between flavonoid consumption and its impact on health, contributing to the future establishment of dietary reference values.
Collapse
Affiliation(s)
- Sofia Martins
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Manuela Meireles
- Centro de Investigação da Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Estela Caetano
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Daniela Correia
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Catarina Carvalho
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| | - Catarina Campos Silva
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Vânia Magalhães
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Sofia Vilela
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Carla Lopes
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Duarte Torres
- EPIUnit - Unidade de Investigação Epidemiológica, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação da Universidade do Porto, Porto, Portugal
| |
Collapse
|
131
|
Duque C, Rabelo RL, Braga GPDA, Mendes Soares IP, de Souza ME, Chrisostomo DA, Hebling J, de Souza Costa CA, Prakki A, Regasini LO. EGCG and Taxifolin Modulate Secretory Activity and Expression of Dentinogenesis Markers in Odontoblast-Like Cells. SCIENTIFICA 2025; 2025:3233536. [PMID: 40225282 PMCID: PMC11986927 DOI: 10.1155/sci5/3233536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/29/2025] [Indexed: 04/15/2025]
Abstract
Odontoblasts are cells specialized in dentin matrix deposition and the first line of defense when the dentin-pulp complex is injured by pathological processes, such as dental caries and trauma. Natural compounds, such as flavonoids, could be useful to stimulate odontoblast activity and reparative dentinogenesis in vital pulp therapies, especially in immature permanent teeth. This study evaluated the effect of flavonoids on odontoblast secretory activity and the expression of dentinogenesis markers. The effect of flavonoids was evaluated on phenotypic mineralization markers (alkaline phosphatase (ALP) activity and mineralized nodule deposition) by colorimetric assays and on the expression of Alpl, Mmp2, Mmp9, Dmp1, and Dspp genes in odontoblast-like cells by quantitative polymerase chain reaction. Most of the flavonoids did not show toxicity between 100 and 25 μM. In distinct concentrations, epigallocatechin gallate (EGCG), taxifolin, myricetin, quercetin, and kaempferol stimulated the activity of ALP and increased mineralized nodule deposition. However, the highest effect on those phenotypic markers was observed after EGCG and taxifolin treatments. Then, they were selected for evaluation of gene expression. mRNA levels of Dmp1 and Dspp highly increased with taxifolin treatment, and Alpl expression was increased for both taxifolin and EGCG groups, without difference between them. Mmp2 and Mmp9 expression was not affected by these flavonoids. In conclusion, EGCG and taxifolin positively affect phenotypic mineralization markers; in particular, taxifolin highly stimulates early- and late-stage dentinogenesis genes.
Collapse
Affiliation(s)
- Cristiane Duque
- Universidade Católica Portuguesa (UCP), Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Estrada da Circunvalação, s/n 3504-505, Viseu, Portugal
- São Paulo State University (UNESP), Department of Preventive and Restorative Dentistry, Araçatuba Dental School, R. José Bonifácio, 1193, Araçatuba 16015-050, Brazil
| | - Rafaela Laruzo Rabelo
- São Paulo State University (UNESP), Department of Preventive and Restorative Dentistry, Araçatuba Dental School, R. José Bonifácio, 1193, Araçatuba 16015-050, Brazil
| | - Gabriela Pacheco de Almeida Braga
- São Paulo State University (UNESP), Department of Preventive and Restorative Dentistry, Araçatuba Dental School, R. José Bonifácio, 1193, Araçatuba 16015-050, Brazil
| | - Igor Paulino Mendes Soares
- São Paulo State University (UNESP), Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, R. Humaitá, 1680, Araraquara 14801-385, Brazil
| | - Maria Eduarda de Souza
- São Paulo State University (UNESP), Department of Preventive and Restorative Dentistry, Araçatuba Dental School, R. José Bonifácio, 1193, Araçatuba 16015-050, Brazil
| | - Daniela Alvim Chrisostomo
- São Paulo State University (UNESP), Department of Preventive and Restorative Dentistry, Araçatuba Dental School, R. José Bonifácio, 1193, Araçatuba 16015-050, Brazil
- University of Toronto, Department of Clinical Sciences-Restorative Dentistry, Faculty of Dentistry, 124 Edward St, Toronto, Ontario M5G 1G6, Canada
| | - Josimeri Hebling
- São Paulo State University (UNESP), Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, R. Humaitá, 1680, Araraquara 14801-385, Brazil
| | - Carlos Alberto de Souza Costa
- São Paulo State University (UNESP), Department of Physiology and Pathology, Araraquara School of Dentistry, R. Humaitá, 1680, Araraquara 14801-385, Brazil
| | - Anuradha Prakki
- University of Toronto, Department of Clinical Sciences-Restorative Dentistry, Faculty of Dentistry, 124 Edward St, Toronto, Ontario M5G 1G6, Canada
