151
|
|
Sivaramakrishna A, Pete S, Mandar Mhaskar C, Ramann H, Venkata Ramanaiah D, Arbaaz M, Niyaz M, Janardan S, Suman P. Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coord Chem Rev 2023; 485:215140. [DOI: 10.1016/j.ccr.2023.215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
152
|
|
Pawlak M, Drzeżdżon J, Jacewicz D. The greener side of polymers in the light of d-block metal complexes as precatalysts. Coord Chem Rev 2023; 484:215122. [DOI: 10.1016/j.ccr.2023.215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
153
|
|
Wang B, Zhang H, He N, Wang H, Jiang B, Tang D, Li L. Mangrove root-inspired evaporator enables high-rate salt-resistant solar desalination. Sep Purif Technol 2023; 314:123490. [DOI: 10.1016/j.seppur.2023.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
154
|
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. Photosynth Res 2023; 156:279-307. [PMID: 36826741 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
155
|
|
Zhu Z, Hu W, Wu X, Zhang Q, Hu Y, Yan Q, Wang X, Yuan W. In situ self-assembled macroporous interconnected nanosheet arrays of Ni-1,3,5-benzenetricarboxylate metal - organic framework on Ti mesh as high-performance oxygen evolution electrodes. J Colloid Interface Sci 2023; 639:274-83. [PMID: 36805752 DOI: 10.1016/j.jcis.2023.02.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Highly efficient metal-organic framework (MOF)-based oxygen evolution reaction (OER) catalysts are desirable for water splitting, but their development remains challenging due to poor accessibility of coordinatively unsaturated metal (cum) sites and low intrinsic activity. A large-area three-dimensional (3-D) macroporous interconnected nanosheet array of Ni-1,3,5-benzenetricarboxylate has been in situ self-assembled on Ti mesh (TM) by using ethanol as the solvent and high-affinity oxide layer on TM to promote in situ nucleation. The obtained nanoarchitecture exhibits much superior catalytic activity compared to most reported catalysts including MOF-based catalysts, other precious-metal-free ones, and Ir/Ru-based ones. Additionally, this electrode undergoes no current decay after 300 cyclic voltammetry (CV) cycles and can maintain at 250 mA cm-2 for over 266 h. The excellent catalytic performance is mainly due to the 3-D macroporous and interconnected nanosheet array structure improving cum site exposure and charge transport and in situ activated cum cations enhancing OH- adsorption. This work not only develops a facile and economical approach to synthesize 3-D macroporous interconnected MOF nanosheet arrays to simultaneously increase the number, exposure, and intrinsic activity of active sites and facilitate charge transport for high-performance eletrocatalysis, but provides scientific insights into the mechanisms for self-assembly of this unique nanoarchitecture and for the high OER performance.
Collapse
|
156
|
|
Najeh S, Zandi K, Kharma N, Perreault J. Computational design and experimental verification of pseudoknotted ribozymes. RNA 2023; 29:764-76. [PMID: 36868786 DOI: 10.1261/rna.079148.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 05/18/2023]
Abstract
The design of new RNA sequences that retain the function of a model RNA structure is a challenge in bioinformatics because of the structural complexity of these molecules. RNA can fold into its secondary and tertiary structures by forming stem-loops and pseudoknots. A pseudoknot is a set of base pairs between a region within a stem-loop and nucleotides outside of this stem-loop; this motif is very important for numerous functional structures. It is important for any computational design algorithm to take into account these interactions to give a reliable result for any structures that include pseudoknots. In our study, we experimentally validated synthetic ribozymes designed by Enzymer, which implements algorithms allowing for the design of pseudoknots. Enzymer is a program that uses an inverse folding approach to design pseudoknotted RNAs; we used it in this study to design two types of ribozymes. The ribozymes tested were the hammerhead and the glmS, which have a self-cleaving activity that allows them to liberate the new RNA genome copy during rolling-circle replication or to control the expression of the downstream genes, respectively. We demonstrated the efficiency of Enzymer by showing that the pseudoknotted hammerhead and glmS ribozymes sequences it designed were extensively modified compared to wild-type sequences and were still active.
