151
|
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 2018; 127:46-57. [PMID: 28939377 PMCID: PMC5860926 DOI: 10.1016/j.addr.2017.09.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Despite the wide success of antibiotics in modern medicine, the treatment of bacterial infections still faces critical challenges, especially due to the rapid emergence of antibiotic resistance. As a result, local antimicrobial treatment aimed at enhancing drug concentration at the site of infection while avoiding systemic exposure is becoming increasingly attractive, as it may alleviate resistance development. Meanwhile, therapeutic nanoparticles, especially liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles, are gaining traction to improve the therapeutic efficacy with many applications specifically focused on local antimicrobial treatment. This review highlights topics where nanoparticle-based strategies hold significant potential to advance treatment against local bacterial infections, including (1) promoting antibiotic localization to the pathogen, (2) modulating drug-pathogen interaction against antibiotic resistance, and (3) enabling novel anti-virulence approaches for 'drug-free' antimicrobial activity. In each area, we highlight the innovative antimicrobial strategies tailored for local applications and review the progress made for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijie Chen
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
152
|
Hussain S, Joo J, Kang J, Kim B, Braun GB, She ZG, Kim D, Mann AP, Mölder T, Teesalu T, Carnazza S, Guglielmino S, Sailor MJ, Ruoslahti E. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2018; 2:95-103. [PMID: 29955439 PMCID: PMC6015743 DOI: 10.1038/s41551-017-0187-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022]
Abstract
Bacterial resistance to antibiotics has made it necessary to resort to antibiotics that have considerable toxicities. Here, we show that the cyclic 9-amino acid peptide CARGGLKSC (CARG), identified via phage display on Staphylococcus aureus (S. aureus) bacteria and through in vivo screening in mice with S. aureus-induced lung infections, increases the antibacterial activity of CARG-conjugated vancomycin-loaded nanoparticles in S. aureus-infected tissues and reduces the needed overall systemic dose, minimizing side effects. CARG binds specifically to S. aureus bacteria but not Pseudomonas bacteria in vitro, selectively accumulates in S. aureus-infected lungs and skin of mice but not in non-infected tissue and Pseudomonas-infected tissue, and significantly enhances the accumulation of intravenously injected vancomycin-loaded porous silicon nanoparticles bearing the peptide in S. aureus-infected mouse lung tissue. The targeted nanoparticles more effectively suppress staphylococcal infections in vivo relative to equivalent doses of untargeted vancomycin nanoparticles or of free vancomycin. The therapeutic delivery of antibiotic-carrying nanoparticles bearing peptides targeting infected tissue may help combat difficult-to-treat infections.
Collapse
Affiliation(s)
- Sazid Hussain
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jinmyoung Joo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
| | - Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Gary B Braun
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- STEMCELL Technologies Inc., Vancouver, Canada
| | - Zhi-Gang She
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dokyoung Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Aman P Mann
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tarmo Mölder
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center for Nanomedicine, and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Santina Carnazza
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - Salvatore Guglielmino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali- ChiBioFarAm, Università di Messina, Messina, Italy
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- Center for Nanomedicine, and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
153
|
|
154
|
Bolean M, Borin IA, Simão AMS, Bottini M, Bagatolli LA, Hoylaerts MF, Millán JL, Ciancaglini P. Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1911-1920. [PMID: 28549727 PMCID: PMC5793902 DOI: 10.1016/j.bbamem.2017.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/02/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
Abstract
Atomic force microscopy (AFM) is one of the most commonly used scanning probe microscopy techniques for nanoscale imaging and characterization of lipid-based particles. However, obtaining images of such particles using AFM is still a challenge. The present study extends the capabilities of AFM to the characterization of proteoliposomes, a special class of liposomes composed of lipids and proteins, mimicking matrix vesicles (MVs) involved in the biomineralization process. To this end, proteoliposomes were synthesized, composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS), with inserted tissue-nonspecific alkaline phosphatase (TNAP) and/or annexin V (AnxA5), both characteristic proteins of osteoblast-derived MVs. We then aimed to study how TNAP and AnxA5 insertion affects the proteoliposomes' membrane properties and, in turn, interactions with type II collagen, thus mimicking early MV activity during biomineralization. AFM images of these proteoliposomes, acquired in dynamic mode, revealed the presence of surface protrusions with distinct viscoelasticity, thus suggesting that the presence of the proteins induced local changes in membrane fluidity. Surface protrusions were measurable in TNAP-proteoliposomes but barely detectable in AnxA5-proteoliposomes. More complex surface structures were observed for proteoliposomes harboring both TNAP and AnxA5 concomitantly, resulting in a lower affinity for type II collagen fibers compared to proteoliposomes harboring AnxA5 alone. The present study achieved the topographic analysis of lipid vesicles by direct visualization of structural changes, resulting from protein incorporation, without the need for fluorescent probes.
