151
|
Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res 2021; 33:15-40. [PMID: 34603776 PMCID: PMC8464009 DOI: 10.1016/j.jare.2021.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The cumulative influence of global warming, climate abrupt changes, growing population, topsoil erosion is becoming a threatening alarm for facing food challenges and upcoming global water issues. It ultimately affects the production of food in a water-stressed environment and slows down the production with more consumption of fertilizers by plants. The superabsorbent hydrogels (SAHs) have extensive applications in the agricultural field and proved very beneficial for plant growth and soil health. These polymeric materials are remarkably distinct from hygroscopic materials owing to their multidimensional network structure. It retains a lot of water in its 3D network and releases it slowly along with nutrients to plant in stressed environment. AIM OF REVIEW A soil conditioner boosts up the topology, compactness, and mechanical properties (swelling, water retention, and slow nutrient release) of soil. The superabsorbent hydrogel plays an astonishing role in preventing the loss of nutrients during the heavy flow of rainwater from the upper surface of soil because these SAHs absorb water and get swollen to keep water for longer time. The SAHs facilitate the growth of plants with limited use of water and fertilizers. Beyond, it improves the soil health and makes it fertile in horticulture and drought areas. KEY SCIENTIFIC CONCEPT OF REVIEW The SAHs can be synthesized through grafting and cross-linking polymerization to introduce value-added features and extended network structure. The structure of superabsorbent hydrogel entirely based on cross-linking that prompts its use in the agricultural field as a soil conditioner. The properties of a SAHs vary due to its nature of constituents, polymerization process (grafting or cross-linking), and other parameters. The use of SAHs in agricultural field comparatively enhances the swelling rate up to 60-80%, maximum water retaining, and slowly nutrient release to plants for a longer time.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | - Syeda Rubina Gilani
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| | | | - Sobia Naseem
- Department of Chemistry, University of Engineering Technology Lahore, Pakistan
| |
Collapse
|
152
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
153
|
Watchorn J, Burns D, Stuart S, Gu FX. Investigating the Molecular Mechanism of Protein-Polymer Binding with Direct Saturation Compensated Nuclear Magnetic Resonance. Biomacromolecules 2021; 23:67-76. [PMID: 34647719 DOI: 10.1021/acs.biomac.1c00944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Darcy Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samantha Stuart
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
154
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
155
|
Kazachenko A, Akman F, Medimagh M, Issaoui N, Vasilieva N, Malyar YN, Sudakova IG, Karacharov A, Miroshnikova A, Al-Dossary OM. Sulfation of Diethylaminoethyl-Cellulose: QTAIM Topological Analysis and Experimental and DFT Studies of the Properties. ACS OMEGA 2021; 6:22603-22615. [PMID: 34514232 PMCID: PMC8427635 DOI: 10.1021/acsomega.1c02570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023]
Abstract
Sulfated cellulose derivatives are biologically active substances with anticoagulant properties. In this study, a new sulfated diethylaminoethyl (DEAE)-cellulose derivative has been obtained. The effect of a solvent on the sulfation process has been investigated. It is shown that 1,4-dioxane is the most effective solvent, which ensures the highest sulfur content in DEAE-cellulose sulfate under sulfamic acid sulfation. The processes of sulfamic acid sulfation in the presence of urea in 1,4-dioxane and in a deep eutectic solvent representing a mixture of sulfamic acid and urea have been compared. It is demonstrated that the use of 1,4-dioxane yields the sulfated product with a higher sulfur content. The obtained sulfated DEAE-cellulose derivatives have been analyzed by Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron and atomic force microscopy, and the degree of their polymerization has been determined. The introduction of a sulfate group has been confirmed by the Fourier transform infrared spectroscopy data; the absorption bands corresponding to sulfate groups have been observed in the ranges of 1247-1256 and 809-816 cm-1. It is shown that the use of a deep eutectic solvent leads to the side carbamation reactions. Amorphization of DEAE-cellulose during sulfation has been demonstrated using X-ray diffractometry. The geometric structure of a molecule in the ground state has been calculated using the density functional theory with the B3LYP/6-31G(d, p) basis set. The reactive areas of DEAE-cellulose and its sulfated derivatives have been analyzed using molecular electrostatic potential maps. The thermodynamic parameters (heat capacity, entropy, and enthalpy) of the target sulfation products have been determined. The HOMO-LUMO energy gap, Mulliken atomic charges, and electron density topology of the title compound have been calculated within the atoms in molecule theory.
Collapse
Affiliation(s)
- Aleksandr Kazachenko
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Feride Akman
- Vocational
School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
| | - Mouna Medimagh
- Laboratory
of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Noureddine Issaoui
- Laboratory
of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Natalya Vasilieva
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Yuriy N. Malyar
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Irina G. Sudakova
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
| | - Anton Karacharov
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
| | - Angelina Miroshnikova
- Institute
of Chemistry and Chemical Technology, Krasnoyarsk Science Center,
Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk 660036, Russia
- Siberian
Federal University, pr.
Svobodny, 79, Krasnoyarsk 660041, Russia
| | - Omar Marzook Al-Dossary
- Department
of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
156
|
Barty‐King CH, Chan CLC, Parker RM, Bay MM, Vadrucci R, De Volder M, Vignolini S. Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102112. [PMID: 34323315 PMCID: PMC11468689 DOI: 10.1002/adma.202102112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxypropyl cellulose (HPC) is an edible, cost-effective and widely used derivative of cellulose. Under lyotropic conditions in water, HPC forms a photonic, liquid crystalline mesophase with an exceptional mechanochromic response. However, due to insufficient physical cross-linking photonic HPC can flow freely as a viscous liquid, preventing the exploitation of this mechanochromic material in the absence of any external encapsulation or structural confinement. Here this challenge is addressed by mixing HPC and gelatin in water to form a self-supporting, viscoelastic, and edible supramolecular photonic hydrogel. It is demonstrated that the structural coloration, mechanochromism and non-Newtonian shear-thinning behavior of the lyotropic HPC solutions can all be retained into the gel state. Moreover, the rigidity of the HPC-gel provides a 69% shorter mechanochromic relaxation time back to its initial color when compared to the liquid HPC-water only system, broadening the dynamic color range of HPC by approximately 2.5× in response to a compressive pressure. Finally, the ability to formulate the HPC-gels in a scalable fashion from only water and "food-grade" constituents unlocks a wide range of potential applications, from response-tunable mechanochromic materials and colorant-free food decoration, to short-term sensors in, for example, biodegradable "smart labels" for food packaging.