| | - Luís Octavio Regasini
- São Paulo State University (UNESP), Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities, and Exact Sciences, R. Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, Brazil
| |
Collapse
|
132
|
Li L, Wu YQ, Yang JE. Stress-Related LncRNAs and Their Roles in Diabetes and Diabetic Complications. Int J Mol Sci 2025; 26:2194. [PMID: 40076814 PMCID: PMC11900361 DOI: 10.3390/ijms26052194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most significant global health burdens worldwide. Key pathophysiological mechanisms underlying its onset and associated complications include hyperglycemia-related stresses, such as oxidative stress and endoplasmic reticulum stress (ER stress). Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides and lacking protein-coding capacity, play crucial roles in various biological processes and have emerged as crucial regulators in the pathogenesis of diabetes. This review provides a comprehensive overview of lncRNA biogenesis and its functional roles, emphasizing recent findings that link stress-related lncRNAs to diabetic pathology and complications. Also, we discuss how lncRNAs influence diabetes and its complications by modulating pathways involved in cell death, proliferation, inflammation, and fibrosis, which contribute to pancreatic β cell dysfunction, insulin resistance, diabetic nephropathy, and retinopathy. By analyzing current research, we aim to enhance understanding of lncRNA involvement in diabetes while identifying potential therapeutic targets and guiding future research directions to elucidate the complex mechanisms underlying this pervasive condition.
Collapse
Affiliation(s)
| | | | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, China; (L.L.); (Y.-Q.W.)
| |
Collapse
|
133
|
Wu Z, Li Z, Li Y, Wang H, Yue J, Xing T. Biomimetic Design of Underwater Adhesives Based on Tea Polyphenol-Modified Gelatin. Biomimetics (Basel) 2025; 10:149. [PMID: 40136803 PMCID: PMC11940816 DOI: 10.3390/biomimetics10030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Although many tissue adhesives with good biocompatibility are currently available, their lack of wet adhesion capacity significantly hinders their clinical application. Therefore, further development and exploration of new medical adhesives are necessary. Inspired by the adhesion mechanism of marine mussels, through modifying gelatin protein with gallic acid (GA) for wet adhesion and cross-linking gelatin (Gel) molecular chains with tea polyphenols (TP), the adhesive TP-GA/Gel was developed. The adhesive exhibited an adhesion strength of up to 130.47 kPa to porcine skin tissues and maintained a high adhesion state in various aqueous environments, demonstrating excellent and reproducible adhesion. Additionally, TP-GA/Gel possessed outstanding antimicrobial, antioxidant, and biocompatibility properties. In an in vivo wound healing study with SD rats, the wound area treated with TP-GA/Gel adhesive decreased from 10.3 mm2 to 0.9 mm2 after 15 days, promoting effective and scarless wound healing. These results highlight the promising clinical potential of TP-GA/Gel as a medical adhesive.
Collapse
Affiliation(s)
- Ziwei Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.W.); (Z.L.); (Y.L.); (H.W.)
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhipeng Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.W.); (Z.L.); (Y.L.); (H.W.)
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yixiao Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.W.); (Z.L.); (Y.L.); (H.W.)
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Haoyu Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.W.); (Z.L.); (Y.L.); (H.W.)
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jiang Yue
- School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China; (Z.W.); (Z.L.); (Y.L.); (H.W.)
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
134
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
135
|
Anush Sheikh KH, Haokip SW, Hazarika BN, Devi OB, Lian HN, Yumkhaibam T, Ningombam L, Singh YD. Phyto-chemistry and Therapeutic Potential of Natural Flavonoid Naringin: A Consolidated Review. Chin J Integr Med 2025:10.1007/s11655-025-3826-9. [PMID: 39994136 DOI: 10.1007/s11655-025-3826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 02/26/2025]
Affiliation(s)
- K H Anush Sheikh
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Songthat William Haokip
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - B N Hazarika
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Oinam Bidyalaxmi Devi
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Hau Ngaih Lian
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Tabalique Yumkhaibam
- Department of Vegetable Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Linthoingambi Ningombam
- Department of Fruit Science, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, Arunachal Pradesh, 791102, India.