Collapse
Affiliation(s)
- Maytê Bolean
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Ivana A Borin
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana M S Simão
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; Inflammatory and Infectious Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Luis A Bagatolli
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - José L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pietro Ciancaglini
- Depto. Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
155
|
Rajchakit U, Sarojini V. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjug Chem 2017; 28:2673-2686. [DOI: 10.1021/acs.bioconjchem.7b00368] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Urawadee Rajchakit
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019 Auckland, New Zealand
| |
Collapse
|
156
|
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An "On-Site Transformation" Strategy for Treatment of Bacterial Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703461. [PMID: 28782856 DOI: 10.1002/adma.201703461] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 05/22/2023]
Abstract
To date, numerous nanosystems have been developed as antibiotic replacements for bacterial infection treatment. However, these advanced systems are limited owing to their nontargeting accumulation and the consequent side effects. Herein, transformable polymer-peptide biomaterials have been developed that enable specific accumulation in the infectious site and long-term retention, resulting in enhanced binding capability and killing efficacy toward bacteria. The polymer-peptide conjugates are composed of a chitosan backbone and two functional peptides, i.e., an antimicrobial peptide and a poly(ethylene glycol)-tethered enzyme-cleavable peptide (CPC-1). The CPC-1 initially self-assembles into nanoparticles with pegylated coronas. Upon the peptides are cleaved by the gelatinase secreted by a broad spectrum of bacterial species, the resultant compartments of nanoparticles spontaneously transformed into fibrous nanostructures that are stabilized by enhanced chain-chain interaction, leading to exposure of antimicrobial peptide residues for multivalent cooperative electrostatic interactions with bacterial membranes. Intriguingly, the in situ morphological transformation also critically improves the accumulation and retention of CPC-1 in infectious sites in vivo, which exhibits highly efficient antibacterial activity. This proof-of-concept study demonstrates that pathological environment-driven smart self-assemblies may provide a new idea for design of high-performance biomaterials for disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guo-Bin Qi
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Di Zhang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
157
|
Anacarso I, Quartieri A, De Leo R, Pulvirenti A. Evaluation of the antimicrobial activity of a blend of monoglycerides against Escherichia coli and Enterococci with multiple drug resistance. Arch Microbiol 2017; 200:85-89. [PMID: 28799127 DOI: 10.1007/s00203-017-1419-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Bacterial antibiotic resistance is a natural phenomenon, seriously affecting the treatment of infections. The biggest danger is that current antibiotics are not able to eradicate the resistant strains. In recent years, alternative antibacterial substances are being sought, which can help in these cases. Fatty acids and monoglycerides are known among the natural substances for their antimicrobial properties and, important detail, bacteria do not develop resistance to them. In this work, we studied the antimicrobial effects of a monoglyceride blend against some multi-resistant Enterococci and Escherichia coli strains. Based on literature data, a blend of fatty acids and their monoglycerides was created and its antimicrobial activity was evaluated against 37 strains of E. coli and 17 Enterococci presenting resistance to at least two antibiotics. A different behavior was observed in the two groups of bacteria, proving that alternative substances can be considerate for the potential treatment of multidrug-resistant strains.
Collapse
Affiliation(s)
- Immacolata Anacarso
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giovanni Amendola, 2-Padiglione Besta, 42122, Reggio Emilia, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giovanni Amendola, 2-Padiglione Besta, 42122, Reggio Emilia, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giovanni Amendola, 2-Padiglione Besta, 42122, Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giovanni Amendola, 2-Padiglione Besta, 42122, Reggio Emilia, Italy.