Collapse
Affiliation(s)
- Charles H. Barty‐King
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Chun Lam Clement Chan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Mélanie M. Bay
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Roberto Vadrucci
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Michael De Volder
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
157
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
158
|
Biodegradable Hydrogels: Evaluation of Degradation as a Function of Synthesis Parameters and Environmental Conditions. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5030047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of functional materials that promote the infiltration and retention of water and the controlled release of fertilizers and nutrients in soil is of interest in agriculture. In this context, hydrogels, three-dimensional polymeric structures able to absorb high amounts of water in their swelling process, play an important role. The swelling ability of hydrogels depends on their crosslinking: the higher the crosslinking degree, the higher the number of interactions in the structure, the lower the swelling response. In this work, we describe biodegradable hydrogels composed of natural feedstocks: cellulose, clay minerals, and humic acids, designed to (i) protect, hydrate, and help germinating seedlings to root even in unfavorable conditions; (ii) sustainably contribute to soil fertility in terms of moisture and nutrients; and (iii) act as a nutritive and protective coating for the seeds. Upon assessing the correlations between curing process and swelling degree (SW), we evaluated the degradation of new biodegradable hydrogels as a function of the synthesis parameters (swelling degree and composition) and environmental conditions (type of soil and water amount for the hydration of the hydrogels). The term curing is hereafter referred to the operation of baking the ingredients at given combinations of time and temperature to obtain a dry hydrogel. The results show that the environmental parameters considered, i.e., amount of hydration water and physical and chemical properties of the soil, play a more decisive role in determining the stability of these hydrogels in soil than their synthesis parameters, such as the composition and the swelling degree.
Collapse
|
159
|
Javanbakht S, Nabi M, Shadi M, Amini MM, Shaabani A. Carboxymethyl cellulose/tetracycline@UiO-66 nanocomposite hydrogel films as a potential antibacterial wound dressing. Int J Biol Macromol 2021; 188:811-819. [PMID: 34390748 DOI: 10.1016/j.ijbiomac.2021.08.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 01/17/2023]
Abstract
Designing an antibacterial agent with a suitable water vapor permeability, good mechanical properties, and controlled antibiotic release is a promising method for stopping bacterial infection in wound tissue. In this respect, this work aims to prepare novel flexible polymeric hydrogel films via integrating UiO-66 into the polymeric carboxymethyl cellulose (CMC) hydrogel for improving the mechanical and antibiotic release performances. First, we performed a green hydrothermal synthetic method to synthesis UiO-66 and followed by encapsulating Tetracycline (TC) through immersion in its aqueous solution. Also, the casting technique was utilized to integrate different concentrations of the TC-encapsulated UiO-66 (TC@UiO-66, 5% to 15%) in the polymeric CMC matrix (CMC/TC@UiO-66) cross-linked by citric acid and plasticized by glycerol. The release performance showed a low initial burst release with a controlled release over 72 h in the artificial sweat and simulated wound exudate (PBS, pH 7.4) media. The in vitro cytotoxicity and antibacterial activity results revealed a good cytocompatibility toward Human skin fibroblast (HFF-1) cells and a significant activity against both E. coli and S. aureus with 1.3 and 1.7 cm inhibition zone, respectively. The obtained results recommend CMC/TC@UiO-66 films as a potential antibacterial wound dressing.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mohadese Nabi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mehrdad Shadi
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mostafa M Amini
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran; Рeoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
160
|
Hu Y, Zhang M, Qin C, Qian X, Zhang L, Zhou J, Lu A. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydr Polym 2021; 265:118078. [PMID: 33966842 DOI: 10.1016/j.carbpol.2021.118078] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023]
Abstract
Herein, flexible, transparent and conductive cellulose hydrogels were directly fabricated by regenerating the chemically cross-linked cellulose in NaCl aqueous solution, without further treatment. NaCl played a dominant role on the mechanical, optical, conductive and anti-freezing properties of cellulose hydrogel, also endowed the hydrogel with safety. After optimization, the transparency, tensile strength, elongation at break and conductivity of the cellulose hydrogel reached 94 % at 550 nm, 5.2 MPa, 235 %, and 4.03 S/m, respectively, as well as low temperature tolerance down to -33.5 ℃. Furthermore, sensors based on cellulose hydrogel demonstrated fast response and stable sensitivity to tensile strain, compressive pressure, and temperature, at both room and subzero temperature, without obvious hysteresis. The cellulose hydrogel based triboelectric nanogenerator demonstrated stability and durability as energy harvester in harsh conditions. In addition, the established approach can be used to prepare flexible, transparent and conductive cellulose hydrogel with various salts, indicating universality, simplicity and sustainability for the fabrication of cellulose based flexible conductive devices.
Collapse
Affiliation(s)
- Yang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Meng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Chaoran Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Xinyi Qian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Jinping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
161
|
Yang M, Wu J, Graham GM, Lin J, Huang M. Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Front Chem 2021; 9:688127. [PMID: 34395377 PMCID: PMC8358602 DOI: 10.3389/fchem.2021.688127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Superabsorbent polymer (SAP) is a kind of functional macromolecule with super-high water absorption and retention properties, which attracts extensive research and has wide application, especially in the areas of hygiene and agriculture. With reference to the Web of Science database, the SAP research literature from 2000 to 2019 is reviewed both quantitatively and qualitatively. By examining research hotspots, top research clusters, the most influential works, the representative frontier literature, and key emerging research trends, a visual panorama of the continuously and significantly increasing SAP research over the past 2 decades was presented, and issues behind the sharp increase in the literature were discovered. The findings are as follows. The top ten keywords/hotspots headed by hydrogel highlight the academic attention on SAP properties and composites. The top ten research themes headed by clay-based composites which boast the longest duration and the strongest impact have revealed the academic preference for application rather than theoretical study. Academically influential scholars and research studies have been acknowledged, and the Wu group was at the forefront of the research; however, more statistically significant works have been less detected in the last 10 years despite the sharper increase in publications. Hydrogel, internal curing, and aerogel are both current advances and future directions.
