151
|
Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:964-981. [PMID: 27524098 DOI: 10.1016/j.msec.2016.05.121] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/08/2022]
|
152
|
Singh RS, Kaur N, Rana V, Kennedy JF. Recent insights on applications of pullulan in tissue engineering. Carbohydr Polym 2016; 153:455-462. [DOI: 10.1016/j.carbpol.2016.07.118] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022]
|
153
|
Dulong V, Hadrich A, Picton L, Le Cerf D. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid. Carbohydr Polym 2016; 151:78-87. [DOI: 10.1016/j.carbpol.2016.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
154
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
155
|
Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
156
|
Hu X, Wang Y, Zhang L, Xu M, Dong W, Zhang J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr Polym 2016; 155:242-251. [PMID: 27702509 DOI: 10.1016/j.carbpol.2016.08.077] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023]
Abstract
Salecan is a novel water-soluble extracellular β-glucan and possesses excellent physicochemical and biological properties. Here, redox/pH dual stimuli-responsive hydrogel based on Salecan grafted with itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA) were prepared using disulfide-functionalized crosslinker N,N-bis(acryloyl)cystamine (BAC) for controlled drug delivery. The introduction of carboxylic groups endows the system with pH-sensitive character, swelling behavior of the hydrogel was conducted by changing the pH and Salecan content. It was demonstrated that DOX was efficiently loaded into the hydrogels and released in a controlled fashion via pH-control and swelling-shrinking mechanism. More importantly, DOX-loaded hydrogels showed dose dependent cytotoxicity toward A549 cell, and efficient cell killing was observed. Furthermore, a key point of this study was that the presence of disulfide linkage in system favored the degradation of hydrogels in the reductive environment. These results highlight the potential of Salecan-g-SS-poly(IA-co-HEMA) hydrogel as a novel system for the controlled release of anti-cancer drugs.
Collapse
Affiliation(s)
- Xinyu Hu
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China.
| | - Yongmei Wang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Liangliang Zhang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Man Xu
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210042, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
157
|
Sheng L, Tong Q, Ma M. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzyme Microb Technol 2016; 92:49-55. [PMID: 27542744 DOI: 10.1016/j.enzmictec.2016.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
This paper studies the metabolic pathway of sucrose in pullulan fermentation by Aureobasidium pullulans. Because of its high pullulan production, sucrose proved to be the best carbon source for pullulan synthesis by A. pullulans CGMCC1234 (36.3g/L). Compared to other carbon sources, A. pullulans cells reached the stationary phase more quickly in the presence of sucrose. The specific sugar types and concentrations occurring during pullulan fermentation were detected using High Performance Liquid Chromatography (HPLC). HPLC results revealed that sucrose did not simply break down into glucose and fructose in the medium employed. Kestose (22.69g/L) also accumulated during early stages of fermentation (24h), which reduced the osmotic pressure of the extracellular fluid and diminished the inhibition of cell growth and pullulan production. β-Fructofuranosidase activity strongly depended on the carbon source. Sucrose was the best inducer of β-fructofuranosidase production. However, β-fructofuranosidase production did not directly and/or proportionally correlate with the growth of A. pullulans cells.
Collapse
Affiliation(s)
- Long Sheng
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunyi Tong
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Meihu Ma
- National R&D Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
158
|
Dionísio M, Braz L, Corvo M, Lourenço J, Grenha A, Rosa da Costa A. Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation. Int J Biol Macromol 2016; 86:129-38. [DOI: 10.1016/j.ijbiomac.2016.01.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/30/2015] [Accepted: 01/15/2016] [Indexed: 12/01/2022]
|
159
|
Ferreira ARV, Alves VD, Coelhoso IM. Polysaccharide-Based Membranes in Food Packaging Applications. MEMBRANES 2016; 6:E22. [PMID: 27089372 PMCID: PMC4931517 DOI: 10.3390/membranes6020022] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 11/22/2022]
Abstract
Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.
Collapse
Affiliation(s)
- Ana R V Ferreira
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa 1349-017, Portugal.
| | - Isabel M Coelhoso
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
160
|
Shah NN, Vishwasrao C, Singhal RS, Ananthanarayan L. n-Octenyl succinylation of pullulan: Effect on its physico-mechanical and thermal properties and application as an edible coating on fruits. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
161
|
Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering. Sci Rep 2016; 6:20014. [PMID: 26817622 PMCID: PMC4730219 DOI: 10.1038/srep20014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.