| |
Collapse
|
158
|
Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces 2017; 159:454-467. [PMID: 28837895 DOI: 10.1016/j.colsurfb.2017.07.085] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/31/2022]
Abstract
Nanoparticles, especially liposomes, have gained prominence in the field of drug delivery for the treatment of human diseases, particularly cancer; they provide several advantages, including controlled drug release, protection of the drug against degradation, improved pharmacokinetics, long circulation, and passive targeting to tumors and inflammatory sites due to the enhanced permeability and retention effect. The functionalization of liposomes with monoclonal antibodies or antibody fragments to generate immunoliposomes has emerged as a promising strategy for targeted delivery to and uptake by cells overexpressing the antigens to these antibodies, with a consequent reduction in side effects. In this review, we address functionalization strategies for the non-covalent and covalent attachment of monoclonal antibodies and their fragments to liposomal surfaces. The main reaction occurs between the sulfhydryl groups of thiolated antibodies and maleimide-containing liposomes. Furthermore, we explore the main targeting possibilities with these ligands for the treatment of a variety of pathologies, including HER2- and EGFR-positive cancers, inflammatory and cardiovascular diseases, infectious diseases, and autoimmune and neurodegenerative diseases, which have not previously been reviewed together. Overall, many studies have shown selective delivery of immunoliposomes to target cells, with promising in vivo results, particularly for cancer treatment. Although clinical trials have been conducted, immunoliposomes have not yet received clinical approval. However, immunoliposomes are promising formulations that are expected to become available for therapeutic use after clinical trials prove their safety and efficacy, and after scaling issues are resolved.
Collapse
Affiliation(s)
- Josimar O Eloy
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, São Paulo State University, USP, Department of Pharmaceutical Sciences, Ribeirão Preto, SP, Brazil
| | - Lucas Noboru Fatori Trevizan
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| |
Collapse
|
159
|
Perez-Soto N, Moule L, Crisan DN, Insua I, Taylor-Smith LM, Voelz K, Fernandez-Trillo F, Krachler AM. Engineering microbial physiology with synthetic polymers: cationic polymers induce biofilm formation in Vibrio cholerae and downregulate the expression of virulence genes. Chem Sci 2017; 8:5291-5298. [PMID: 28970909 PMCID: PMC5607900 DOI: 10.1039/c7sc00615b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Here we report the first application of non-bactericidal synthetic polymers to modulate the physiology of a bacterial pathogen. Poly(N-[3-(dimethylamino)propyl] methacrylamide) (P1) and poly(N-(3-aminopropyl)methacrylamide) (P2), cationic polymers that bind to the surface of V. cholerae, the infectious agent causing cholera disease, can sequester the pathogen into clusters. Upon clustering, V. cholerae transitions to a sessile lifestyle, characterised by increased biofilm production and the repression of key virulence factors such as the cholera toxin (CTX). Moreover, clustering the pathogen results in the minimisation of adherence and toxicity to intestinal epithelial cells. Our results suggest that the reduction in toxicity is associated with the reduction to the number of free bacteria, but also the downregulation of toxin production. Finally we demonstrate that these polymers can reduce colonisation of zebrafish larvae upon ingestion of water contaminated with V. cholerae. Overall, our results suggest that the physiology of this pathogen can be modulated without the need to genetically manipulate the microorganism and that this modulation is an off-target effect that results from the intrinsic ability of the pathogen to sense and adapt to its environment. We believe these findings pave the way towards a better understanding of the interactions between pathogenic bacteria and polymeric materials and will underpin the development of novel antimicrobial polymers.
Collapse
Affiliation(s)
- Nicolas Perez-Soto
- School of Biosciences , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
| | - Lauren Moule
- School of Biosciences , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
| | - Daniel N Crisan
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
- School of Chemistry , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
| | - Ignacio Insua
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
- School of Chemistry , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
| | - Leanne M Taylor-Smith
- School of Biosciences , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
| | - Kerstin Voelz
- School of Biosciences , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
| | - Francisco Fernandez-Trillo
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
- School of Chemistry , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
| | - Anne Marie Krachler
- School of Biosciences , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK
- Institute of Microbiology and Infection , University of Birmingham , Edgbaston , B15 2TT Birmingham , UK .
- Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School at Houston , Houston , TX 77030 , USA .
| |
Collapse
|
160
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
161
|
Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2281-2301. [PMID: 28673854 DOI: 10.1016/j.nano.2017.06.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
With the arrival of antibiotics 70 years ago, meant a paradigm shift in overcoming infectious diseases. For decades, drugs have been used to treat different infections. However, with time bacteria have become resistant to multiple antibiotics, making some diseases difficult to fight. Nanoparticles (NPs) as antibacterial agents appear to have potential to overcome such problems and to revolutionize the diagnosis and treatment of bacterial infections. Therefore, there is significant interest in the use of NPs to treat variety of infections, particularly caused by multidrug-resistant (MDR) strains. This review begins with illustration of types of NPs followed by the literature of current research addressing mechanisms of NPs antibacterial activity, steps involved in NP mediated drug delivery as well as areas where NPs use has potential to improve the treatment, like NP enabled vaccination. Besides, recently emerged innovative NP platforms have been highlighted and their progress made in each area has been reviewed.