Collapse
Affiliation(s)
- Sabrine Najeh
- INRS - Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| | - Kasra Zandi
- Software Engineering and Computer Science Department, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Nawwaf Kharma
- Electrical and Computer Engineering Department, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
157
|
|
Kias F, Abtouche S, Amar A, Elkechai A, Boucekkine A, Ephritikhine M. New insights into the reactivity of the triscyclopentadienyl monothiolate uranium(IV) complexes: CS2 and CO2 insertion and redox properties. A DFT theoretical approach. J Organomet Chem 2023; 992:122692. [DOI: 10.1016/j.jorganchem.2023.122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
158
|
|
Lv H, Ma C, Zhu Z, Li Q, Chen S, Wang F, Li S. A light-sensitive metal-organic framework composite encapsulated by ion exchange for photocatalytic organic reaction. J SOLID STATE CHEM 2023; 322:123948. [DOI: 10.1016/j.jssc.2023.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
159
|
|
Hai X, Shi F, Zhu Y, Ma L, Wang L, Yin J, Li X, Yang Z, Yuan M, Xiong H, Gao Y. Development of magnetic dispersive micro-solid phase extraction of four phenolic compounds from food samples based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent. Food Chem 2023; 410:135338. [PMID: 36621335 DOI: 10.1016/j.foodchem.2022.135338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A magnetic dispersive micro-solid phase extraction technique (CS@Fe3O4-MD-μSPE-DESP) based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent was developed and applied to determinations of four phenolic compounds in food samples. To prevent environmental pollution and the introduction of toxic substances, deep eutectic supramolecular solvents (DESPs), which exhibited greater desorption capacities than conventional organic solvents and deep eutectic solvents, were used as novel green eluents for the first time. Some important parameters were screened by the Plackett-Burman method and then further optimized with response surface methodology (RSM). Under the optimal conditions, the proposed method showed excellent methodological indices with linearity over the range 0.1-200.0 µg·mL-1, R2 > 0.9988, extraction recoveries above 94.8 %, and precision (RSD%) below 2.9 %. The established method finishes the process of adsorption and desorption in approximately 3 min and enhances the efficiency for determination of phenolic compounds.
Collapse
Affiliation(s)
- Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jinfang Yin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China
| | - Huabin Xiong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China.
| | - Yuntao Gao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
160
|
|
Ferrauto G, Terreno E. Compartmentalized agents: A powerful strategy for enhancing the detection sensitivity of chemical exchange saturation transfer contrast. NMR Biomed 2023; 36:e4791. [PMID: 35731545 DOI: 10.1002/nbm.4791] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 05/23/2023]
Abstract
Since the very beginnings of the chemical exchange saturation transfer (CEST) technique, poor overall sensitivity has appeared to be one of its strongest limitations for future applications. Research has therefore focused on designing systems, such as supramolecular and nanosized agents, that contain a high number of magnetically equivalent mobile spins. However, the number of mobile spins offered by these systems is still limited by their composition and surface/volume ratio. The design of compartmentalized agents, that is, systems where an aqueous inner core is separated from the MRI-detected bulk pool via a semipermeable barrier/membrane, is very much a step forward for the technique. These vesicular systems can (i) act as biocompatible and versatile carriers for dia-, para-, and hetero-nuclear CEST probes, thus offering new application options; and (ii) act as CEST probes themselves via the encapsulation of a suitable agent (e.g., a paramagnetic shift reagent) that can change the resonance frequency of the spin pool in the inner compartment only. LipoCEST agents were the pioneers in the latter category, as they are able to grant picomolar sensitivity (in terms of nanoparticle concentration), and paved the way for new applications for CEST agents, especially in the theranostic research area. The use of larger, natural vesicular systems, such as yeasts and cells, in which the huge number of intravesicular spins lowers the detection threshold to a femtomolar limit, is a further step forward in the development of compartmentalized CEST agents. Finally, interesting combinations of nanovesicular and cellular compartmentalized systems have been proposed, thus highlighting how the approach has the potential to drive CEST agents towards completing their journey to mature clinical translation.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Center for Molecular and Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enzo Terreno
- Center for Molecular and Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
161
|
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2022; 91:101151. [PMID: 36371228 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
162
|
|
Jeyakumar J, Seenivasan M, Wu YS, Wu SH, Chang JK, Jose R, Yang CC. Preparation of long-term cycling stable ni-rich concentration-gradient NCMA cathode materials for li-ion batteries. J Colloid Interface Sci 2023; 639:145-59. [PMID: 36804788 DOI: 10.1016/j.jcis.2023.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Nickel-rich (Ni > 90 %) cathodes are regarded as one of the most attractive because of their high energy density, despite their poor stability and cycle life. To improve their performance, in this study we synthesized a double concentration-gradient layered Li[Ni0.90Co0.04Mn0.03Al0.03]O2 oxide (CG-NCMA) using a continuous co-precipitation Taylor-Couette cylindrical reactor (TCCR) with a Ni-rich-core, an Mn-rich surface, and Al on top. The concentration-gradient morphology was confirmed through cross-sectional EDX line scanning. The as-synthesized sample exhibited excellent electrochemical performance at high rates (5C/10C), as well as cyclability (91.5 % after 100 cycles and 70.3 % after 500 cycles at 1C), superior to that (83.4 % and 47.6 %) of its non-concentration-gradient counterpart (UC-NCMA). The Mn-rich surface and presence of Al helped the material stay structurally robust, even after 500 cycles, while also suppressing side reactions between the electrode and electrolyte, resulting in better overall electrochemical performance. These enhancements in performance were studied using TEM, SEM, in-situ-XRD, XPS, CV, EIS and post-mortem analyses. This synthetic method enables the highly scalable production of CG-NCMA samples with two concentration-gradient structures for practical applications in Li-ion batteries.
