151
|
Cui W, Yoneda R, Ueda N, Kurokawa R. Arginine methylation of translocated in liposarcoma (TLS) inhibits its binding to long noncoding RNA, abrogating TLS-mediated repression of CBP/p300 activity. J Biol Chem 2018; 293:10937-10948. [PMID: 29784880 DOI: 10.1074/jbc.ra117.000598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 (CCND1) gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) in vitro The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike WT TLS, an R476A TLS mutant did not inhibit CCND1 promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation.
Collapse
Affiliation(s)
- Wei Cui
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Ryoma Yoneda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Naomi Ueda
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Riki Kurokawa
- From the Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| |
Collapse
|
152
|
Araoi S, Daitoku H, Yokoyama A, Kako K, Hirota K, Fukamizu A. The GATA transcription factor ELT-2 modulates both the expression and methyltransferase activity of PRMT-1 in Caenorhabditis elegans. J Biochem 2018; 163:433-440. [PMID: 29361115 DOI: 10.1093/jb/mvy012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 11/13/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes asymmetric arginine dimethylation of cellular proteins and thus modulates various biological processes, including gene regulation, RNA metabolism, cell signaling and DNA repair. Since prmt-1 null mutant completely abolishes asymmetric dimethylarginine in C. elegans, PRMT-1 is thought to play a crucial role in determining levels of asymmetric arginine dimethylation. However, the mechanism underlying the regulation of PRMT-1 activity remains largely unknown. Here, we explored for transcription factors that induce the expression of PRMT-1 by an RNAi screen using transgenic C. elegans harbouring prmt-1 promoter upstream of gfp. Of 529 clones, we identify a GATA transcription factor elt-2 as a positive regulator of Pprmt-1:: gfp expression and show that elt-2 RNAi decreases endogenous PRMT-1 expression at mRNA and protein levels. Nevertheless, surprisingly arginine methylation levels are increased when elt-2 is silenced, implying that erythroid-like transcription factor (ELT)-2 may also have ability to inhibit methyltransferase activity of PRMT-1. Supporting this idea, GST pull-down and co-immunoprecipitation assays demonstrate the interaction between ELT-2 and PRMT-1. Furthermore, we find that ELT-2 interferes with PRMT-1-induced arginine methylation in a dose-dependent manner. Collectively, our results illustrate the two modes of PRMT-1 regulation, which could determine the levels of asymmetric arginine dimethylation in C. elegans.
Collapse
Affiliation(s)
- Sho Araoi
- Graduate School of Life and Environmental Sciences
| | | | | | | | - Keiko Hirota
- Faculty of Life and Environmental Sciences.,Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | |
Collapse
|
153
|
Li S, Ma YM, Zheng PS, Zhang P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:80. [PMID: 29636108 PMCID: PMC5894198 DOI: 10.1186/s13046-018-0744-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/25/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) is a member of the TGF-β superfamily, and evidence suggests that a substantial amount of GDF15 is secreted in various human cancers, such as ovarian cancer, prostate cancer, and breast cancer, among others. However, the function of GDF15 in cervical cancer has not yet been reported. METHODS Immunohistochemistry was used to detect GDF15 expression in normal cervix and in different cervical cancer lesions. Cell growth curves, MTT, tumor formation assays and flow cytometry were utilized to observe the effects of ectopic GDF15 expression on the proliferation and cell cycle of cervical cancer cells. Real-time PCR, western blotting and immunoprecipitation assays were conducted to measure the expression of genes related to the cell cycle and the PI3K/AKT and MAPK/ERK signaling pathways. A chromatin immunoprecipitation assay was performed to confirm whether C-myc bound to a specific region of the GDF15 promoter. Inhibitor treatment and immunoprecipitation assays were employed to identify the association between GDF15 and ErbB2. RESULTS GDF15 expression gradually increased during the progression of cervical carcinogenesis. GDF15 promoted cervical cancer cell proliferation via exogenous rhGDF15 treatment or the use of gene editing technology in vitro and in vivo and significantly accelerated the cell cycle transition from G0/G1 to S phase. The expression of p-ErbB2, p-AKT1, p-Erk1/2, CyclinD1 and CyclinE1 was up-regulated and the expression of p21 was down-regulated in GDF15-overexpressing and rhGDF15-treated cervical cancer cells. C-myc trans-activated GDF15 expression by binding to the E-box motifs in the promoter of GDF15 and contributed to the positive feedback of GDF15/C-myc/GDF15. Furthermore, GDF15 bound to ErbB2 in a protein complex in cervical cancer cells. CONCLUSIONS Our data demonstrated that GDF15 promoted the proliferation of cervical cancer cells via the up-regulation of CyclinD1 and CyclinE1 and the down-regulation of p21 through both the PI3K/AKT and MAPK/ERK signaling pathways in a complex with ErbB2.