Collapse
Affiliation(s)
- Sahar Zaidi
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
162
|
Tsekoura EK, Helling AL, Wall JG, Bayon Y, Zeugolis DI. Battling bacterial infection with hexamethylene diisocyanate cross-linked and Cefaclor-loaded collagen scaffolds. Biomed Mater 2017. [DOI: 10.1088/1748-605x/aa6de0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
163
|
Santos RS, Dakwar GR, Zagato E, Brans T, Figueiredo C, Raemdonck K, Azevedo NF, De Smedt SC, Braeckmans K. Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. Biomaterials 2017; 138:1-12. [PMID: 28550752 DOI: 10.1016/j.biomaterials.2017.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
The rising antimicrobial resistance contributes to 25000 annual deaths in Europe. This threat to the public health can only be tackled if novel antimicrobials are developed, combined with a more precise use of the currently available antibiotics through the implementation of fast, specific, diagnostic methods. Nucleic acid mimics (NAMs) that are able to hybridize intracellular bacterial RNA have the potential to become such a new class of antimicrobials and additionally could serve as specific detection probes. However, an essential requirement is that these NAMs should be delivered into the bacterial cytoplasm, which is a particular challenge given the fact that they are charged macromolecules. We consider these delivery challenges in relation to the gastric pathogen Helicobacter pylori, the most frequent chronic infection worldwide. In particular, we evaluate if cationic fusogenic liposomes are suitable carriers to deliver NAMs across the gastric mucus barrier and the bacterial envelope. Our study shows that DOTAP-DOPE liposomes post-PEGylated with DSPE-PEG (DSPE Lpx) can indeed successfully deliver NAMs into Helicobacter pylori, while offering protection to the NAMs from binding and inactivation in gastric mucus isolated from pigs. DSPE Lpx thus offer exciting new possibilities for in vivo diagnosis and treatment of Helicobacter pylori infections.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/administration & dosage
- Anti-Infective Agents/chemical synthesis
- Anti-Infective Agents/metabolism
- Cytoplasm/metabolism
- Drug Delivery Systems
- Drug Resistance, Microbial
- Fatty Acids, Monounsaturated/chemistry
- Fluorescent Dyes/chemistry
- Helicobacter Infections/diagnosis
- Helicobacter Infections/drug therapy
- Helicobacter Infections/microbiology
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- In Situ Hybridization, Fluorescence
- Liposomes
- Molecular Mimicry
- Mucus/chemistry
- Mucus/microbiology
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemical synthesis
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phosphatidylethanolamines/chemistry
- Polyethylene Glycols/chemistry
- Quaternary Ammonium Compounds/chemistry
- RNA, Bacterial/antagonists & inhibitors
- RNA, Bacterial/genetics
- RNA, Ribosomal/antagonists & inhibitors
- RNA, Ribosomal/genetics
- Stomach/microbiology
- Swine
Collapse
Affiliation(s)
- Rita S Santos
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Portugal
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| |
Collapse
|
164
|
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9:79-89. [PMID: 28510082 PMCID: PMC5425815 DOI: 10.1007/s12551-016-0246-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/26/2016] [Indexed: 02/03/2023] Open
Abstract
The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.
Collapse
Affiliation(s)
- Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil.