Collapse
Affiliation(s)
- Juliya Jeyakumar
- Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC
| | - Manojkumar Seenivasan
- Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC
| | - Yi-Shiuan Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC
| | - She-Huang Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC; Graduate Institute of Science and Technology, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, ROC
| | - Jeng-Kuei Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan, ROC
| | - Rajan Jose
- Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Kuantan, Malaysia
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, Taishan, New Taipei, City 24301, Taiwan, ROC; Department of Chemical and Materials Engineering, and Green Technology Research Center, Chang Gung University, Taoyuan City 333, Taiwan, ROC.
| |
Collapse
|
163
|
|
Haapaniemi E. NMR spectroscopic discrimination of the enantiomer pairs of soman and bispinacolyl-methylphosphonate and detailed analysis of the pinacolyl group (1) H NMR resonances. Magn Reson Chem 2023; 61:363-72. [PMID: 36918021 DOI: 10.1002/mrc.5344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
If a 1 H NMR FID measured from oman is manipulated with Gaussian windowing before Fourier transformation, nine protons' signals of pinacolyl group can show some shape depending on the solvent and temperature. How could those signals shape and separate soman isomers as well as conformers information be combined, or could they fit somehow? Molecular modeling results together with accurate iterative spectral analysis were also extended to bispinacolyl-methylphoshonate (BPMP), which have two pinacolyl groups. As far as we know, this is the first complete 1 H, 13 C, and 31 P NMR spectral analysis of BPMP.
Collapse
|
164
|
|
Kenyaga JM, Oteino SA, Sun Y, Qiang W. In-cell 31P solid-state NMR measurements of the lipid dynamics and influence of exogeneous β-amyloid peptides on live neuroblastoma neuro-2a cells. Biophys Chem 2023; 297:107008. [PMID: 36989875 DOI: 10.1016/j.bpc.2023.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Non-specific disruption of cellular membranes induced by aggregation of exogeneous β-amyloid (Aβ) peptides is considered a viable pathological mechanism in Alzheimer's disease (AD). The solid-state nuclear magnetic resonance (ssNMR) spectroscopy has been widely applied in model liposomes to provide important insights on the molecular interactions between membranes and Aβ aggregates. Yet, the feasibility of in-cell ssNMR spectroscopy to probe Aβ-membrane interactions in native cellular environments has rarely been tested. Here we report the application of in-cell31P ssNMR spectroscopy on live mouse neuroblastoma Neuro-2a (N2a) cells under moderate magic angle spinning (MAS) conditions. Both cell viability and cytoplasmic membrane integrity are retained for up to six hours under 5 kHz MAS frequency at 277 K, which allow applications of direct-polarization 31P spectroscopy and 31P spin-spin (T2) relaxation measurements. The 31P T2 relaxation time constant of N2a cells is significantly increased compared with the model liposome prepared with comparable major phospholipid compositions. With the addition of 5 μM 40-residue Aβ (Aβ1-40) peptides, the 31P T2 relaxation is instantly accelerated. This work demonstrates the feasibility of using in-cell31P ssNMR to investigate the Aβ-membrane interactions in the biologically relevant cellular system.
Collapse
|
165
|
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
166
|
|
Ghosh A, Conradie J. B12 and F430 models: Metal- versus ligand-centered redox in cobalt and nickel tetradehydrocorrin derivatives. J Inorg Biochem 2023; 243:112199. [PMID: 36996695 DOI: 10.1016/j.jinorgbio.2023.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
DFT calculations with the well-tested OLYP and B3LYP* exchange-correlation functionals (along with D3 dispersion corrections and all-electron ZORA STO-TZ2P basis sets) and careful use of group theory have led to significant insights into the question of metal- versus ligand-centered redox in Co and Ni B,C-tetradehydrocorrin complexes. For the cationic complexes, both metals occur in their low-spin M(II) forms. In contrast, the charge-neutral states vary for the two metals: while the Co(I) and CoII-TDC•2- state are comparable in energy for cobalt, a low-spin NiII-TDC•2- state is clearly preferred for nickel. The latter behavior stands in sharp contrast to other corrinoids that reportedly stabilize a Ni(I) center.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
167
|
|
Prabhune A, Dey R. Green and sustainable solvents of the future: Deep eutectic solvents. J Mol Liq 2023; 379:121676. [DOI: 10.1016/j.molliq.2023.121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
168
|
|
Visan RM, Leonties AR, Anastasescu M, Angelescu DG. Towards understanding the interaction of quercetin with chitosan-phytate complex: An experimental and computational investigation. J Mol Liq 2023; 380:121673. [DOI: 10.1016/j.molliq.2023.121673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
169
|
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023; 484:215117. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
170
|
|
Su Y, Ye B, Zhang Z, Gao Q, Zeng L, Wan Y, Sun W, Chen S, Quan D, Yu J, Guo X. Photocatalytic oxygen evolution and antibacterial biomimetic repair membrane for diabetes wound repair via HIF1-α pathway. Mater Today Bio 2023; 20:100616. [PMID: 37025556 DOI: 10.1016/j.mtbio.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Diabetic wounds always have puzzled patients and caused serious social problems. Due to the lack of local blood vessels, severe hypoxia is generated in the defect area, which is an essential reason for the difficulty of wound healing. We have constructed a photocatalytic oxygen evolution and antibacterial biomimetic repair membrane to solve the problems of wound repair. A scanning electron microscope and transmission electron microscope characterized the biomimetic repair membrane. The oxygen evolution of the biomimetic membrane was tested by an oxygen meter. The excellent antibacterial performance of the biomimetic repair membrane was also verified by co-culture with Staphylococcus aureus and Escherichia coli. It was confirmed that the expression of collagen and HIF1-α in fibroblasts was significantly increased in vitro. And the mitochondrial activity of the vascular and nerve was increased considerably. In vivo, the healing time of diabetes wounds treated with the biomimetic repair membrane was significantly reduced, the collagen and the number of pores were increased considerably, and vascular regeneration was enhanced. The biomimetic repair membrane has an excellent performance in photocatalytic oxygen evolution and antibacterial and can significantly promote the repair of diabetes wounds. This will provide a promising treatment for diabetes wound repair.