Collapse
Affiliation(s)
- Minmin Yang
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jihuai Wu
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Geoffrey M. Graham
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jianming Lin
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Miaoliang Huang
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| |
Collapse
|
162
|
Wong LC, Leh CP, Goh CF. Designing cellulose hydrogels from non-woody biomass. Carbohydr Polym 2021; 264:118036. [PMID: 33910744 DOI: 10.1016/j.carbpol.2021.118036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 01/20/2023]
Abstract
Hydrogels are an attractive system for a myriad of applications. While most hydrogels are usually formed from synthetic materials, lignocellulosic biomass appears as a sustainable alternative for hydrogel development. The valorization of biomass, especially the non-woody biomass to meet the growing demand of the substitution of synthetics and to leverage its benefits for cellulose hydrogel fabrication is attractive. This review aims to present an overview of advances in hydrogel development from non-woody biomass, especially using native cellulose. The review will cover the overall process from cellulose depolymerization, dissolution to crosslinking reaction and the related mechanisms where known. Hydrogel design is heavily affected by the cellulose solubility, crosslinking method and the related processing conditions apart from biomass type and cellulose purity. Hence, the important parameters for rational designs of hydrogels with desired properties, particularly porosity, transparency and swelling characteristics will be discussed. Current challenges and future perspectives will also be highlighted.
Collapse
Affiliation(s)
- Li Ching Wong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Cheu Peng Leh
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
163
|
Chen C, Hu L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002890. [PMID: 33108027 DOI: 10.1002/adma.202002890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Ion transport and regulation are fundamental processes for various devices and applications related to energy storage and conversion, environmental remediation, sensing, ionotronics, and biotechnology. Wood-based materials, fabricated by top-down or bottom-up approaches, possess a unique hierarchically porous fibrous structure that offers an appealing material platform for multiscale ion regulation. The ion transport behavior in these materials can be regulated through structural and compositional engineering from the macroscale down to the nanoscale, imparting wood-based materials with multiple functions for a range of emerging applications. A fundamental understanding of ion transport behavior in wood-based structures enhances the capability to design high-performance ion-regulating devices and promotes the utilization of sustainable wood materials. Combining this unique ion regulation capability with the renewable and cost-effective raw materials available, wood and its derivatives are the natural choice of materials toward sustainability.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
164
|
Liao J, Dai H, Huang H. Construction of hydrogels based on the homogeneous carboxymethylated chitin from Hericium erinaceus residue: Role of carboxymethylation degree. Carbohydr Polym 2021; 262:117953. [PMID: 33838829 DOI: 10.1016/j.carbpol.2021.117953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/14/2021] [Indexed: 11/18/2022]
Abstract
Carboxymethyl chitin hydrogels with different degree of substitution (DS) were prepared by the homogeneous carboxymethylation of chitin extracted from Hericium erinaceus residue. The effect of DS on gel structure and property were studied. Results showed that the DS of carboxymethyl chitin hydrogels can be increased by increasing the amount of sodium chloroacetate. The equilibrium swelling degree and pH swelling sensitivity of the hydrogels were enhanced as the increase of DS. Zeta potential, low-field nuclear magnetic resonance, contact angle and molecular dynamics simulation results suggested that the introduction of carboxymethyl functional group enhanced the negative charge, water mobility, surface hydrophilicity and the ability to form hydrogen bonds with water of the hydrogels, resulting in an increased swelling degree of the hydrogels. Moreover, the prepared hydrogels showed different adsorption capability to various dyes, and the adsorption performance of the prepared hydrogels for cationic dyes could be enhanced as the increase of DS.
Collapse
Affiliation(s)
- Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
165
|
Lu C, Wang C, Zhang D, Wang J, Yong Q, Chu F. Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training. Int J Biol Macromol 2021; 184:200-208. [PMID: 34126151 DOI: 10.1016/j.ijbiomac.2021.06.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
To develop the hydrogels with high mechanical strength and excellent conductivity is always a challenging topic. In this study, the ultra-strong hydroxypropyl cellulose (HPC)/polyvinyl alcohol (PVA) composite hydrogels were prepared by combination of the triple-network and mechanical training. The proposed composite hydrogels were achieved by physically crosslinking HPC with PVA to form the first crosslinking network, in which the HPC fibers could decrease the crosslinking density of PVA matrix and generate a lot of water-rich porous area. Then, 2-hydroxyethyl acrylate (HEA), acrylamide (AM) and aluminium chloride diffused into the first network to fabricate the chemical crosslinking network and ionically cross-linked domains. The formation of triple-network enhanced the mechanical strength and toughness to 1.87 MPa and 339.09 kJ/m3, respectively. Especially, the crystalline domains of PVA chains could improve the hydrogel's fatigue resistance, and the orderly arrangement of the crystalline domains achieved through mechanical training process could further enhance the mechanical strength. The mechanical strength of pre-stretched composite hydrogel was increased up to 2.8 MPa. The composite hydrogels exhibit great applications in sensors, human-machine interactions, and wearable devices.
Collapse
Affiliation(s)
- Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Chunpeng Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Jifu Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuxiang Chu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China.
| |
Collapse
|
166
|
Functionalization of Cellulose-Based Hydrogels with Bi-Functional Fusion Proteins Containing Carbohydrate-Binding Modules. MATERIALS 2021; 14:ma14123175. [PMID: 34207652 PMCID: PMC8227779 DOI: 10.3390/ma14123175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.
Collapse
|
167
|
Withanage S, Savin A, Nikolaeva V, Kiseleva A, Dukhinova M, Krivoshapkin P, Krivoshapkina E. Native Spider Silk-Based Antimicrobial Hydrogels for Biomedical Applications. Polymers (Basel) 2021; 13:1796. [PMID: 34072375 PMCID: PMC8198725 DOI: 10.3390/polym13111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/25/2023] Open
Abstract
Novel antimicrobial natural polymeric hybrid hydrogels based on hyaluronic acid (HA) and spider silk (Ss) were prepared using the chemical crosslinking method. The effects of the component ratios on the hydrogel characteristics were observed parallel to the primary physicochemical characterization of the hydrogels with scanning electron microscopic imaging, Fourier-transform infrared spectroscopy, and contact angle measurements, which confirmed the successful crosslinking, regular porous structure, exact composition, and hydrophilic properties of hyaluronic acid/spider silk-based hydrogels. Further characterizations of the hydrogels were performed with the swelling degree, enzymatic degradability, viscosity, conductivity, and shrinking ability tests. The hyaluronic acid/spider silk-based hydrogels do not show drastic cytotoxicity over human postnatal fibroblasts (HPF). Hydrogels show extraordinary antimicrobial ability on both gram-negative and gram-positive bacteria. These hydrogels could be an excellent alternative that aids in overcoming antimicrobial drug resistance, which is considered to be one of the major global problems in the biomedical industry. Hyaluronic acid/spider silk-based hydrogels are a promising material for collaborated antimicrobial and anti-inflammatory drug delivery systems for external use. The rheological properties of the hydrogels show shear-thinning properties, which suggest that the hydrogels could be applied in 3D printing, such as in the 3D printing of antimicrobial surgical meshes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Krivoshapkina
- SCAMT Institute, ITMO University, Lomonosova str. 9, 191002 Saint Petersburg, Russia; (S.W.); (A.S.); (V.N.); (A.K.); (M.D.); (P.K.)