| |
Collapse
|
136
|
Sah SK, Ajay SA, Donadkar AD, Kamath AJ, Devan AR, Soman R, Kumar AR, Unni AR, Sithara MS, Sudheesh MS, Nath LR. Ternary complex of Kaempferol-Hydroxypropyl-β-Cyclodextrin-Liposomes against hepatocellular carcinoma: Preparation, validation, pharmacokinetics and efficacy studies. Int J Pharm 2025; 671:125261. [PMID: 39855283 DOI: 10.1016/j.ijpharm.2025.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Kaempferol (KP), a GRAS-certified phytomolecule enrolled in Phase I trials, is reported with various biological effects including anticancer activity. However, its poor pharmacokinetic profile limits the translational utility. Studies indicate that liposomes incorporating cyclodextrin inclusion complexes improves the bioavailability of hydrophobic drugs. The present study focuses on preparing and validating a novel ternary complex of Kaempferol-Hydroxypropyl-β-Cyclodextrin-Liposomes (KP-HP-β-CD-Liposomes) that shows a particle size of 131.70 ± 0.10 nm, a zeta potential of -26.59 ± 0.42 mV, and a drug entrapment efficiency of 90.14 ± 0.25 %. The KP-HP-β-CD-Liposomes demonstrate stability under refrigerated conditions (2-8 °C) over a three-month period. Also, it doesn't exhibit any cytotoxicity in normal fibroblast cells even up to 48 mg/ml while it produces a dose dependent cytotoxicity in HepG2 cells. It shows a better cellular uptake in HepG2 cells in comparison with pure Kaempferol as evidenced by HPLC analysis. KP-HP-β-CD-Liposomes induce apoptosis in HepG2 cells as assessed by Acridine orange ethidium bromide staining. Pharmacokinetic studies on Sprague Dawley rats indicate a significant improvement in Cmax and AUC(0-∞) of Kaempferol. The tissue distribution studies show that KP-HP-β-CD-Liposomes are highly accumulated in liver. The KP-HP-β- CD-Liposomes inhibits the development of hepatic tumors in Syngeneic N1S1 animal models.
Collapse
Affiliation(s)
- Sunil Kumar Sah
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - S A Ajay
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Asawari Dilip Donadkar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Rahul Soman
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India; Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Ashok R Unni
- Central Lab Animal Facility, Department of Veterinary Medicine, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - M S Sithara
- Central Lab Animal Facility, Department of Veterinary Medicine, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041 Kerala, India.
| |
Collapse
|
137
|
Zhou B, Guo J, Xiao K, Liu Y. The multifaceted role of ferroptosis in infection and injury and its nutritional regulation in pigs. J Anim Sci Biotechnol 2025; 16:29. [PMID: 39994824 PMCID: PMC11854094 DOI: 10.1186/s40104-025-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by iron overload and excessive lipid peroxidation. To date, numerous studies in human and mouse models have shown that ferroptosis is closely related to tissue damage and various diseases. In recent years, ferroptosis has also been found to play an indispensable and multifaceted role in infection and tissue injury in pigs, and nutritional regulation strategies targeting ferroptosis show great potential. In this review, we summarize the research progress of ferroptosis and its role in infection and tissue injury in pigs. Furthermore, we discuss the existing evidence on ferroptosis regulation by nutrients, aiming to provide valuable insights for future investigation into ferroptosis in pigs and offer a novel perspective for the treatment of infection and injury in pigs.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
138
|
Shahzad A, Liu W, Hussain S, Ni Y, Cui K, Sun Y, Liu X, Duan Q, Xia J, Zhang J, Xu Z, Sai B, Zhu Y, Zhang Q, Yang Z. Integrated in vitro, in silico, and in vivo approaches to elucidate the antidiabetic mechanisms of Cicer arietinum and Hordeum vulgare extract and secondary metabolites. Sci Rep 2025; 15:6620. [PMID: 39994296 PMCID: PMC11850774 DOI: 10.1038/s41598-025-89642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Diabetes mellitus is a group of metabolic disorders that can lead to severe health problems, and the current treatments often have harmful side effects. Therefore, there is a growing interest in discovering new antidiabetic drugs with fewer adverse effects, and natural products are a promising source for this purpose. Cicer arietinum and Hordeum vulgare are plants with high levels of phytochemicals that have been shown to have therapeutic properties. This study investigates the anti-diabetic potential of C. arietinum and H. vulgare seeds and their secondary metabolites. We employed a comprehensive approach combining in vitro, in silico, and in vivo methods to evaluate the efficacy of the compounds. Our findings reveal that the extracts of C. arietinum (IC50 55.08 μg/mL) and H. vulgare (IC50 115.8 ± 5 