Collapse
Affiliation(s)
- Yanlin Su
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Bing Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ziming Zhang
- Department of Orthopedics, Zaoyang First People's Hospital, Zaoyang, Hubei, 430022, China
| | - Qing Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yizhou Wan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wenzhe Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daping Quan
- PCFM Lab, School of Chemistry and School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510000, China
- Corresponding author.
| | - Jialin Yu
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 430022, China
- Corresponding author.
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong Univer sity of Science and Technology, Wuhan, Hubei, 430022, China
- Corresponding author.
| |
Collapse
|
171
|
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023; 485:215116. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
172
|
|
Liu M, Guan L, Wen Y, Su L, Hu Z, Peng Z, Li S, Tang Q, Zhou Z, Zhou N. Rice husk biochar mediated red phosphorus for photocatalysis and photothermal removal of E. coli. Food Chem 2023; 410:135455. [PMID: 36641916 DOI: 10.1016/j.foodchem.2023.135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The current photocatalytic bactericidal materials in the field of food pathogen control are usually consisted of metals that always suffering from poor stability and possible secondary pollution. Besides, the requirement for high energy excitation also inspires the enthusiasm on exploring non-metallic catalysts. Herein, the non-metallic composite of rice shell biochar loaded with red phosphorus (B@RP) was developed for photocatalysis and photothermal removal of bacteria. The B@RP showed effective photocatalysis performance to stimulate the generation of OH and O2- free radicals for the elimination of Escherichia coli (E. coli). At the same time, the photothermal effect of B@RP can also increase the permeability of cell membrane, which is conducive to free radicals entering the cell interior. Therefore, the non-metallic composite could achieve complete removal of E. coli within 2 h under illumination. Meanwhile, B@RP had excellent stability and the sterilization efficiency maintained 100% after 9 cycles. Hence, B@RP is expected to be a harmless and efficient bactericidal material for food industry.
Collapse
Affiliation(s)
- Meng Liu
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Liqian Guan
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhan Hu
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Zhengjie Peng
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Shikai Li
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Qiyuan Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha 410128, China; College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
173
|
|
Garehbaghi S, Ashrafi AM, Adam V, Richtera L. Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay. Mater Today Bio 2023; 20:100656. [PMID: 37214551 DOI: 10.1016/j.mtbio.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for in vivo biosensing and bioassays.
Collapse
Affiliation(s)
- Sanam Garehbaghi
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Amir M. Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| |
Collapse
|
174
|
|
Yin J, Wang C, Zhang K, Liu D, Wu Z, Hata S, Yu R, Shiraishi Y, Du Y. Heterostructure engineering and ultralow Pt-loaded multicomponent nanocage for efficient electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 639:214-22. [PMID: 36805746 DOI: 10.1016/j.jcis.2023.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Developing highly efficient electrocatalysts based on appropriate heterojunction engineering and electronic structure modification for the oxygen evolution reaction (OER) has been extensively recognized as an effective approach to increase the efficiency of water splitting. Herein, ultralow Pt-loaded (1 %) NiCoFeP@NiCoFe-PBA hollow nanocages with well-defined heterointerfaces and modified electronic environment are successfully fabricated. As expected, the obtained Pt-NiCoFeP@NiCoFe-PBA exhibits outstanding performance with a low overpotential of 255 mV at 10 mA cm-2 and a small Tafel slope of 57.2 mV dec-1. More specifically, the highly open three-dimensional structure, exquisite interior voids and abundant surface defects endow Pt-NiCoFeP@NiCoFe-PBA nanocages with more electrochemical active sites. Meanwhile, experimental results and mechanism studies also reveal that the construction of heterogeneous interfaces as well as incorporation of noble metals could readily induce strong synergistic effects and significantly tailor electronic configurations to optimize the binding energy of the intermediates, thereby achieving prominent OER performance.