| |
Collapse
|
168
|
Sun B, Lin J, Wang T, Liu M, Yang L, Ma B, Chaudhary JP, Chen C, Sun D. Gas assisted in situ biomimetic mineralization of bacterial cellulose/calcium carbonate bio composites by bacterial. Int J Biol Macromol 2021; 182:1690-1696. [PMID: 34058205 DOI: 10.1016/j.ijbiomac.2021.05.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
Biomineralization inspired process to produce polymer of desired need is a promising approach in the field of research. In the present work, the bacterial cellulose (BC) based nanocomposites with a 3D network were synthesized via a biological route by choosing the calcium salt of primary metabolites (calcium gluconate) as the carbon source. The BC based composites were characterized by employing with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). During the preparation of nanocomposites, the calcium ions embedded on the cellulose fibrils were served as the nucleation center and calcium carbonate was deposited into BC network in the assistance of CO2. The uniform distribution of embedded objects on the cellulose nanofibers between internal and external was achieved. The exploitation of organisms for inorganic growth, shape and self-assembling explores new opportunities to the design of original nanostructures.
Collapse
Affiliation(s)
- Bianjing Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Jianbin Lin
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Tao Wang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Mengdi Liu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Lei Yang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Bo Ma
- Department of Life Science of Lianyungang Teacher's College, Sheng Hu Lu 28, Lianyungang 222006, China
| | - Jai Prakash Chaudhary
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
169
|
Baron RI, Biliuta G, Socoliuc V, Coseri S. Affordable Magnetic Hydrogels Prepared from Biocompatible and Biodegradable Sources. Polymers (Basel) 2021; 13:1693. [PMID: 34067311 PMCID: PMC8196864 DOI: 10.3390/polym13111693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Magnetic hydrogels composed of poly(vinyl alcohol) (PVA)/water-soluble tricarboxy cellulose (CO)/magnetic fluids (MFs) have been prepared by a freeze-thaw cycle technique. The system designed here combines the renewability and biocompatibility aspects of PVA and CO, as well as the magnetic properties of MFs, thereby offering special properties to the final product with potential applications in medicine. In the first step, the water-soluble CO is synthesized using a one-shot oxidation procedure and then the aqueous solutions of CO are mixed with PVA solutions and magnetic fluids in the absence of any additional cross-linking agent. The magnetic hydrogels were thoroughly investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), magnetometry (VSM), and thermogravimetric analysis. The morphological results show an excellent distribution of magnetic particles and CO inside the PVA matrix. The VSM results show that the magnetic hydrogels possess superparamagnetic properties.
Collapse
Affiliation(s)
- Raluca Ioana Baron
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| | - Gabriela Biliuta
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| | - Vlad Socoliuc
- Romanian Academy–Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
- Research Center for Complex Fluids Systems Engineering, Politehnica University of Timisoara, Mihai Vi-teazul Ave. 1, 300222 Timisoara, Romania
| | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
170
|
Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, Ong KL, Choudhury NR, Dutta NK, Curvello R, Garnier G, Lin CSK. Perspective on Constructing Cellulose-Hydrogel-Based Gut-Like Bioreactors for Growth and Delivery of Multiple-Strain Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4946-4959. [PMID: 33890783 PMCID: PMC8154558 DOI: 10.1021/acs.jafc.1c00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 05/16/2023]
Abstract
The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
Collapse
Affiliation(s)
- Srinivas Mettu
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Zubeen Hathi
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Sandya Athukoralalage
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Anshu Priya
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Tsz Nok Lam
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Khai Lun Ong
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| | - Namita Roy Choudhury
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Naba Kumar Dutta
- Chemical
and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rodrigo Curvello
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Gil Garnier
- Bioresource
Processing Institute of Australia (BioPRIA), Department of Chemical
Engineering, Monash University, Clayton Victoria 3800, Australia
| | - Carol Sze Ki Lin
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong
| |
Collapse
|
171
|
Hata Y, Yoneda S, Tanaka S, Sawada T, Serizawa T. Structured liquids with interfacial robust assemblies of a nonionic crystalline surfactant. J Colloid Interface Sci 2021; 590:487-494. [DOI: 10.1016/j.jcis.2021.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
|
172
|
Abstract
Abstract
The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Yaya Hao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
173
|
Zhu X, Zhang L, Zou G, Chen Q, Guo Y, Liang S, Hu L, North M, Xie H. Carboxylcellulose hydrogel confined-Fe 3O 4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B. Int J Biol Macromol 2021; 180:792-803. [PMID: 33872611 DOI: 10.1016/j.ijbiomac.2021.04.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 11/26/2022]
Abstract
Facile preparation of functional hydrogel materials for environmental catalysis is a hot research topic of soft materials science and green catalysis. In this study, a carboxylcellulose hydrogel confined Fe3O4 nanoparticles composite catalyst (Fe3O4@CHC) with magnetic recyclability has been synthesized by taking the advantages of the newly developed cellulose solution in tetramethyl guanidine/DMSO/CO2 through in situ acylation using mixed cyclic anhydrides and ion exchange reaction. The achieved Fe3O4@CHC hydrogel catalyst was shown to be an more efficient and better Fenton-like catalyst for decomposition of the organic dye rhodamine B (RhB) in the presence of hydrogen peroxide, with almost complete decomposition occurring within 180 min, in comparison with Fe3O4@cellulose hydrogel (CH) with excellent recyclability. This work provided a facile strategy for the preparation of hydrogel-based functional composite green catalytic materials, which has potential applications in green catalysis.