μg/mL) demonstrated a stronger inhibitory effect on α-amylase compared to acarbose (standard drug) (IC50 196.3 ± 10 μg/mL). Similarly, both C. arietinum and H. vulgare exhibited significant inhibitory activity against α-glucosidase (IC50 100.2 ± 5 μg/mL and IC50 216.2 ± 5 μg/mL, respectively) compared to acarbose (IC50 246.5 ± 10 μg/mL). To further investigate their mechanism of action, a computational screening of 194 phytochemicals from these plants was conducted, followed by molecular docking with α-amylase (PDB ID#1B2Y) and α-Glucosidase (PDB ID# 5NN8) receptors. According to the binding affinities and molecular dynamics (MD) simulations, Medicagol, Euphol, Stigmasterol, and Beta-Sitosterol emerged as promising candidates for diabetes treatment. Molecular dynamics showed that Medicagol was a strong inhibitor against selected receptor proteins because the ligand-protein complexes remained stabilized during the entire simulation time of 100 ns. In vitro analysis also confirmed that Medicagol, stigmasterol, and Euphol have significant potential for type 2 diabetes prevention via inhibition of carbohydrates hydrolyzing enzymes. In vivo study demonstrated significant therapeutic effects in STZ-induced diabetes mice. Including reductions in hyperlipidemia, hyperglycemia, and insulin resistance. Histopathological analysis revealed that plant extracts mitigated STZ-induced pancreatic and liver damage. Additionally, extracts enhanced antioxidant defenses by increasing SOD, CAT, and GSH levels, while decreasing MDA levels in the liver, kidneys, and pancreas, highlighting their protective role against oxidative stress. These results support the potential of Cicer arietinum and Hordeum vulgare as natural sources for developing antidiabetic agents.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Shoukat Hussain
- Departments of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, 1168 Yuhua Road, Chenggong, Kunming, 650500, Yunnan, People's Republic of China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua, , Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
139
|
Morocho V, Eras O, Rojas T, Jiménez B, Roa MF, Cartuche L. Biological Activity and Chemical Composition of Essential Oil from Leaves and Fruits of Zanthoxylum mantaro (J.F.Macbr.) J.F.Macbr. Antibiotics (Basel) 2025; 14:216. [PMID: 40149028 PMCID: PMC11939371 DOI: 10.3390/antibiotics14030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: In this study, the chemical composition and biological activities of the essential oils extracted from the leaves and fruits of Zanthoxylum mantaro were analyzed. Methods: The essential oils were obtained through hydrodistillation using a Clevenger-type apparatus. Chemical composition was determined by gas chromatography coupled with mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). The antimicrobial activity was evaluated against four Gram-positive bacteria, three Gram-negative bacteria, and two fungi using the broth microdilution method. Antioxidant activity was assessed using the ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assays. Additionally, the acetylcholinesterase inhibitory effect of the essential oils was measured by a spectrophotometric method. Results and Conclusions: A total of 23 compounds were identified in the essential oil from the fruits, while 47 compounds were found in the essential oil from the leaves. The major constituents of the fruit essential oil were α-thujone (39.85%), β-thujone (25.04%), sabinene (10.71%), and terpinen-4-ol (4.38%), whereas the main compounds in the leaf essential oil were germacrene D (21.75%), nerolidol (E) (12.39%), and pentadecanal (7.14%). The essential oil from the fruits exhibited antifungal activity against Aspergillus niger (ATCC 6275), with a minimum inhibitory concentration (MIC) of 1000 μg/mL. Both the fruit and leaf essential oils showed moderate antioxidant activity in the ABTS assay, with SC50 values of 274.14 ± 1.06 μg/mL and 2798.85 ± 15.69 μg/mL, respectively. Furthermore, the fruit essential oil demonstrated considerable acetylcholinesterase inhibitory activity with an IC50 value of 65.46 ± 1.01 μg/mL, while the leaf essential oil exhibited an IC50 value of 158.2 ± 1.02 μg/mL.
Collapse
Affiliation(s)
- Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador;
| | - Odalis Eras
- Carrera de Bioquímica y Farmacia, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador; (O.E.); (T.R.); (B.J.); (M.F.R.)
| | - Teresa Rojas
- Carrera de Bioquímica y Farmacia, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador; (O.E.); (T.R.); (B.J.); (M.F.R.)
| | - Britany Jiménez
- Carrera de Bioquímica y Farmacia, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador; (O.E.); (T.R.); (B.J.); (M.F.R.)
| | - María Fernanda Roa
- Carrera de Bioquímica y Farmacia, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador; (O.E.); (T.R.); (B.J.); (M.F.R.)