Collapse
Affiliation(s)
- Jiongting Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
175
|
|
Ajmal S, Yasin G, Kumar A, Tabish M, Ibraheem S, Sammed KA, Mushtaq MA, Saad A, Mo Z, Zhao W. A disquisition on CO2 electroreduction to C2H4: An engineering and design perspective looking beyond novel choosy catalyst materials. Coord Chem Rev 2023; 485:215099. [DOI: 10.1016/j.ccr.2023.215099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
176
|
|
Liu J, Kong T, Xiao Y, Bai L, Chen N, Tang H. Organic electrochemical transistor-based immuno-sensor using platinum loaded CeO2 nanosphere-carbon nanotube and zeolitic imidazolate framework-enzyme-metal polyphenol network. Biosens Bioelectron 2023; 230:115236. [PMID: 36989662 DOI: 10.1016/j.bios.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This work demonstrates an organic electrochemical transistor (OECT) immuno-sensor with a detection limit down to fg mL-1. The OECT device transforms the antibody-antigen interaction signal by using the zeolitic imidazolate framework-enzyme-metal polyphenol network nanoprobe, which can produce electro-active substance (H2O2) through the enzyme-catalytic reaction. The produced H2O2 is subsequently electrochemically oxidized at the platinum loaded CeO2 nanosphere-carbon nanotube modified gate electrode, resulting in an amplified current response of the transistor device. This immuno-sensor realizes the selective determination of vascular endothelial growth factor 165 (VEGF165) down to the concentration of 13.6 fg mL-1. It also shows good applicable capacity for determining the VEGF165 that human brain microvascular endothelial cells and U251 human glioblastomas cells secreted in the cell culture medium. The ultrahigh sensitivity of the immuno-sensor is derived from excellent performances of the nanoprobe for enzyme loading and the OECT device for H2O2 detection. This work may provide a general way to fabricate the OECT immuno-sensing device with high performances.
Collapse
|
177
|
|
Wang H, Qin Z, Zhang Y, Liu D, Cao Y. Complexation between poly (styrene-co-methacrylic acid) and polyquaternium for use in shampoo formulations. J Mol Liq 2023; 379:121692. [DOI: 10.1016/j.molliq.2023.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
178
|
|
Wu X, Boulos S, Syryamina V, Nyström L, Yulikov M. Interaction of barley β-glucan with food dye molecules - An insight from pulse dipolar EPR spectroscopy. Carbohydr Polym 2023; 309:120698. [PMID: 36906364 DOI: 10.1016/j.carbpol.2023.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The interactions between dietary fibers (DFs) and small molecules are of great interest to food chemistry and nutrition science. However, the corresponding interaction mechanisms and structural rearrangements of DFs at the molecular level are still opaque due to the usually weak binding and the lack of appropriate techniques to determine details of conformational distributions in such weakly organized systems. By combining our previously established methodology on stochastic spin-labelling of DFs with the appropriately revised set of pulse electron paramagnetic resonance techniques, we present here a toolkit to determine the interactions between DFs and small molecules, using barley β-glucan as an example for neutral DF and a selection of food dye molecules as examples for small molecules. The proposed here methodology allowed us to observe subtle conformational changes of β-glucan by detecting multiple details of the local environment of the spin labels. Substantial variations of binding propensities were detected for different food dyes.
Collapse
Affiliation(s)
- Xiaowen Wu
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Samy Boulos
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Victoria Syryamina
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
| | - Laura Nyström
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| |
Collapse
|
179
|
|
Wang G, Kumar Ghosh M, Wang J, Shi C, Yan M, Sakiyama H, Muddassir M, Kumar Ghorai T. Flexible 3,5-bis(3,4-dicarboxyphenoxy) benzoic acid based coordination polymers as photocatalysts for the sensitive photodegradation of methylene blue. Polyhedron 2023; 237:116393. [DOI: 10.1016/j.poly.2023.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
180
|
|
Cheng Q, Ma Q, Pei H, Liang H, Zhang X, Jin X, Liu N, Guo R, Mo Z. Chiral metal-organic frameworks materials for racemate resolution. Coord Chem Rev 2023; 484:215120. [DOI: 10.1016/j.ccr.2023.215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
181
|
|
Zhang X, Zhao Q, Yang J, Wang T, Chen F, Zhang K. Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023; 484:215115. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
182
|
|
Alrawashdeh L, Kulaib BF, Assaf KI, El-barghouthi MI, Bodoor K, Abuhasan OM, Abdoh AA. Cucurbit[7]uril complexes with gabapentin: Effect on lactamization. J Mol Liq 2023; 380:121716. [DOI: 10.1016/j.molliq.2023.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
183
|
|
Ganguly T, Pal P, Maity D, Baitalik S. Synthesis, characterization and emission switching behaviors of styrylphenyl-conjugated Ru(II)-terpyridine complexes via aggregation and trans–cis photoisomerization. J Photochem Photobiol A Chem 2023; 440:114662. [DOI: 10.1016/j.jphotochem.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
184
|
|
Wang L, Wang W, Zhang L, Li J, Sun J, Wang S, Mao X. Simultaneous screening of multiple diarrhetic shellfish poisons with group-specific split aptamers and silver nanocluster beacon. Food Chem 2023; 410:135389. [PMID: 36623457 DOI: 10.1016/j.foodchem.2023.135389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Poisoning events concerning diarrhetic shellfish poisons (DSPs) are increasing continually. It is extremely necessary to develop simple analysis methods for screening simultaneously different types of DSPs from food-related samples. Okadaic acid (OA) and its analogues, i.e., dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2), are the prevalent DSPs. Herein, a facile and label-free fluorescent aptasensor targeting the three DSPs was constructed with a pair of group-specific split aptamers and silver nanocluster beacon. In presence of the targets, the DNA templates attached at the ends of the split aptamers would be dragged close to trigger enhanced fluorescence signals from silver nanoclusters. The aptasensor offered high sensitivity and good selectivity, with limit of detection of 2.282 nmolL-1, 19.38 nmolL-1, and 13.61 nmolL-1 for OA, DTX-1, and DTX-2, respectively. Moreover, the applicability of aptasensor was well verified with shellfish and seawater samples. This study provides good reference for further exploration on analysis methods for food-related molecules.