Collapse
Affiliation(s)
- Feng Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Songrui Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, P. R. China
| | - Yunzhou Ni
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, P. R. China
| |
Collapse
|
162
|
Pranatharthiharan S, Patel MD, Malshe VC, Devarajan PV. Polyethylene sebacate doxorubicin nanoparticles: role of carbohydrate anchoring on in vitro and in vivo anticancer efficacy. Drug Deliv 2016; 23:2980-2989. [PMID: 26786706 DOI: 10.3109/10717544.2015.1135488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report carbohydrate-anchored polyethylene sebacate (PES)-Gantrez® AN 119 Doxorubicin hydrochloride (Dox) nanoparticles (NPs) for enhanced anticancer efficacy. The carbohydrates Arabinogalactan (AGn), an adjuvant in anticancer chemotherapy and pullulan (Pul) reported to promote collagen synthesis, were selected as ligands. PES Dox NPs of an average size around 200 nm, greater than 20% w/w Dox loading and negative zeta potential were anchored with Pul, AGn, and Pul-AGn combination by simple incubation. Increase in particle size and zeta potential confirmed carbohydrate anchoring. FTIR confirmed ionic complexation of Dox and Gantrez® AN 119. DSC and XRD demonstrated amorphization of Dox. Higher Dox release in pH 5.5 as compared with pH 7.4 is beneficial for reduced systemic toxicity and enhanced drug release in tumors. Good in vitro serum stability and low hemolysis revealed suitability for intravenous administration. All NPs revealed circulation longevity in normal rats. Pul NPs revealed superior anticancer efficacy in vitro and an 11-fold enhancement in uptake in MCF-7 breast cancer cells. The greater efficacy in vivo is attributed to possible pullulan-mediated integrin receptor uptake and interaction with tumor collagen. Histopathology confirmed safety and suggested promise of Pul NPs in improved anticancer efficacy.
Collapse
Affiliation(s)
- Sandhya Pranatharthiharan
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology (Deemed University, Elite Status) , Mumbai , Maharashtra , India
| | - Mitesh D Patel
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology (Deemed University, Elite Status) , Mumbai , Maharashtra , India
| | - Vinod C Malshe
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology (Deemed University, Elite Status) , Mumbai , Maharashtra , India
| | - Padma V Devarajan
- a Department of Pharmaceutical Sciences and Technology , Institute of Chemical Technology (Deemed University, Elite Status) , Mumbai , Maharashtra , India
| |
Collapse
|
163
|
Ganeshkumar M, Ponrasu T, Subamekala MK, Janani M, Suguna L. Curcumin loaded on pullulan acetate nanoparticles protects the liver from damage induced by DEN. RSC Adv 2016. [DOI: 10.1039/c5ra18989f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curcumin loaded nanoparticles protect liver from damage induced by DEN.
Collapse
Affiliation(s)
- Moorthy Ganeshkumar
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| | - Thangavel Ponrasu
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| | | | - Murthy Janani
- Department of Biopharmaceutics
- Anna University
- Chennai
- India
| | - Lonchin Suguna
- Department of Biochemistry
- CSIR-Central Leather Research Institute
- Council of Scientific and Industrial Research
- Chennai 600020
- India
| |
Collapse
|
164
|
Lalatsa A, Barbu E. Carbohydrate Nanoparticles for Brain Delivery. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:115-53. [DOI: 10.1016/bs.irn.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
165
|
Understanding the influence of Tween 80 on pullulan fermentation by Aureobasidium pullulans CGMCC1234. Carbohydr Polym 2016; 136:1332-7. [DOI: 10.1016/j.carbpol.2015.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
|
166
|
Ates O. Systems Biology of Microbial Exopolysaccharides Production. Front Bioeng Biotechnol 2015; 3:200. [PMID: 26734603 PMCID: PMC4683990 DOI: 10.3389/fbioe.2015.00200] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.
Collapse
Affiliation(s)
- Ozlem Ates
- Department of Medical Services and Techniques, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
167
|
Alhaique F, Matricardi P, Di Meo C, Coviello T, Montanari E. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
168
|
André EM, Pensado A, Resnier P, Braz L, Rosa da Costa AM, Passirani C, Sanchez A, Montero-Menei CN. Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy. Int J Pharm 2015; 497:255-67. [PMID: 26617318 DOI: 10.1016/j.ijpharm.2015.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022]
Abstract
To direct stem cell fate, a delicate control of gene expression through small interference RNA (siRNA) is emerging as a new and safe promising strategy. In this way, the expression of proteins hindering neuronal commitment may be transiently inhibited thus driving differentiation. Mesenchymal stem cells (MSC), which secrete tissue repair factors, possess immunomodulatory properties and may differentiate towards the neuronal lineage, are a promising cell source for cell therapy studies in the central nervous system. To better drive their neuronal commitment the repressor Element-1 silencing transcription (REST) factor, may be inhibited by siRNA technology. The design of novel nanoparticles (NP) capable of safely delivering nucleic acids is crucial in order to successfully develop this strategy. In this study we developed and characterized two different siRNA NP. On one hand, sorbitan monooleate (Span(®)80) based NP incorporating the cationic components poly-l-arginine or cationized pullulan, thus allowing the association of siRNA were designed. These NP presented a small size (205 nm) and a negative surface charge (-38 mV). On the other hand, lipid nanocapsules (LNC) associating polymers with lipids and allowing encapsulation of siRNA complexed with lipoplexes were also developed. Their size was of 82 nm with a positive surface charge of +7 mV. Both NP could be frozen with appropriate cryoprotectors. Cytotoxicity and transfection efficiency at different siRNA doses were monitored by evaluating REST expression. An inhibition of around 60% of REST expression was observed with both NP when associating 250 ng/mL of siRNA-REST, as recommended for commercial reagents. Span NP were less toxic for human MSCs than LNCs, but although both NP showed a similar inhibition of REST over time and the induction of neuronal commitment, LNC-siREST induced a higher expression of neuronal markers. Therefore, two different tailored siRNA NP offering great potential for human stem cell differentiation have been developed, encouraging the pursuit of further in vitro and in vivo in studies.