Collapse
Affiliation(s)
- Xianyi Zhu
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Lihua Zhang
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Guanglong Zou
- School of Chemical Engineering, Guizhou Minzu University, 550025, Guiyang, PR China
| | - Qin Chen
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Yuanlong Guo
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Songmiao Liang
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, Guizhou, PR China.
| | - Lijie Hu
- Separation Membrane Materials & Technologies Joint Research Centre of Vontron-Guizhou University, Vontron Technol Co Ltd, Guiyang 550018, Guizhou, PR China
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China; Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
174
|
Abstract
Hydrogels are 3D crosslinked polymer matrices having a colossal tendency to imbibe water and exhibit swelling under physiological conditions without deformation in their hydrophilic network. Hydrogels being biodegradable and biocompatible, gained consideration due to some unique characteristics: responsiveness to external stimuli (pH, temperature) and swelling in aqueous solutions. Hydrogels offer a promising option for various pharmaceutical and biomedical applications, including tissue-specific drug delivery at a predetermined, controlled rate. This article presents a brief review of the recent and fundamental advances to design hydrogels, the swelling and deswelling mechanism, various crosslinking methods and their use as an intelligent carrier in the pharmaceutical field. Recent applications of hydrogels are also briefly discussed and exemplified.
Collapse
|
175
|
Yan L, Zhou T, Han L, Zhu M, Cheng Z, Li D, Ren F, Wang K, Lu X. Conductive Cellulose Bio‐Nanosheets Assembled Biostable Hydrogel for Reliable Bioelectronics. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202010465] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 03/01/2025]
Abstract
AbstractBiostable electronic materials that can maintain their super mechanical and conductive properties, even when exposed to biofluids, are the fundamental basis for designing reliable bioelectronic devices. Herein, cellulose‐derived conductive 2D bio‐nanosheets as electronic base materials are developed and assembled into a conductive hydrogel with ultra‐high biostability, capable of surviving in harsh physiological environments. The bio‐nanosheets are synthesized by guiding the in situ regeneration of cellulose crystal into a 2D planar structure using the polydopamine‐reduced‐graphene oxide as supporting templates. The nanosheet‐assembled hydrogel exhibits stable electrical and mechanical performances after undergoing aqueous immersion and in vivo implantation. Thus, the hydrogel‐based bioelectronic devices are able to conformally integrate with the human body and stably record electrophysiological signals. Owing to its tissue affinity, the hydrogel further serves as an “E‐skin,” which employs electrotherapy to aid in the faster healing of chronic wounds in diabetic mice through transcutaneous electrical stimulation. The nanosheet‐assembled biostable, conductive, flexible, and cell/tissue affinitive hydrogel lays a foundation for designing electronically and mechanically reliable bioelectronic devices.
Collapse
Affiliation(s)
- Liwei Yan
- Key Lab of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Ting Zhou
- Key Lab of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Lu Han
- School of Medicine and Pharmaceutics Ocean University of China Qingdao Shandong 266003 China
| | - Mingyu Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhuo Cheng
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Da Li
- Key Lab of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Fuzeng Ren
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials Genome Research Center for Biomaterials Sichuan University Chengdu Sichuan 610064 China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| |
Collapse
|
176
|
Akter M, Bhattacharjee M, Dhar AK, Rahman FBA, Haque S, Rashid TU, Kabir SMF. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021; 7:30. [PMID: 33803815 PMCID: PMC8005947 DOI: 10.3390/gels7010030] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 01/11/2023] Open
Abstract
Finding affordable and environment-friendly options to decontaminate wastewater generated with heavy metals and dyes to prevent the depletion of accessible freshwater resources is one of the indispensable challenges of the 21st century. Adsorption is yet to be the most effective and low-cost wastewater treatment method used for the removal of pollutants from wastewater, while naturally derived adsorbent materials have garnered tremendous attention. One promising example of such adsorbents is hydrogels (HGs), which constitute a three-dimensional polymeric network of hydrophilic groups that is highly capable of adsorbing a large quantity of metal ions and dyes from wastewater. Although HGs can also be prepared from synthetic polymers, natural polymers have improved environmental benignity. Recently, cellulose-based hydrogels (CBHs) have been extensively studied owing to their high abundance, biodegradability, non-toxicity, and excellent adsorption capacity. This review emphasizes different CBH adsorbents in the context of dyes and heavy metals removal from wastewater following diverse synthesis techniques and adsorption mechanisms. This study also summarizes various process parameters necessary to optimize adsorption capacity followed by future research directions.
Collapse
Affiliation(s)
- Maimuna Akter
- Department of Environmental Management, Independent University Bangladesh, Dhaka 1229, Bangladesh; (M.A.); (F.B.A.R.)
| | - Maitry Bhattacharjee
- Department of Textile Engineering, Shyamoli Textile Engineering College, University of Dhaka, Dhaka 1207, Bangladesh; (M.B.); (A.K.D.)
| | - Avik Kumar Dhar
- Department of Textile Engineering, Shyamoli Textile Engineering College, University of Dhaka, Dhaka 1207, Bangladesh; (M.B.); (A.K.D.)
| | - Fahim Bin Abdur Rahman
- Department of Environmental Management, Independent University Bangladesh, Dhaka 1229, Bangladesh; (M.A.); (F.B.A.R.)
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Siddika Haque
- Faculty of Textile Engineering, BGMEA University of Fashion and Technology, Dhaka 1230, Bangladesh;
| | - Taslim Ur Rashid
- Wislon College of Textiles, North Carolina State University, Raleigh, NC 27606, USA;
| | - S M Fijul Kabir
- Wislon College of Textiles, North Carolina State University, Raleigh, NC 27606, USA;
| |
Collapse
|
177
|
Samyn P. Polydopamine and Cellulose: Two Biomaterials with Excellent Compatibility and Applicability. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1896545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pieter Samyn
- Institute for Materials Research, Applied and Analytical Chemistry, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
178
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
179
|
Pei Z, Yu Z, Li M, Bai L, Wang W, Chen H, Yang H, Wei D, Yang L. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor. Int J Biol Macromol 2021; 179:324-332. [PMID: 33684432 DOI: 10.1016/j.ijbiomac.2021.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Recently, self-healing and high mechanical strength hydrogels have aroused much research due to their potential future in strain-sensitive flexible sensors. In this manuscript, we successfully designed self-healing and toughness cellulose nanocrystals (CNCs) nanocomposite hydrogels by grafted polypyrrole (PPy) on the surface of CNCs to enhance electrical conductivity. The obtained nanocomposite hydrogels exhibit outstanding self-healing and mechanical behaviors, and the optimal mechanical strength, toughness and self-healing efficiency can be up to 5.7 MPa, 810% and 89.6%, respectively. Using these functional nanocomposite hydrogels, strain-sensitive wearable flexible sensors were designed to monitor finger joint motions, bending of knee, and even the slight pulse beating. Surprisingly, the flexible sensors could evidently perceive body motions from large movements (knee bending) to tiny signals (pulse beating). In addition, it exhibited excellent durability after repeated cycles. This method of prepared self-healing nanocomposite hydrogels will have a potential prospect in the design of biomedical, biosensors, and flexible electronic devices.