Collapse
Affiliation(s)
- Shan Li
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China
| | - Yan-Min Ma
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, People's Republic of China.
| | - Ping Zhang
- Department of Reproductive Medicine, the First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
154
|
Tsitsipatis D, Gopal K, Steinbrenner H, Klotz LO. FOXO1 cysteine-612 mediates stimulatory effects of the coregulators CBP and PGC1α on FOXO1 basal transcriptional activity. Free Radic Biol Med 2018; 118:98-107. [PMID: 29496617 DOI: 10.1016/j.freeradbiomed.2018.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 11/15/2022]
Abstract
Hepatic production and release of metabolites, nutrients and micronutrient transporters is tightly regulated at the level of gene expression. In this regard, transcription factor FOXO1 modulates the expression of genes such as G6PC and SELENOP, encoding the catalytic subunit of glucose 6-phosphatase and the plasma selenium transporter selenoprotein P, respectively. Here, we analyzed the role of cysteine residues in FOXO1 in controlling its activity with respect to regulation of G6PC and SELENOP in HepG2 human hepatoma cells. None of the seven FOXO1 cysteines affected FOXO1 binding to DNA or its basal subcellular distribution. Whereas overexpression of wildtype FOXO1 caused a strong induction of both G6PC and SELENOP promoter activities and mRNA levels, the induction was lowered by approx. 50% if cysteine-deficient FOXO1 was overexpressed instead. Only the most C-terminal of the seven FOXO1 cysteines, Cys612, was required and sufficient to ensure full FOXO1 transactivation activity. Coexpression of FOXO1 coregulators, CBP or PGC1α, had a strong synergistic effect in stimulating G6PC promoter activity and expression, fully relying on the presence of FOXO1 Cys612. Similarly, a synergistic effect of FOXO1 and CBP was observed for SELENOP. In contrast, stimulation of SELENOP by PGC1α was independent of FOXO1-Cys612, due to the close proximity of a hepatocyte nuclear factor-4α binding site to the FOXO1 binding site within the SELENOP promoter, as demonstrated using mutant SELENOP promoter constructs. In summary, full basal FOXO1 transactivation activity relies on Cys612, which mediates synergistic effects of coregulators, CBP or PGC1α, on FOXO1 transcriptional activity. The extent of Cys612 contribution depends on the promoter context of FOXO1 target genes.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
155
|
Garcillán B, Figgett WA, Infantino S, Lim EX, Mackay F. Molecular control of B-cell homeostasis in health and malignancy. Immunol Cell Biol 2018; 96:453-462. [PMID: 29499091 DOI: 10.1111/imcb.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Altered B-cell homeostasis underlies a wide range of pathologies, from cancers to autoimmunity and immunodeficiency. The molecular safeguards against those disorders, which also allow effective immune responses, are therefore particularly critical. Here, we review recent findings detailing the fine control of B-cell homeostasis, during B-cell development, maturation in the periphery and during activation and differentiation into antibody-producing cells.
Collapse
Affiliation(s)
- Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - William A Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ee Xin Lim
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fabienne Mackay
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
156
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
157
|
Abstract
Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.