| | - Luis Cartuche
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle París s/n y Praga, Loja 110107, Ecuador;
| |
Collapse
|
140
|
Liu J, Qiu L, Chen J, Zeng T. Lycorine hydrochloride Suppresses the Proliferation and Invasion of Esophageal Cancer by Targeting TRIM22 and Inhibiting the JAK2/STAT3 and Erk Pathways. Cancers (Basel) 2025; 17:718. [PMID: 40075566 PMCID: PMC11898953 DOI: 10.3390/cancers17050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Tumor metastasis and poor drug efficacy are two of the most common causes of therapeutic failure in cancer patients. The underlying molecular mechanism requires further exploration, and novel effective curative strategies are urgently needed. Nature is a rich source of novel drugs, and Lycorine hydrochloride (Lyc.HCL) is a natural alkaloid with tremendous therapeutic potential. However, the molecular mechanisms of its antitumor activity are still unknown. In the current study, we investigated the effects and mechanisms of Lyc.HCL against esophageal squamous cell carcinomas (ESCCs), which pose serious threats to human life. METHODS An MTS assay and a clone formation assay were used to assess the viability of ESCC cell lines after Lyc.HCL treatment in vitro. Apoptosis and cell cycle regulation were analyzed using flow cytometry. Wound healing and Transwell assays were used to analyze cell migration, while invasion was analyzed using the Matrigel Transwell assay. We detected the expression of tripartite motif-containing 22 (TRIM22) through immunohistochemistry and Western blotting. A docking experiment was performed to explore the targets of Lyc.HCL. The expression levels of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/extracellular signal-regulated kinase (Erk) pathway components were detected through Western blotting. A rescue experiment was performed to determine the potential role of TRIM22. In addition, we explored the in vivo anti-ESCC effects and mechanism of Lyc.HCL by using it to treat tumor-bearing mice. RESULTS The Lyc.HCL treatment was found to inhibit esophageal squamous cell carcinoma cell proliferation both in vitro and in vivo by blocking the cell cycle at the G2 phase, inhibiting cell migration and invasion. We found that the TRIM22 protein was highly expressed in ESCCs but not in normal esophageal tissue. Lyc.HCL directly targeted TRIM22, decreasing the expression of TRIM22 and the JAK2/STAT3 and Erk signaling pathways, both in vitro and in vivo. Using animal experiments, we observed that the depletion of TRIM22 delayed tumor growth, but this effect was significantly reversed upon TRIM22 overexpression. CONCLUSIONS Taken together, these findings demonstrate that Lyc.HCL can effectively suppress ESCC both in vitro and in vivo by targeting TRIM22 and regulating the JAK2/STAT3 and Erk pathways. These results suggest that Lyc.HCL may serve as a potential novel therapeutic for ESCC, with TRIM22 emerging as a promising target for treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liangxian Qiu
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jialing Chen
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
141
|
Vithalkar MP, Pradhan S, Sandra KS, Bharath HB, Nayak Y. Modulating NLRP3 Inflammasomes in Idiopathic Pulmonary Fibrosis: A Comprehensive Review on Flavonoid-Based Interventions. Cell Biochem Biophys 2025:10.1007/s12013-025-01696-4. [PMID: 39966334 DOI: 10.1007/s12013-025-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a severe, rapidly advancing disease that drastically diminishes life expectancy. Without treatment, it can progress to lung cancer. The precise etiology of IPF remains unknown, but inflammation and damage to the alveolar epithelium are widely thought to be pivotal in its development. Research has indicated that activating the NLRP3 inflammasome is a crucial mechanism in IPF pathogenesis, as it triggers the release of pro-inflammatory cytokines such as IL-1β, IL-18, and TGF-β. These cytokines contribute to the myofibroblast differentiation and extracellular matrix (ECM) accumulation. Currently, treatment options for IPF are limited. Only two FDA-approved medications, pirfenidone and nintedanib, are available. While these drugs can decelerate disease progression, they come with a range of side effects and do not cure the disease. Additional treatment strategies primarily involve supportive care and therapy. Emerging research has highlighted that numerous flavonoids derived from traditional medicines can inhibit the critical regulators responsible for activating the NLRP3 inflammasome. These flavonoids show promise as potential therapeutic agents for managing IPF, offering a new avenue for treatment that targets the core inflammatory processes of this debilitating condition.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Shreya Pradhan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, Pin 576104, India.