Collapse
Affiliation(s)
- E M André
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - A Pensado
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain
| | - P Resnier
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - L Braz
- CIQA-Algarve Chemistry Research Centre, University of Algarve, 8005-139 Faro, Portugal; School of Health-University of Algarve, 8000-510 Faro, Portugal; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A M Rosa da Costa
- CIQA-Algarve Chemistry Research Centre, University of Algarve, 8005-139 Faro, Portugal; Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - C Passirani
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; Molecular Image Group. Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), A Choupana, 15706 Santiago de Compostela, Spain
| | - C N Montero-Menei
- PRES LUNAM-University of Angers, F-49933 Angers, France; INSERM U1066-Micro et Nanomédecines Biomimétiques, 4 rue larrey, F-49933 Angers, France.
| |
Collapse
|
169
|
Bioenhanced oral curcumin nanoparticles: Role of carbohydrates. Carbohydr Polym 2015; 136:1251-8. [PMID: 26572468 DOI: 10.1016/j.carbpol.2015.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
Abstract
The paper discusses polysaccharide-adsorbed curcumin-Gantrez nanoparticles for bioenhancement of oral curcumin. Nanoparticles revealed no change in size over time in pH 1.2 and 7.4, and a rapid drug release in pH 1.2 and 7.4 medium containing surfactant. Without adsorbed polysaccharides, nanoparticles exhibited high Cmax (61.3 ± 22.3 ng/mL), sustained plasma concentration up to 24h and 117% absolute bioavailability, attributed to bioadhesion. In contrast galactose polysaccharides arabinogalactan and kappa-carrageenan adsorbed nanoparticles exhibited rapid absorption with higher Cmax of 109.5 ± 31.2 ng/mL and 92.3 ± 21.2 ng/mL, respectively, but faster elimination and absolute bioavailability of greater than 25%. The glucose polysaccharide pullulan adsorbed nanoparticles exhibited significantly lower Cmax (39.7 ± 20.6 ng/mL) and bioavailability (13%). Lower bioavailability of polysaccharide adsorbed nanoparticles was attributed to high metabolism of curcumin in the intestine as a result of faster gastric elimination and high intestinal localization. However polysaccharide-adsorbed nanoparticles could play an important role in bioenhancement of drugs specifically those exhibiting good stability across the gastrointestinal tract.
Collapse
|
170
|
Chen L, Wang X, Ji F, Bao Y, Wang J, Wang X, Guo L, Li Y. New bifunctional-pullulan-based micelles with good biocompatibility for efficient co-delivery of cancer-suppressing p53 gene and doxorubicin to cancer cells. RSC Adv 2015. [DOI: 10.1039/c5ra17139c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Combined treatment of drugs and therapeutic genes has emerged as a new modality of anticancer therapy.
Collapse
Affiliation(s)
- Lili Chen
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Xiaohong Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P.R. China
- School of Life Science and Biotechnology
| | - Fangling Ji
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P.R. China
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P.R. China
- School of Life Science and Biotechnology
| | - Xianwu Wang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P.R. China
| | - Lianying Guo
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian 116044
- P.R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian 116044
- P.R. China
| |
Collapse
|
171
|
Dixit P, Mehta A, Gahlawat G, Prasad GS, Choudhury AR. Understanding the effect of interaction among aeration, agitation and impeller positions on mass transfer during pullulan fermentation by Aureobasidium pullulans. RSC Adv 2015. [DOI: 10.1039/c5ra03715h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pullulan is a non-ionic, water-soluble homopolysaccharide producedviafermentation usingAureobasidium pullulans, a black yeast.
Collapse
Affiliation(s)
- Pooja Dixit
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Ananya Mehta
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Geeta Gahlawat
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - G. S. Prasad
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| | - Anirban Roy Choudhury
- CSIR-Institute of Microbial Technology (IMTECH)
- Council of Scientific and Industrial Research (CSIR)
- Chandigarh-160036
- India
| |
Collapse
|