Collapse
Affiliation(s)
- Zhaoxia Pei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Zhiwei Yu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Mengnan Li
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai, China
| |
Collapse
|
180
|
Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003033. [PMID: 33717847 PMCID: PMC7927632 DOI: 10.1002/advs.202003033] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Cancer has been one of the major threats to the lives of human beings for centuries. Traditional therapy is more or less faced with certain defects, such as poor targeting, easy degradation, high side effects, etc. Therefore, in order to improve the treatment efficiency of drugs, an intelligent drug delivery system (DDS) is considered as a promising solution strategy. Due to their special structure and large specific surface area, 2D materials are considered to be a good platform for drug delivery. Black phosphorus (BP), as a new star of the 2D family, is recommended to have the potential to construct DDS by virtue of its outstanding photothermal therapy (PTT), photodynamic therapy (PDT), and biodegradable properties. This tutorial review is intended to provide an introduction of the current advances in BP-based DDSs for cancer therapy, which covers topics from its construction, classified by the types of platforms, to the stimuli-responsive controlled drug release. Moreover, their cancer therapy applications including mono-, bi-, and multi-modal synergistic cancer therapy as well as the research of biocompatibility are also discussed. Finally, the current status and future prospects of BP-based DDSs for cancer therapy are summarized.
Collapse
Affiliation(s)
- Wenxin Liu
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
181
|
Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, Liu X, Li Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7617-7624. [PMID: 33538165 DOI: 10.1021/acsami.0c22584] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A solar steam generation method has been widely investigated as a sustainable method to achieve seawater desalination and sewage treatment. However, oil pollutants are usually emitted in real seawater or wastewaters, which can cause serious fouling problems to disturb the solar evaporation performance. In this work, a mussel-inspired, low-cost, polydopamine-filled cellulose aerogel (PDA-CA) has been rationally designed and fabricated with both superhydrophilicity and underwater superoleophobicity. The resulting PDA-CA device could also achieve a high solar evaporation rate of 1.36 kg m-1 h-1 with an 86% solar energy utilize efficiency under 1 sun illumination. In addition, the PDA-CA not only exhibited promising antifouling capacity for long-term water evaporation but also engaged in the effective adsorption of organic dye contaminants. These promising features of PDA-CA may offer new opportunities for developing multifunctional photothermal devices for solar-driven water remediation.
Collapse
Affiliation(s)
- Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Junyi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyao Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
182
|
Zhao C, Tian H, Zhang Q, Liu Z, Zhang M, Wang J. Preparation of urea-containing starch-castor oil superabsorbent polyurethane coated urea and investigation of controlled nitrogen release. Carbohydr Polym 2021; 253:117240. [PMID: 33278996 DOI: 10.1016/j.carbpol.2020.117240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
With the aim of improving water absorption and controlled release performance of current controlled release fertilizers, a novel composite coating method for superabsorbent-polyurethane coated urea (SAPCU) was developed. Superabsorbent-polyurethane (SAPU) composite coating material was successfully formed through an insitu reaction, where castor oil polyurethane (COP) and superabsorbent polymer (SAP) were connected through urethane bonds with an optimal reaction ratio of SAP and PAPI as 2.5:1 (w w-1). The ideal nitrogen release and water absorption characteristics of SAPCU were achieved by adjusting the amount of COP and SAPU. The SAPCU had a high total nitrogen content (40.23-42.14 %), large swelling ratios (120-160 g water/g SAPU), and long nitrogen release period (60-150 days).
Collapse
Affiliation(s)
- Chenhao Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Hongyu Tian
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Qiang Zhang
- State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| | - Jun Wang
- Taian Soil and Water Conservation Ecological Environment Monitoring Station, Taian, 271018, China
| |
Collapse
|
183
|
Zhu P, Kuang Y, Wei Y, Li F, Ou H, Jiang F, Chen G. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 404:127105. [PMID: 32994751 PMCID: PMC7513892 DOI: 10.1016/j.cej.2020.127105] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
Humidity sensors have been widely used for humidity monitoring in industrial fields. However, the application of conventional sensors is limited due to the structural rigidity, high cost, and time-consuming integration process. Owing to the good hydrophilicity, biodegradability, and low cost of cellulose, the sensors built on cellulose bulk materials are considered a feasible method to overcome these drawbacks while providing reasonable performance. Herein, we design a flexible paper-based humidity sensor based on conductive 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose fibers/carbon nanotubes (TOCFs/CNTs) conformal fibers network. The CNTs are dispersed by cationic cetyl trimethyl ammonium bromide (CTAB), which introduces positive charges on the CNTs surface. The conductive fibers are achieved by an electrostatic self-assembly process that positively charged CNTs are adsorbed to the surface of negatively charged TOCFs. The vast number of hydrophilic hydroxyl groups on the surface of TOCFs provide more water molecules adsorption sites and facilitate the electron transfer from water molecules to CNTs, endowing the sensor with an excellent humidity responsive property. Besides, the swelling of the TOCFs greatly damages the conductive CNTs network and further promotes the humidity sensitive performance of the sensor. Benefiting from the unique structure, the obtained sensor exhibits a maximum response value of 87.0% (ΔI/I0 , and the response limit is 100%), outstanding linearity (R2 = 0.995) between 11 and 95% relative humidity (RH), superior bending (with a curvature of 2.1 cm-1) and folding (up to 50 times) durability, and good long-time stability (more than 3 months). Finally, as a proof of concept, the sensor demonstrates an excellent responsive property to human breath, fingertip humidity, and the change of air humidity, indicating a great potential towards practical applications.