| |
Collapse
|
142
|
Wei G, Zhao F, Zhang Z, Regenstein JM, Sang Y, Zhou P. Identification and characterization of umami-ACE inhibitory peptides from traditional fermented soybean curds. Food Chem 2025; 465:142160. [PMID: 39579405 DOI: 10.1016/j.foodchem.2024.142160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Fermented soybean curds (FSC) are popular because of its umami taste. Its bioactivities are of interest. Peptides in FSC were identified using nano-HPLC-MS/MS, and 11 candidate peptides showing potential umami and ACE inhibitory activities were screened using various databases. Pharmacophore model analysis showed their high probability of ACE inhibition with fit values >2, which showed the peptides bound to umami receptors and ACE mainly through hydrogen bond, and electrostatic and hydrophobic interactions. Additionally, their docking and interaction energy were independent of the peptide length. Three high umami-ACE inhibitory peptides (VE, FEF, and WEEF) were synthesized. Their umami thresholds were WEEF (0.32 mM) < FEF (0.55 mM) < VE (1.10 mM), while their IC50 were WEEF (85 ± 2 μM) < FEF (170 ± 10 μM) < VE (205 ± 5 μM). NO and ET-1 production were dose-dependent with WEEF showing the best ACE inhibitory activity. The results allowed identification of effective umami agents and ACE inhibitory peptides from fermented soybean products. It could also be useful method for screening potential umami-ACE inhibitory peptides.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, PR China; School of Food Science, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Feiran Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, PR China
| | - Ziyi Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, PR China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, PR China.
| | - Peng Zhou
- School of Food Science, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
143
|
Li Z, Zhang Z, Yu B. Unlocking the Therapeutic Potential of Natural Products for Alzheimer's Disease. J Med Chem 2025; 68:2377-2402. [PMID: 39865664 DOI: 10.1021/acs.jmedchem.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory loss and cognitive decline. With current treatments offering limited effectiveness, researchers are turning to natural products that can target various aspects of AD pathology. Clinically approved natural products, such as galantamine and huperzine A, have shown success in AD treatments. Furthermore, compounds such as epigallocatechin gallate, quercetin, and resveratrol are in clinical trials. This Perspective examines nearly 100 natural compounds with promising neuroprotective effects in preclinical and clinical studies. These compounds exhibit diverse pharmacological actions that help to prevent neurodegeneration while improving cognitive functions. Their unique structures further enhance their biological activities, making them promising candidates for drug discovery. This Perspective stresses the importance of further clinical research to maximize the medical benefits of these compounds and highlights their potential as innovative remedies for AD. Continued exploration of these compounds is crucial to fully leverage their capabilities in combating AD.
Collapse
Affiliation(s)
- Zhonghua Li
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
144
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
145
|
Panigrahi D, Sahu SK. Computational approaches: atom-based 3D-QSAR, molecular docking, ADME-Tox, MD simulation and DFT to find novel multi-targeted anti-tubercular agents. BMC Chem 2025; 19:39. [PMID: 39948649 PMCID: PMC11827359 DOI: 10.1186/s13065-024-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/28/2024] [Indexed: 02/16/2025] Open
Abstract
Tuberculosis (TB) has become the biggest threat to human society because of the rapid rise in resistance to the causative bacteria Mycobacterium tuberculosis (MTB) against the available anti-tubercular drugs. There is an urgent need to design new multi-targeted anti-tubercular agents to overcome the resistance species of MTB through computational design tools. With this aim in mind, we performed a combination of atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR), six-point pharmacophore (AHHRRR), and molecular docking analysis on a series of fifty-eight anti-tubercular agents. The created QSAR model had a R2 value of 0.9521, a Q2 value of 0.8589, and a Pearson r-factor of 0.8988, all of which are statistically significant. This means that the model was effective at making predictions. We performed the molecular docking study for the data set of compounds with the two important anti-tubercular target proteins, Enoyl acyl carrier protein reductase (InhA) (PDBID: 2NSD) and Decaprenyl phosphoryl-β-D-Ribose 20-epimerase (DprE1) (PDBID: 4FDO). We used the similarity search principle to do virtual screening on 237 compounds from the PubChem database in order to find strong anti-tubercular agents that act against multiple targets. The screened compound, MK3, showed the highest docking score of -9.2 and -8.3 kJ/mol towards both the target proteins InhA and DprE1, which were picked for a 100 ns molecular-dynamic simulation study using GROMACS. The data showed that the compound MK3 was thermodynamically stable and effectively bound to both target proteins in their active binding pockets without much movement. The analysis of the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and energy gap predicts the molecular reactivity and stability of the identified molecule. Based on the result of the above studies, the proposed compound MK3 can be successfully used for the development of a novel multi-targeted anti-tubercular agent with high binding affinity and favourable ADME-T properties.
Collapse
Affiliation(s)
- Debadash Panigrahi
- University Department of Pharmaceutical Sciences, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India.