Collapse
|
185
|
|
Fayadoglu M, Fayadoglu E, Er S, Koparal AT, Koparal AS. Determination of biological activities of nanoparticles containing silver and copper in water disinfection with/without ultrasound technique. J Environ Health Sci Eng 2023; 21:73-83. [PMID: 37159741 DOI: 10.1007/s40201-022-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The final and most crucial step in obtaining clean water is disinfection. More innovative methods of water disinfection have recently been sought. Water disinfection is a promising application for nanoparticles as disinfectants. As a contribution to the literature, biofilm and metal-containing nanoparticles as antiadhesion inhibitors were used in conjunction with ultrasound in this study. The microbroth dilution test was used to reveal the microbiological antibacterial activities of different concentrations of AgNO3 and CuCl2 containing nanoparticles against the Escherichia coli ATCC 25,922 strain, which is an indicator bacterium in water systems. Antibiofilm activities were then investigated using biofilm attachment and biofilm inhibition tests. The inhibitory effect of nanoparticle ultrasonic waves on biofilm contamination was determined using a novel approach. Human keratinocyte cells (HaCaT cell line) were used in cell culture studies after water disinfection, and their cytotoxic effects were demonstrated using the MTT assay. The findings suggest that the nanoparticles utilized might be a viable choice for water disinfection applications. Furthermore, employing ultrasound at low doses with nanoparticles resulted in greater results. One feasible option is to employ nanoparticles to cleanse water without producing cytotoxicity.
Collapse
Affiliation(s)
- Mustafa Fayadoglu
- Stem Cell Institute, Ankara University, TR-06100 Ankara, Turkey
- Institute of Graduate Programs, Department of Advanced Technologies, Programme of Biotechnology, Eskişehir Technical University, Eskişehir, Turkey
| | - Elif Fayadoglu
- Institute of Graduate Programs Department of Biology, Programme of Molecular Biology, Eskişehir Technical University, 26470 Tepebaşı, Eskişehir Turkey
| | - Sevda Er
- Yunus Emre Vocational School of Health Services, Department of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - A Tansu Koparal
- Yunus Emre Vocational School of Health Services, Department of Medical Services and Techniques, Anadolu University, Eskişehir, Turkey
| | - A Savas Koparal
- Open Education Faculty, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
186
|
|
Aboulouard A, Demir N, Can M, El idrissi M. Electronic and optical aspects of novel quinoxaline derivatives as electron donor materials for bulk heterojunction solar cells. J Mol Graph Model 2023; 121:108462. [PMID: 37001439 DOI: 10.1016/j.jmgm.2023.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this paper, we design new forms of organic conjugated compounds-based quinoxaline derivatives. Specifically, we exploit density functional theory and time-dependent-density functional theory in order to study the structure, the optic, the electronic, the reorganization energy and the photovoltaic features of such new molecules. Particularly, all engineered compounds have a narrow band gap in the range of 0.696-0.721 eV, high oscillator frequency and good optical properties. Moreover, the PCBM is employed as an electron acceptor. Employing global reactivity descriptors, we demonstrate that the molecules can efficiently emit electrons into the PCBM and the electrons are attracted to PCBM from molecules. In addition, the results show an appropriate open circuit voltage in the range of 0.338-0.362 V. The proposed compounds exhibit excellent electron transport and charge conduction from the donor to the acceptor. These new molecules show potential properties to develop bulk heterojunction organic photovoltaic cells.
Collapse
|
187
|
|
Ren B, Yang G, Lv Z, Liu Z, Zhang H, Si L, Liu H. First application of Sn (IV) corrole as electrocatalyst in hydrogen evolution reaction. INORG CHEM COMMUN 2023; 152:110663. [DOI: 10.1016/j.inoche.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
188
|
|
Siu B, Chowdhury AR, Yan Z, Humphrey SM, Hutter T. Selective adsorption of volatile organic compounds in metal-organic frameworks (MOFs). Coord Chem Rev 2023; 485:215119. [DOI: 10.1016/j.ccr.2023.215119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
189
|
|
Wang Y, Zhu G, Wang M, Wu J, Fu D, Xie Q, Shi Q, Xu C, Han Y. Discovery of novel cage compounds of diamondoids using multi-dimensional mass spectrometry. Chem Eng Sci 2023; 273:118677. [DOI: 10.1016/j.ces.2023.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
190
|
|
Lei ZN, Tian Q, Teng QX, Wurpel JND, Zeng L, Pan Y, Chen ZS. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
191
|
|
Fu H, Bai Z, Li P, Feng X, Hu X, Song X, Chen L. Molecular imprinted electrochemical sensor for ovalbumin detection based on boronate affinity and signal amplification approach. Food Chem 2023; 409:135292. [PMID: 36584533 DOI: 10.1016/j.foodchem.2022.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ovalbumin (OVA), a class of glycoproteins, is the main allergen in hen egg white that often causes allergies in humans, especially in babies. Therefore, it is pivotal to be able to detect and separate OVA. This work presents an ingenious sandwich-structured magnetic molecular imprinted electrochemical sensor for OVA detection by utilizing boronate affinity and signal amplification strategy. With anti-OVA antibody-modified gold nanoparticles (AuNPs) as amplifiers, the imprinted cavities in the probe could capture protein to form a sandwich structure. Due to its specific recognition of antibody and molecular imprinted polymers and the signal amplification of AuNPs, the sensor had good selectivity and sensitivity toward OVA and a low detection limit of 3.0 fg/mL. The sensor also had excellent stability and could satisfactorily detect OVA in real red wine samples.