Collapse
Affiliation(s)
- Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yudi Kuang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuan Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Fang Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Huajie Ou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
184
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021; 6:154-176. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2025]
Abstract
AbstractBiopolymers are considered as a favorable group of substances with a broad array of applications, of which biomedical field stands out. The interesting features of biopolymers such as low‐cost, non‐cytotoxicity, hydrophilicity, biodegradation and biocompatibility make them promising and excellent feedstock to be used in implantable devices. The bounteous reactive functional groups in the backbone structure of polysaccharides and its derivatives could be utilized to develop hydrogels, nano‐composite and 3D scaffolds with appealing structures and desired features, leading to promising research attention towards biomedical fields. The present review describes the foremost properties as well as potential of different biopolymers, and their composites for application in implantable biomedical systems. This work may introduce readers about the comprehension of state‐of‐the‐art advances, real present challenges along with the future anticipation of eco‐friendly and biomimetic techniques for the modification of biopolymeric materials to improve their biomedical applications.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
185
|
Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int J Biol Macromol 2021; 172:330-340. [PMID: 33453256 DOI: 10.1016/j.ijbiomac.2021.01.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Novel nanocomposite hydrogels were successfully prepared by blending and crosslinking sodium alginate (SA), poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNFs) in the presence of a fertilizer formulation containing nitrogen (N), phosphorus (P) and potassium (K). The hydrogels had a macroporous flexible core and a microporous semi- interpenetrating polymer network (IPN) shell. The crystalline nature of the NPK chemicals was retained in the hydrogel nanocomposite network. Furthermore, the SA/CNF/PVA-based hydrogels showed a higher water-retention capacity in both deionized water and mixed soil. The swelling behavior in various physiological pH, salt and alkali solutions exhibited good sensitivity. The NPK release from SA/CNF/NPK and SA/CNF/PVA/NPK hydrogels was controlled by Fickian diffusion in both water and soil based on the Korsmeyer-Peppas release kinetics model (n < 0.5). Therefore, the prepared hydrogels have the potential for applications in drought-prone and/or fertilizer-loss regions for future development of precision agriculture and horticulture.
Collapse
|
186
|
Ji L, Zhang F, Zhu L, Jiang J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 2021; 170:459-468. [PMID: 33359254 DOI: 10.1016/j.ijbiomac.2020.12.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Sodium alginate-bacterial cellulose (SA-BC) is a nanocomposite hydrogel with multi-layered porous surfaces fabricated using an in-situ biosynthesis modification method. The enzymatic hydrolysate (EH) of glycerol-pretreated Moso bamboo (MBEH) was the carbon source for glucose substitution to generate SA-bamboo-BC. SA, a natural biological polysaccharide, was combined with BC at dosages of 0.25%, 0.5%, 0.75% and 1% through hydrogen bonding. Compared to the native BC, the addition of 0.75% SA, termed as SA-bamboo-BC-0.75, enhanced the thermal properties. The dynamic swelling/de-swelling were pH-dependent, with an increased swelling ratio (SR) of 613% observed at pH 7.4 but a lower SR of 366% observed at pH 1.2. These differences were attributable to the electrostatic repulsion of -COO-. Two protein-based model drugs were compared to estimate their drug-release properties. Bovine serum albumin (BSA) was adsorbed on lignin from MBEH through hydrophobic interactions, resulting in poor drug release. Lysozyme (LYZ) exhibited a higher drug release rate (92.79%) over 60 h at pH 7.4 due to the static attraction between LYZ and -COO- of SA-bamboo-BC-0.75. As such, SA-bamboo-BC nanocomposite hydrogel was shown to possess sufficient swelling, drug-release and biocompatibility for substrate use.
Collapse
Affiliation(s)
- Li Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Liwei Zhu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
187
|
Matsumoto Y, Enomoto Y, Kimura S, Iwata T. Highly deformable and recoverable cross-linked hydrogels of 1,3-α-d and 1,3-β-d-glucans. Carbohydr Polym 2021; 251:116794. [PMID: 33142549 DOI: 10.1016/j.carbpol.2020.116794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
We prepared self-standing chemically cross-linked hydrogels from 1,3-α-d-glucan (Mw = 2.0 × 105) and 1,3-β-d-glucans (low-molecular-weight (LMW): Mw = 2.0 × 105, high-molecular-weight (HMW): Mw = 1.0 × 106), using ethylene glycol diglycidyl ether (EGDGE) as a cross-linker. Uniaxial compressive tests using cylindrical hydrogels of the cross-linked glucans were conducted. Both the 1,3-α-d-glucan and LMW-1,3-β-d-glucan hydrogels were highly deformable and shape-deformable; they could be compressed without breaking to 60% and 80% strain, respectively, and recovered 80% of their original height. The Young's moduli of the 1,3-α-d-glucan and LMW-1,3-β-d-glucan hydrogels indicated that the 1,3-α-d-glucan hydrogels were harder than the 1,3-β-d-glucan hydrogels. The HMW-1,3-β-d-glucan hydrogels were more deformable and had better shape recovery than the LMW-1,3-β-d-glucans; they could be compressed by up to 90% maximum strain, and recovered almost 100% of their original height from 80% strain. Cyclic compression tests were performed to study their network structure.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukiko Enomoto
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Technology Advancement Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657,Japan; Department of Plant & Environmental New Resources,College of Life Sciences, Kyung Hee University, Yongin-si,Gyeonggi-do 446-701, Republic of Korea
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
188
|
Ahmed FK, Mostafa M, Abd-Elsalam KA. Micro-/nanoscale biodegradable hydrogels: Water purification, management, conservation, and agrochemical delivery. AQUANANOTECHNOLOGY 2021:201-229. [DOI: 10.1016/b978-0-12-821141-0.00002-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
189
|
Liu H, Pan B, Wang Q, Niu Y, Tai Y, Du X, Zhang K. Crucial roles of graphene oxide in preparing alginate/nanofibrillated cellulose double network composites hydrogels. CHEMOSPHERE 2021; 263:128240. [PMID: 33297187 DOI: 10.1016/j.chemosphere.2020.128240] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
In this study, a novel strategy to prepare sodium alginate (SA)/nano fibrillated cellulose (NFC) double network (DN) hydrogel beads with the aid of graphene oxide (GO) was developed. In comparison with the multi-step freezing-thawing method, this study employs a facile one-step freeze drying method with the presence of GO sheets. The crucial roles of GO were highlighted as an efficient nucleating agent of NFC and a reinforcer for the hydrogel. The adsorption property of the DN hydrogel towards crystal violet (CV) was also studied. Results indicated that the introduction of GO could greatly facilitate the formation of double networks. Furthermore, the as-prepared DN hydrogel beads exhibited an efficacious adsorption property towards CV. The maximum adsorption capacity of the hydrogels for CV was observed as 665 mg g-1. Therefore, our approach here represents a facile method for the preparation of crystalline polymer based DN hydrogels to replace the awkward freezing-thawing process, giving inspiration for DN hydrogels design and preparation. Moreover, due to its efficient adsorption capacity, the hydrogels hold great promise for the water pollution control materials.