| | - Marcos A E Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
165
|
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12:1227-1249. [PMID: 28243086 PMCID: PMC5317269 DOI: 10.2147/ijn.s121956] [Citation(s) in RCA: 1741] [Impact Index Per Article: 217.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Stomatology, Hainan General Hospital, Haikou, Hainan
| | - Chen Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
166
|
Ozyurt C, Bora B, Ugurlu O, Evran S. Pathogen-specific nucleic acid aptamers as targeting components of antibiotic and gene delivery systems. NANOSTRUCTURES FOR DRUG DELIVERY 2017:551-577. [DOI: 10.1016/b978-0-323-46143-6.00018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
167
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
168
|
Nanotheranostic approaches for management of bloodstream bacterial infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:329-341. [DOI: 10.1016/j.nano.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
|
169
|
Chitosan-coated dapsone-loaded lipid-core nanocapsules: Growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus ssp. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
170
|
Yang J, Zhang X, Ma YH, Gao G, Chen X, Jia HR, Li YH, Chen Z, Wu FG. Carbon Dot-Based Platform for Simultaneous Bacterial Distinguishment and Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32170-32181. [PMID: 27786440 DOI: 10.1021/acsami.6b10398] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this work, we prepared quaternized carbon dots (CDs) with simultaneous antibacterial and bacterial differentiation capabilities using a simple carboxyl-amine reaction between lauryl betaine and amine-functionalized CDs. The obtained quaternized CDs have several fascinating properties/abilities: (1) A long fluorescence emission wavelength ensures the exceptional bacterial imaging capability, including the super-resolution imaging ability; (2) the polarity-sensitive fluorescence emission property leads to significantly enhanced fluorescence when the quaternized CDs interact with bacteria; (3) the presence of both hydrophobic hydrocarbon chains and positively charged quaternary ammonium groups makes the CDs selectively attach to Gram-positive bacteria, realizing the bacterial differentiation; (4) excellent antimicrobial activity is seen against Gram-positive bacteria with a minimum inhibitory concentration of 8 μg/mL for Staphylococcus aureus. Besides, the quaternized CDs are highly stable in various aqueous solutions and exhibit negligible cytotoxicity, suggesting that they hold great promise for clinical applications. Compared to the traditional Gram staining method, the selective Gram-positive bacterial imaging achieved by the quaternized CDs provides a much simpler and faster method for bacterial differentiation. In summary, by combining selective Gram-positive bacterial recognition, super-resolution imaging, and exceptional antibacterial activity into a single system, the quaternized CDs represent a novel kind of metal-free nanoparticle-based antibiotics for antibacterial application and a new type of reagent for efficient bacterial differentiation.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097, People's Republic of China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, People's Republic of China
| |
Collapse
|
171
|
Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, Gao W, Zhang L. A Bioadhesive Nanoparticle-Hydrogel Hybrid System for Localized Antimicrobial Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18367-74. [PMID: 27352845 PMCID: PMC4983189 DOI: 10.1021/acsami.6b04858] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effective antibacterial treatment at the infection site associated with high shear forces remains challenging, owing largely to the lack of durably adhesive and safe delivery platforms that can enable localized antibiotic accumulation against bacterial colonization. Inspired by delivery systems mimicking marine mussels for adhesion, herein, we developed a bioadhesive nanoparticle-hydrogel hybrid (NP-gel) to enhance localized antimicrobial drug delivery. Antibiotics were loaded into polymeric nanoparticles and then embedded into a 3D hydrogel network that confers adhesion to biological surfaces. The combination of two distinct delivery platforms, namely, nanoparticles and hydrogel, allows the hydrogel network properties to be independently tailored for adhesion while maintaining controlled and prolonged antibiotic release profile from the nanoparticles. The bioadhesive NP-gel developed here showed superior adhesion and antibiotic retention under high shear stress on a bacterial film, a mammalian cell monolayer, and mouse skin tissue. Under a flow environment, the NP-gel inhibited the formation of an Escherichia coli bacterial film. When applied on mouse skin tissue for 7 consecutive days, the NP-gel did not generate any observable skin reaction or toxicity, implying its potential as a safe and effective local delivery platform against microbial infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jianhua Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Maggie Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Soracha Thamphiwatana
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
172
|
Rice DR, Clear KJ, Smith BD. Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 2016; 52:8787-801. [PMID: 27302091 PMCID: PMC4949593 DOI: 10.1039/c6cc03669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article describes the development of synthetic zinc(ii)-dipicolylamine (ZnDPA) receptors as selective targeting agents for anionic membranes in cell culture and living subjects. There is a strong connection between anionic cell surface charge and disease, and ZnDPA probes have been employed extensively for molecular imaging and targeted therapeutics. Fluorescence and nuclear imaging applications include detection of diseases such as cancer, neurodegeneration, arthritis, and microbial infection, and also quantification of cell death caused by therapy. Therapeutic applications include selective targeting of cytotoxic agents and drug delivery systems, photodynamic inactivation, and modulation of the immune system. The article concludes with a summary of expected future directions.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| |
Collapse
|
173
|
Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann Biomed Eng 2016; 44:2049-61. [PMID: 26951462 DOI: 10.1007/s10439-016-1583-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/26/2016] [Indexed: 12/20/2022]
Abstract
Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely 'NP-gel') with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yue Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiangzhe Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
174
|
Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules 2016; 21:305. [PMID: 26950108 PMCID: PMC6273827 DOI: 10.3390/molecules21030305] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023] Open
Abstract
Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed.