Collapse
Affiliation(s)
- Jiangying Kuang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Lei Chen
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Tang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
158
|
Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget 2018; 7:67532-67550. [PMID: 27556302 PMCID: PMC5341895 DOI: 10.18632/oncotarget.11376] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Protein arginine methylation is a common post-translational modification involved in numerous cellular processes including transcription, DNA repair, mRNA splicing and signal transduction. Currently, there are nine known members of the protein arginine methyltransferase (PRMT) family, but only one arginine demethylase has been identified, namely the Jumonji domain-containing 6 (JMJD6). Although its demethylase activity was initially challenged, its dual activity as an arginine demethylase and a lysine hydroxylase is now recognized. Interestingly, a growing number of substrates for arginine methylation and demethylation play key roles in tumorigenesis. Though alterations in the sequence of these enzymes have not been identified in cancer, their overexpression is associated with various cancers, suggesting that they could constitute targets for therapeutic strategies. In this review, we present the recent knowledge of the involvement of PRMTs and JMJD6 in tumorigenesis.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Biology, University of Southern California Norris Comprehensive Cancer Center, University of Southern California Los Angeles, Los Angeles, CA, USA.,Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Laura Corbo
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Université Lyon 1, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,Equipe Labellisée, La Ligue Contre le Cancer, 75013 Paris, France
| |
Collapse
|
159
|
Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene 2018; 648:97-105. [PMID: 29428128 DOI: 10.1016/j.gene.2018.01.051] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Fork head box O (FOXO) transcription factor is a key player in an evolutionarily conserved pathway. The mammalian FOXO family consists of FOXO1, 3, 4 and 6, are highly similar in their structure, function and regulation. To maintain optimum body function, the organisms have developed complex mechanisms for homeostasis. Importantly, it is well known that when these mechanisms dysregulate it results in the development of age-related disease. FOXO proteins are involved in a diverse cellular function and also have clinical significance including cell cycle arrest, cell differentiation, tumour suppression, DNA repair, longevity, diabetic complications, immunity, wound healing, regulation of metabolism and thus treatment of several types of diseases. By the combinations of post-translational modifications FOXO's serve as a 'molecular code' to sense external stimuli and recruit it as to specific regions of the genome and provide an integrated cellular response to changing physiological conditions. Akt/Protein kinase B a signaling pathway as a main regulator of FOXO to perform a diverse function in organisms. The present review summarizes the molecular and clinical aspects of FOXO transcription factor. And also elaborate the interaction of FOXO with the nucleosome remodelling complex to target genes, which is essential to cellular homeostasis.
Collapse
|
160
|
Abstract
The evolutionarily conserved FOXO family of transcription factors has emerged as a significant arbiter of neural cell fate and function in mammals. From the neural stem cell (NSC) state through mature neurons under both physiological and pathological conditions, they have been found to modulate neural cell survival, stress responses, lineage commitment, and neuronal signaling. Lineage-specific FOXO knockout mice have provided an invaluable tool for the dissection of FOXO biology in the nervous system. Within the NSC compartments of the brain, FOXOs are required for the maintenance of NSC quiescence and for the clearance of reactive oxygen species. Within mature neurons, FOXO transcriptional activity is essential for the prevention of age-dependent axonal degeneration. Acutely, FOXO3 has been found to cause axonal degeneration upon withdrawal of neurotrophic factors. In more active neural signaling, FOXO6 promotes increased dendritic spine density of hippocampal neurons and is required for the consolidation of memories. In addition to the central nervous system (CNS), FOXOs also influence the functionality of the peripheral nervous system (PNS). FOXO1 knockout within the PNS results in a reduction of sympathetic tone and decreased levels of brain-derived norepinephrine and lower energy expenditure. FOXO3 knockout mice have impaired hearing which may be due to defects in synapse localization within the ear. Given the scope of FOXO activities in both the CNS and PNS, it will be of interest to study FOXOs within the context of neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. From within the nervous system, FOXOs may also regulate important parameters such as whole-body metabolism, motor function, and catecholamine production, making FOXOs key players in physiologic homeostasis.