- Drug Research Laboratory, Nodal Research Centre, College of Pharmaceutical Sciences, Baliguali, Puri- Konark Marine Drive Road, Puri, Odisha, 752004, India.
| | - Susanta Kumar Sahu
- University Department of Pharmaceutical Sciences, Utkal University, VaniVihar, Bhubaneswar, Odisha, 751004, India
| |
Collapse
|
146
|
Naiditch H, Betts MR, Larman HB, Levi M, Rosenberg AZ. Immunologic and inflammatory consequences of SARS-CoV-2 infection and its implications in renal disease. Front Immunol 2025; 15:1376654. [PMID: 40012912 PMCID: PMC11861071 DOI: 10.3389/fimmu.2024.1376654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
The emergence of the COVID-19 pandemic made it critical to understand the immune and inflammatory responses to the SARS-CoV-2 virus. It became increasingly recognized that the immune response was a key mediator of illness severity and that its mechanisms needed to be better understood. Early infection of both tissue and immune cells, such as macrophages, leading to pyroptosis-mediated inflammasome production in an organ system critical for systemic oxygenation likely plays a central role in the morbidity wrought by SARS-CoV-2. Delayed transcription of Type I and Type III interferons by SARS-CoV-2 may lead to early disinhibition of viral replication. Cytokines such as interleukin-1 (IL-1), IL-6, IL-12, and tumor necrosis factor α (TNFα), some of which may be produced through mechanisms involving nuclear factor kappa B (NF-κB), likely contribute to the hyperinflammatory state in patients with severe COVID-19. Lymphopenia, more apparent among natural killer (NK) cells, CD8+ T-cells, and B-cells, can contribute to disease severity and may reflect direct cytopathic effects of SARS-CoV-2 or end-organ sequestration. Direct infection and immune activation of endothelial cells by SARS-CoV-2 may be a critical mechanism through which end-organ systems are impacted. In this context, endovascular neutrophil extracellular trap (NET) formation and microthrombi development can be seen in the lungs and other critical organs throughout the body, such as the heart, gut, and brain. The kidney may be among the most impacted extrapulmonary organ by SARS-CoV-2 infection owing to a high concentration of ACE2 and exposure to systemic SARS-CoV-2. In the kidney, acute tubular injury, early myofibroblast activation, and collapsing glomerulopathy in select populations likely account for COVID-19-related AKI and CKD development. The development of COVID-19-associated nephropathy (COVAN), in particular, may be mediated through IL-6 and signal transducer and activator of transcription 3 (STAT3) signaling, suggesting a direct connection between the COVID-19-related immune response and the development of chronic disease. Chronic manifestations of COVID-19 also include systemic conditions like Multisystem Inflammatory Syndrome in Children (MIS-C) and Adults (MIS-A) and post-acute sequelae of COVID-19 (PASC), which may reflect a spectrum of clinical presentations of persistent immune dysregulation. The lessons learned and those undergoing continued study likely have broad implications for understanding viral infections' immunologic and inflammatory consequences beyond coronaviruses.
Collapse
Affiliation(s)
- Hiam Naiditch
- Department of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael R. Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
147
|
Martinović J, Ambrus R, Planinić M, Perković G, Šelo G, Klarić AM, Bucić-Kojić A. Spray-Drying Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings and Bioaccessibility of Phenolic Compounds. Gels 2025; 11:130. [PMID: 39996673 PMCID: PMC11854297 DOI: 10.3390/gels11020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Spray-drying is a common technique for the microencapsulation of bioactive compounds, which is crucial for improving their stability and bioavailability. In this study, the encapsulation efficiency (EE), physicochemical properties and in vitro bioaccessibility of phenolic compounds from spray-dried encapsulated phenol-rich extracts of grape pomace, a winery waste, were evaluated. Sodium alginate alone (SA) or in a mixture with gum Arabic (SA-GA) or gelatin (SA-GEL) was used as a coating. SA-GEL achieved the highest EE (95.90-98.01%) and outperformed the intestinal release of phenolics by achieving a bioaccessibility index (BI) for total phenolic compounds of 37.8-96.2%. The release mechanism of phenolics from the microcapsules adhered to Fickian diffusion. Encapsulation significantly improved the BI of individual phenolics, with the highest BI values for gallocatechin gallate (2028.7%), epicatechin gallate (476.4%) and o-coumaric acid (464.2%) obtained from the SA-GEL microcapsules. Structural analysis confirmed amorphous matrices in all systems, which improved solubility and stability. These results suggest that encapsulation by spray-drying effectively protects phenolics during digestion and ensures efficient release in the intestine, which improves bioaccessibility. This study contributes to the understanding of biopolymer-based encapsulation systems, but also to the valorisation of grape pomace as a high-value functional ingredient in sustainable food processing.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31000 Osijek, Croatia (M.P.); (G.P.); (G.Š.); (A.-M.K.)
| |
Collapse
|
148
|
Morsy HM, Zaky MY, Yassin NYS, Khalifa AYZ. Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals. Int J Pharm 2025; 670:125135. [PMID: 39732216 DOI: 10.1016/j.ijpharm.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability. Moreover, this review illustrated the pioneering biomedical applications of nanoparticle-based flavonoid therapeutics, as well as safety and toxicity considerations of using a flavonoid nanoparticle delivery system.