Collapse
|
192
|
|
Peng D, Que M, Deng X, He Q, Zhao Y, Liao S, Li X, Qiu H. Mn(3)O(4) nanoparticles decorated porous reduced graphene oxide with excellent oxidase-like activity for fast colorimetric detection of ascorbic acid. Mikrochim Acta 2023; 190:243. [PMID: 37247129 DOI: 10.1007/s00604-023-05822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Mn3O4 nanoparticles composed of porous reduced graphene oxide nanosheets (Mn3O4@p-rGO) with enhanced oxidase-like activity were successfully fabricated through an in-situ approach for fast colorimetric detection of ascorbic acid (AA). The residual Mn2+ in the GO suspension of Hummers method was directly reused as the manganese source, improving the atom utilization efficiency. Benefiting from the uniform distribution of Mn3O4 nanoparticles on the surface of p-rGO nanosheets, the nanocomposite exhibited larger surface area, more active sites, and accelerated electron transfer efficiency, which enhanced the oxidase-like activity. Mn3O4@p-rGO nanocomposite efficiently activate dissolved O2 to generate singlet oxygen (1O2), leading to high oxidation capacity toward the substrate 3,3',5,5'-tetramethylbenzidine (TMB) without the extra addition of H2O2. Furthermore, the prominent absorption peak of the blue ox-TMB at 652 nm gradually decreased in the presence of AA, and a facile and fast colorimetric sensor was constructed with a good linear relationship (0.5-80 μM) and low LOD (0.278 μM) toward AA. Owing to the simplicity and excellent stability of the sensing platform, its practical application for AA detection in juices has shown good feasibility and reliability compared with HPLC and the 2, 4-dinitrophenylhydrazine colorimetric method. The oxidase-like Mn3O4@p-rGO provides a versatile platform for applications in food testing and disease diagnosis.
Collapse
Affiliation(s)
- Dong Peng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Mingming Que
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xiulong Deng
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Qifang He
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yuhong Zhao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shuzhen Liao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Hongdeng Qiu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
193
|
|
Li L, Yu Z, Liu J, Yang M, Shi G, Feng Z, Luo W, Ma H, Guan J, Mou F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. Nanomicro Lett 2023; 15:141. [PMID: 37247162 DOI: 10.1007/s40820-023-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Huiru Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
194
|
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. Plant Cell 2023; 35:1671-707. [PMID: 36747354 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
195
|
|
Huang X, Tao K, Han T, Li J, Zhang H, Hu C, Niu J, Liu J. Long-Cycling-Life Sodium-Ion Battery Using Binary Metal Sulfide Hybrid Nanocages as Anode. Small 2023;:e2302706. [PMID: 37246262 DOI: 10.1002/smll.202302706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Due to the relatively high capacity and lower cost, transition metal sulfides (TMS) as anode show promising potential in sodium-ion batteries (SIBs). Herein, a binary metal sulfide hybrid consisting of carbon encapsulated CoS/Cu2 S nanocages (CoS/Cu2 S@C-NC) is constructed. The interlocked hetero-architecture filled with conductive carbon accelerates the Na+ /e- transfer, thus leading to improved electrochemical kinetics. Also the protective carbon layer can provide better volume accommondation upon charging/discharging. As a result, the battery with CoS/Cu2 S@C-NC as anode displays a high capacity of 435.3 mAh g-1 after 1000 cycles at 2.0 A g-1 (≈3.4 C). Under a higher rate of 10.0 A g-1 (≈17 C), a capacity of as high as 347.2 mAh g-1 is still remained after long 2300 cycles. The capacity decay per cycle is only 0.017%. The battery also exhibits a better temperature tolerance at 50 and -5 °C. A low internal impedance analyzed by X-ray diffraction patterns and galvanostatic intermittent titration technique, narrow band gap, and high density of states obtained by first-principle calculations of the binary sulfides, ensure the rapid Na+ /e- transport. The long-cycling-life SIB using binary metal sulfide hybrid nanocages as anode shows promising applications in versatile electronic devices.