Collapse
Affiliation(s)
- Evan E Santo
- Weill Cornell Medicine, New York, NY, United States
| | - Jihye Paik
- Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
161
|
Ma J, Matkar S, He X, Hua X. FOXO family in regulating cancer and metabolism. Semin Cancer Biol 2018; 50:32-41. [PMID: 29410116 DOI: 10.1016/j.semcancer.2018.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
FOXO proteins are a sub-group of a superfamily of forkhead box (FOX)-containing transcription factors (TFs). FOXOs play an important role in regulating a plethora of biological activities ranging from development, cell signaling, and tumorigenesis to cell metabolism. Here we mainly focus on reviewing the role of FOXOs in regulating tumor and metabolism. Moreover, how crosstalk among various pathways influences the function of FOXOs will be reviewed. Further, the paradoxical role for FOXOs in controlling the fate of cancer and especially resistance/sensitivity of cancer to the class of drugs that target PI3K/AKT will also be reviewed. Finally, how FOXOs regulate crosstalk between common cancer pathways and cell metabolism pathways, and how these crosstalks affect the fate of the cancer will be discussed.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang 150040, China.
| | - Smita Matkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
162
|
Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol 2018; 50:65-76. [PMID: 29309929 DOI: 10.1016/j.semcancer.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Li Zhuang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
163
|
Bayen S, Saini S, Gaur P, Duraisamy AJ, Kumar Sharma A, Pal K, Vats P, Singh SB. PRMT1 promotes hyperglycemia in a FoxO1-dependent manner, affecting glucose metabolism, during hypobaric hypoxia exposure, in rat model. Endocrine 2018; 59:151-163. [PMID: 29128891 DOI: 10.1007/s12020-017-1463-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE High-altitude (HA) environment causes changes in cellular metabolism among unacclimatized humans. Previous studies have revealed that insulin-dependent activation of protein kinase B (Akt) regulates metabolic processes via discrete transcriptional effectors. Moreover, protein arginine methyltransferase (PRMT)1-dependent arginine modification of forkhead box other (FoxO)1 protein interferes with Akt-dependent phosphorylation. The present study was undertaken to test the involvement of PRMT1 on FoxO1 activation during hypobaric hypoxia (HH) exposure in rat model. METHODS Samples were obtained from normoxia control (NC) and HH-exposed (H) rats, subdivided according to the duration of HH exposure. To explore the specific role played by PRMT1 during HH exposure, samples from 1d pair-fed (PF) NC, 1d acute hypoxia-exposed (AH) placebo-treated, and 1d AH TC-E-5003-treated rats were investigated. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) was performed to determine expressions of glycolytic, gluconeogenic enzymes, and insulin response regulating genes. Immuno-blot and enzyme linked immunosorbent assay (ELISA) were used for insulin response regulating proteins. Nuclear translocation of FoxO1 was analyzed using deoxyribonucleic acid (DNA)-binding ELISA kit. RESULTS We observed HH-induced increase in glycolytic enzyme expressions in hepatic tissue unlike hypothalamic tissue. PRMT1 expression increased during HH exposure, causing insulin resistance and resulting increase in FoxO1 nuclear translocation, leading to hyperglycemia. Conversely, PRMT1 inhibitor treatment promoted inhibition of FoxO1 activity and increase in glucose uptake during HH exposure leading to reduction in blood-glucose and hepatic glycogen levels. CONCLUSIONS PRMT1 might have a potential importance as a therapeutic target for the treatment of HH-induced maladies.