Collapse
Affiliation(s)
- Hadeer M Morsy
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt.
| | - Nour Y S Yassin
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Ashraf Y Z Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
149
|
De Gaetano F, Caridi F, Totaro N, Celesti C, Venuti V, Ginestra G, Nostro A, Tommasini S, Ventura CA, Stancanelli R. Naringenin-Loaded Solid Lipid Nanoparticles: Physical-Chemical Characterization and In Vitro Antibacterial Activity. Pharmaceuticals (Basel) 2025; 18:232. [PMID: 40006044 PMCID: PMC11859375 DOI: 10.3390/ph18020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Currently, problems related to antibiotic resistance are shifting the focus of pharmaceutical research towards natural molecules with antibacterial properties. Among them, flavonoids represent promising molecules with strong antibacterial features; however, they have poor biopharmaceutical properties. In this study, we developed solid lipid nanoparticles (SLNs) loaded with the flavanone naringenin (NRG) to offer an option for treating bacterial infections. NRG-SLNs systems were prepared by a solvent emulsification/diffusion and ultrasonication method, using Compritol® 888 ATO (COM) as the lipid. The optimal formulation was obtained using a 10% (w/w) theoretical amount of NRG (NRG10-SLNs), exhibiting homogeneous sizes (approximately 50 nm and 0.15 polydispersity index), negative zeta potential (-30 mV), and excellent encapsulation parameters (an encapsulation efficiency percentage of 97.9% and a drug content of 4%). NRG10-SLNs presented good physical stability over 4 weeks. A cumulative drug release of 55% in 24 h and the prolonged release of the remaining amount over 10 days was observed. In addition, µ-Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction measurements were carried out to characterize the drug-lipid interactions. Finally, the in vitro antibacterial and antibiofilm activities of NRG10-SLNs were assayed and compared to free NRG. NRG10-SLNs were bacteriostatic against Staphylococcus aureus, including the methicillin-resistant S. aureus (MRSA) and Escherichia coli strains. An improvement in the antibacterial activity of NRG-loaded SLNs compared to the free molecule was observed against S. aureus strains, probably due to the interaction of the surfactant-coated SLNs with the bacterial surface. A similar trend was observed for the biofilm inhibition.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Francesco Caridi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.C.); (V.V.)
| | - Noemi Totaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy;
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (F.C.); (V.V.)
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (N.T.); (G.G.); (A.N.); (S.T.); (R.S.)
| |
Collapse
|
150
|
Sharma D, Arumugam S. Pharmacophore-based identification and in Silico characterization of microbial metabolites as potential modulators of Wnt signaling pathway in colorectal cancer therapy. Mol Divers 2025:10.1007/s11030-024-11103-4. [PMID: 39921842 DOI: 10.1007/s11030-024-11103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 02/10/2025]
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway, primarily driven by APC mutation and AXIN degradation via Tankyrase, contributes significantly to colorectal cancer (CRC) progression and metastasis. The accumulation of β-catenin, resulting from the dysregulated ubiquitination, underscores the need for alternative therapeutic strategies targeting Tankyrase and β-catenin. This present study explores microbial metabolites as a source of novel anti-cancer agents, leveraging their unique bioactivity and structural diversity, often exhibiting superior target specificity and lower toxicity than synthetic drugs. Through a computational drug discovery pipeline, a large library of 27641 microbial metabolites was initially screened based on multiple drug-likeliness criteria, resulting in the selection of 2527 compounds. Among the screened compounds, an integrated computational workflow comprising molecular docking, molecular dynamic simulations (MDS), MM/PBSA analysis, and Principal component analysis (PCA) identified Terreustoxin I (T1) as a potential Tankyrase inhibitor. In contrast, compound 10- phenyl-[12]-cytochalasin Z16 (B1) demonstrated a strong binding affinity within the β-catenin active site. Under physiological conditions, these lead compounds were evaluated for conformational stability, binding efficacy, and dynamic behavior. Additionally, ADMET profiling, physiochemical properties, and bioactivity score predictions confirmed the identified compounds' pharmacokinetic suitability and reduced toxicity profile. In silico, cytotoxicity predictions showed significant activity against SW480 and HCT90 colorectal cell lines, with additional anti-neoplastic and anti-leukemic properties, strengthening their candidacy as effective anti-cancer agents. These findings provide a foundation for further experimental validation and development of novel CRC therapies with improved safety and efficacy potential.
Collapse
Affiliation(s)
- Divya Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|