Collapse
Affiliation(s)
- Hongyu Liu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Bingli Pan
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Qianjie Wang
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yumiao Niu
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yuping Tai
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xigang Du
- Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang, 471023, China
| | - Keke Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
190
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
191
|
Etminani-Isfahani N, Mohammadbagheri Z, Rahmati A. 4-(6-Aminohexyl) amino-4-oxo-2-butenoic acid as a novel hydrophilic monomer for synthesis of cellulose-based superabsorbents with high water absorption capacity. Carbohydr Polym 2020; 250:116959. [DOI: 10.1016/j.carbpol.2020.116959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023]
|
192
|
Sangsuriyonk K, Paradee N, Sirivat A. Electrically controlled release of anticancer drug 5-fluorouracil from carboxymethyl cellulose hydrogels. Int J Biol Macromol 2020; 165:865-873. [DOI: 10.1016/j.ijbiomac.2020.09.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
|
193
|
Lu P, Yang Y, Liu R, Liu X, Ma J, Wu M, Wang S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr Polym 2020; 249:116831. [DOI: 10.1016/j.carbpol.2020.116831] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
|
194
|
Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
195
|
Ciolacu DE, Nicu R, Ciolacu F. Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5270. [PMID: 33233413 PMCID: PMC7700533 DOI: 10.3390/ma13225270] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.
Collapse
Affiliation(s)
| | - Raluca Nicu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Florin Ciolacu
- Natural and Synthetic Polymers Department, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|
196
|
Zou Y, Wu X, Li H, Yang L, Zhang C, Wu H, Li Y, Xiao L. Metal-phenolic network coated cellulose foams for solar-driven clean water production. Carbohydr Polym 2020; 254:117404. [PMID: 33357892 DOI: 10.1016/j.carbpol.2020.117404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Solar-driven water steam generation is a promising strategy for seawater desalination and wastewater purification. However, oil contaminants commonly exist in real water resources, which drives us to design and fabricate photothermal materials with high efficient water steam generation and outstanding anti-oil-fouling ability. Herein, we developed a metal-phenolic network-coated cellulose foam (Fe3+/TA@CF), which exhibits not only superb hydrophilicity and underwater lipophobicity, but also achieves high water evaporation rate of ∼1.3 kg m-2 h-1 even in oil-polluted seawater under one sun illumination. In addition, Fe3+/TA@CF is demonstrated to be both anti-oil-fouling and anti-salt-fouling, which benefits to long-term evaporation in practical utilizations. Metal ions and oil contaminants in the condensed water vapor are almost eliminated after purification. We believe that this low-cost, biodegradable Fe3+/TA@CF paves a way for rationally designing and fabricating high-performance evaporator for oil contaminated water purification.
Collapse
Affiliation(s)
- Yuan Zou
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haotian Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, 483 Wushan Road, Guangzhou, 510642, China
| | - Haoxing Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China.
| | - Yiwen Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China.
| | - Li Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
197
|
Khushbu, Warkar SG. Potential applications and various aspects of polyfunctional macromolecule- carboxymethyl tamarind kernel gum. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
198
|
Zhou X, Fu Y, Chen L, Wang R, Wang X, Miao Y, Ji X, Bian H, Dai H. Diisocyanate modifiable commercial filter paper with tunable hydrophobicity, enhanced wet tensile strength and antibacterial activity. Carbohydr Polym 2020; 248:116791. [DOI: 10.1016/j.carbpol.2020.116791] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
|
199
|
Bisht B, Lohani UC, Kumar V, Gururani P, Sinhmar R. Edible hydrocolloids as sustainable substitute for non-biodegradable materials. Crit Rev Food Sci Nutr 2020; 62:693-725. [DOI: 10.1080/10408398.2020.1827219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bhawna Bisht
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - U. C. Lohani
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Prateek Gururani
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rajat Sinhmar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
200
|
Noguchi S, Takaomi K. Ultrasound response of viscoelastic changes of cellulose hydrogels triggered with Sono-deviced rheometer. ULTRASONICS SONOCHEMISTRY 2020; 67:105143. [PMID: 32446975 DOI: 10.1016/j.ultsonch.2020.105143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Sono-deviced rheometer,which enabled viscoelastic properties under ultrasound operation, was used to investigate for cellulosic hydrogels. The viscoelastic behavior was compared in cellulosic hydrogels prepared at 0.5, 1 and 2 wt% concentration in the DMAc/LiCl solution. The sono-deviced equipment could measure the effect of changes in storage modulus G' and loss modulus G" under 43 kHz ultrasound exposure. It was noted that the 43 kHz ultrasound significantly changed the values of the G', meaning that the hydrogel was soften under the exposure within few seconds. When the ultrasound exposed 50 W of the out-put power at 1% strain, the G' value of 4.2x104 Pa was reduced to 4.0x103 Pa during 5 min of the US interval. The declined lowering value of G' then returned to the original moduli value when ultrasound was stopped. The values of both G' and G" values were measured at applied strain % during viscoelastic measurements of the cellulosic hydrogels without and with ultrasound exposure. The comparison indicated that the ultrasoundhas reinforced the effect of the mechanical deformationof the hydrogel structureat the smaller mechanical strain values appliedduring the ultrasound operation. The ultrasound soften effect onthe viscoelastic change efficiently occurred in the 0.5 wt% sample and easily induced the structural deformation probably due to the breakage of hydrogen bonds in the cellulose hydrogels.
Collapse
Affiliation(s)
- Sarara Noguchi
- Department of Energy and Environment Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| | - Kobayashi Takaomi
- Department of Energy and Environment Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan; Department of Science and Technology Innovation, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| |
Collapse
|