Collapse
|
175
|
Kim MH. Nanoparticle-Based Therapies for Wound Biofilm Infection: Opportunities and Challenges. IEEE Trans Nanobioscience 2016; 15:294-304. [PMID: 26955044 DOI: 10.1109/tnb.2016.2527600] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clinical data from human chronic wounds implicates biofilm formation with the onset of wound chronicity. Despite the development of novel antimicrobial agents, the cost and complexity of treating chronic wound infections associated with biofilms remain a serious challenge, which necessitates the development of new and alternative approaches for effective anti-biofilm treatment. Recent advancement in nanotechnology for developing a new class of nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of biofilm infections. Over the last decade, nanoparticle-based approaches against wound biofilm infection have been directed toward developing nanoparticles with intrinsic antimicrobial properties, utilizing nanoparticles for controlled antimicrobials delivery, and applying nanoparticles for antibacterial hyperthermia therapy. In addition, a strategy to functionalize nanoparticles towards enhanced penetration through the biofilm matrix has been receiving considerable interest recently by means of achieving an efficient targeting to the bacterial cells within biofilm matrix. This review summarizes and highlights the recent development of these nanoparticle-based approaches as potential therapeutics for controlling wound biofilm infection, along with current challenges that need to be overcome for their successful clinical translation.
Collapse
|
176
|
Stewart MP, Lorenz A, Dahlman J, Sahay G. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:465-78. [PMID: 26542891 DOI: 10.1002/wnan.1377] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Abstract
The deployment of molecular to microscale carriers for intracellular delivery has tremendous potential for biology and medicine, especially for in vivo therapies. The field remains limited, however, by a poor understanding of how carriers gain access to the cell interior. In this review, we provide an overview of the different types of carriers, their speculated modes of entry, putative pathways of vesicular transport, and sites of endosomal escape. We compare this alongside pertinent examples from the cell biology of how viruses, bacteria, and their effectors enter cells and escape endosomal confinement. We anticipate insights into the mechanisms of cellular entry and endosomal escape will benefit future research efforts on effective carrier-mediated intracellular delivery. WIREs Nanomed Nanobiotechnol 2016, 8:465-478. doi: 10.1002/wnan.1377 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Martin P Stewart
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Lorenz
- Department of Pharmaceutical Sciences, OSU/OHSU College of Pharmacy, Portland, OR, USA
| | - James Dahlman
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gaurav Sahay
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Pharmaceutical Sciences, OSU/OHSU College of Pharmacy, Portland, OR, USA
| |
Collapse
|
177
|
Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev 2015; 7:391-397. [PMID: 28510100 DOI: 10.1007/s12551-015-0180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Thuanny Alexandra Campos Cury
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Centro de Nanotecnologia Aplicada a Saúde-Nanosus, Presidência da Fiocruz, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010, Curitiba, PR, Brazil.,Brasil e Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Rosangela Itri
- Depto. Física Aplicada, Instituto de Física, IF-USP, São Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
178
|
Ladavière C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine (Lond) 2015; 10:3033-3055. [PMID: 26420270 DOI: 10.2217/nnm.15.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intracellular pathogenic bacteria can lead to some of the most life-threatening infections. By evolving a number of ingenious mechanisms, these bacteria have the ability to invade, colonize and survive in the host cells in active or latent forms over prolonged period of time. A variety of nanoparticulate systems have been developed to optimize the delivery of antibiotics. Main advantages of nanoparticulate systems as compared with free drugs are an efficient drug encapsulation, protection from inactivation, targeting infection sites and the possibility to deliver drugs by overcoming cellular barriers. Nevertheless, despite the great progresses in treating intracellular infections using nanoparticulate carriers, some challenges still remain, such as targeting cellular subcompartments with bacteria and delivering synergistic drug combinations. Engineered nanoparticles should allow controlling drug release both inside cells and within the extracellular space before reaching the target cells.
Collapse
Affiliation(s)
- Catherine Ladavière
- UMR CNRS 5223, IMP, Université Lyon 1, INSA de Lyon, 69100 Villeurbanne, France
| | - Ruxandra Gref
- Institute of Molecular Sciences, UMR CNRS 8214, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
179
|
Gao W, Zhang L. Engineering red-blood-cell-membrane-coated nanoparticles for broad biomedical applications. AIChE J 2015. [DOI: 10.1002/aic.14735] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weiwei Gao
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| |
Collapse
|