Collapse
Affiliation(s)
- Xiaofei Huang
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Kehao Tao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huigang Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chaoquan Hu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Junjie Niu
- Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids of the Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| |
Collapse
|
196
|
|
Shepherd S, Tribello GA, Wilkins DM. A fully quantum-mechanical treatment for kaolinite. J Chem Phys 2023; 158:204704. [PMID: 37220200 DOI: 10.1063/5.0152361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Neural network potentials for kaolinite minerals have been fitted to data extracted from density functional theory calculations that were performed using the revPBE + D3 and revPBE + vdW functionals. These potentials have then been used to calculate the static and dynamic properties of the mineral. We show that revPBE + vdW is better at reproducing the static properties. However, revPBE + D3 does a better job of reproducing the experimental IR spectrum. We also consider what happens to these properties when a fully quantum treatment of the nuclei is employed. We find that nuclear quantum effects (NQEs) do not make a substantial difference to the static properties. However, when NQEs are included, the dynamic properties of the material change substantially.
Collapse
Affiliation(s)
- Sam Shepherd
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Gareth A Tribello
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
197
|
|
Hu Y, Picher M, Palluel M, Daro N, Freysz E, Stoleriu L, Enachescu C, Chastanet G, Banhart F. Laser-Driven Transient Phase Oscillations in Individual Spin Crossover Particles. Small 2023;:e2303701. [PMID: 37246252 DOI: 10.1002/smll.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 05/30/2023]
Abstract
An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Marlène Palluel
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Nathalie Daro
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Eric Freysz
- Université de Bordeaux, CNRS UMR 5798, LOMA, Talence cedex, 33405, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Guillaume Chastanet
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| |
Collapse
|
198
|
|
Rubio LD, Collins M, Sen A, Aranson IS. Ultrasound Manipulation and Extrusion of Active Nanorods. Small 2023;:e2300028. [PMID: 37246278 DOI: 10.1002/smll.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/20/2023] [Indexed: 05/30/2023]
Abstract
Synthetic self-propelled nano and microparticles have a growing appeal for targeted drug delivery, collective functionality, and manipulation at the nanoscale. However, it is challenging to control their positions and orientations under confinement, e.g., in microchannels, nozzles, and microcapillaries. This study reports on the synergistic effect of acoustic and flow-induced focusing in microfluidic nozzles. In a microchannel with a nozzle, the balance between the acoustophoretic forces and the fluid drag due to streaming flows generated by the acoustic field controls the microparticle's dynamics. This study manipulates the positions and orientations of dispersed particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. The main findings are: first, this study successfully manipulates the positions and orientations of individual particles and dense clusters inside the channel at a fixed frequency by tuning the acoustic intensity. Second, when an external flow is applied, the acoustic field separates and selectively extrudes shape-anisotropic passive particles and self-propelled active nanorods. Finally, the observed phenomena are explained by multiphysics finite-element modeling. The results shed light on the control and extrusion of active particles in confined geometries and enable applications for acoustic cargo (e.g., drug) delivery, particle injection, and additive manufacturing via printed self-propelled active particles.
Collapse
Affiliation(s)
- Leonardo Dominguez Rubio
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 18602, USA
| | - Matthew Collins
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Igor S Aranson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 18602, USA
| |
Collapse
|
199
|
|
Tror S, Jeon S, Nguyen HT, Huh E, Shin K. A Self-Regenerating Artificial Cell, that is One Step Closer to Living Cells: Challenges and Perspectives. Small Methods 2023;:e2300182. [PMID: 37246263 DOI: 10.1002/smtd.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/29/2023] [Indexed: 05/30/2023]
Abstract
Controllable, self-regenerating artificial cells (SRACs) can be a vital advancement in the field of synthetic biology, which seeks to create living cells by recombining various biological molecules in the lab. This represents, more importantly, the first step on a long journey toward creating reproductive cells from rather fragmentary biochemical mimics. However, it is still a difficult task to replicate the complex processes involved in cell regeneration, such as genetic material replication and cell membrane division, in artificially created spaces. This review highlights recent advances in the field of controllable, SRACs and the strategies to achieve the goal of creating such cells. Self-regenerating cells start by replicating DNA and transferring it to a location where proteins can be synthesized. Functional but essential proteins must be synthesized for sustained energy generation and survival needs and function in the same liposomal space. Finally, self-division and repeated cycling lead to autonomous, self-regenerating cells. The pursuit of controllable, SRACs will enable authors to make bold advances in understanding life at the cellular level, ultimately providing an opportunity to use this knowledge to understand the nature of life.
Collapse
Affiliation(s)
- Seangly Tror
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - SeonMin Jeon
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Eunjin Huh
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
200
|
|
Park JH, Wang CJ, Lee HJ, Hong KS, Ahn JH, Cho YW, Lee JH, Seo HS, Park W, Kim SN, Park CG, Lee W, Kim TH. Uniform Gold Nanostructure Formation via Weakly Adsorbed Gold Films and Thermal Annealing for Reliable Localized Surface Plasmon Resonance-Based Detection of DNase-I. Small 2023;:e2302023. [PMID: 37246275 DOI: 10.1002/smll.202302023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
| | - Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Kyung Soo Hong
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Regional Center for Respiratory Diseases, Yeungnam University Medical Center, 42415, Daegu, Republic of Korea
| | - Jung Hong Ahn
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Regional Center for Respiratory Diseases, Yeungnam University Medical Center, 42415, Daegu, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Jeong-Hyeon Lee
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| |
Collapse
|