Collapse
Affiliation(s)
- Susovon Bayen
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Supriya Saini
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Priya Gaur
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Arul Joseph Duraisamy
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Alpesh Kumar Sharma
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Karan Pal
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Praveen Vats
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Shashi Bala Singh
- Department of Applied Physiology, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
164
|
Wang C, Wang Q, Xu X, Xie B, Zhao Y, Li N, Cao X. The methyltransferase NSD3 promotes antiviral innate immunity via direct lysine methylation of IRF3. J Exp Med 2017; 214:3597-3610. [PMID: 29101251 PMCID: PMC5716042 DOI: 10.1084/jem.20170856] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
Lysine methylation is an important posttranslational modification, implicated in various biological pathological conditions. The transcription factor interferon regulatory factor 3 (IRF3) is essential for antiviral innate immunity, yet the mechanism for methylation control of IRF3 activation remains unclear. In this paper, we discovered monomethylation of IRF3 at K366 is critical for IRF3 transcription activity in antiviral innate immunity. By mass spectrometry analysis of IRF3-associated proteins, we identified nuclear receptor-binding SET domain 3 (NSD3) as the lysine methyltransferase that directly binds to the IRF3 C-terminal region through its PWWP1 domain and methylates IRF3 at K366 via its SET domain. Deficiency of NSD3 impairs the antiviral innate immune response in vivo. Mechanistically, NSD3 enhances the transcription activity of IRF3 dependent on K366 monomethylation, which maintains IRF3 phosphorylation by promoting IRF3 dissociation of protein phosphatase PP1cc and consequently promotes type I interferon production. Our study reveals a critical role of NSD3-mediated IRF3 methylation in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Qinlan Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Xu
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Xie
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuetao Cao
- Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
165
|
Zhang WY, Lu WC, Jiang H, Lv ZB, Xie YQ, Lian FL, Liang ZJ, Jiang YX, Wang DJ, Luo C, Jin J, Ye F. Discovery of alkyl bis(oxy)dibenzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Chem Biol Drug Des 2017; 90:1260-1270. [PMID: 28636189 DOI: 10.1111/cbdd.13047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/19/2017] [Accepted: 06/10/2017] [Indexed: 12/26/2022]
Abstract
Protein arginine methylation, a post-translational modification critical for a variety of biological processes, is catalyzed by protein arginine N-methyltransferases (PRMTs). In particular, PRMT1 is responsible for over 85% of the arginine methylation in mammalian cells. Dysregulation of PRMT1 is involved in diverse pathological diseases including cancers. However, most current PRMT1 inhibitors are lack of specificity, efficacy, and bioavailability. Herein, a series of alkyl bis(oxy)dibenzimidamide derivatives were identified as selective PRMT1 inhibitors. Among them, the most potent compound corresponds to hexamidine (IC50 = 5.9 ± 1.7 μm), which is an antimicrobial agent. The binding between hexamidine and PRMT1 was further validated by thermal shift assays and nuclear magnetic resonance (NMR) experiments. Molecular docking and NMR assays indicated that hexamidine occupied the substrate binding pocket. Furthermore, hexamidine effectively blocked cell proliferation in cancer cell lines related to PRMT1 overexpression. Taken together, this study has provided a druggable scaffold targeting PRMT1 as well as a new way to repurpose old drugs which is a complementary tool for the discovery of new lead compounds.
Collapse
Affiliation(s)
- Wei-Yao Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen-Chao Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Bing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi-Qian Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fu-Lin Lian
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhong-Jie Liang
- Center for Systems Biology, Soochow University, Jiangsu, China
| | - Yu-Xi Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Jin Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
166
|
Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochim Biophys Acta Rev Cancer 2017; 1868:341-358. [PMID: 28694093 PMCID: PMC5675793 DOI: 10.1016/j.bbcan.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease and accounts for majority of human dementia. The hyper-phosphorylated tau-mediated intracellular neurofibrillary tangle and amyloid β-mediated extracellular senile plaque are characterized as major pathological lesions of AD. Different from the dysregulated growth control and ample genetic mutations associated with human cancers, AD displays damage and death of brain neurons in the absence of genomic alterations. Although various biological processes predominately governing tumorigenesis such as inflammation, metabolic alteration, oxidative stress and insulin resistance have been associated with AD genesis, the mechanistic connection of these biological processes and signaling pathways including mTOR, MAPK, SIRT, HIF, and the FOXO pathway controlling aging and the pathological lesions of AD are not well recapitulated. Hence, we performed a thorough review by summarizing the physiological roles of these key cancer-related signaling pathways in AD pathogenesis, comprising of the crosstalk of these pathways with neurofibrillary tangle and senile plaque formation to impact AD phenotypes. Importantly, the pharmaceutical investigations of anti-aging and AD relevant medications have also been highlighted. In summary, in this review, we discuss the potential role that cancer-related signaling pathways may play in governing the pathogenesis of AD, as well as their potential as future targeted strategies to delay or prevent aging-related diseases and combating AD.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ji Cheng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
167
|
Ma M, Zhao X, Chen S, Zhao Y, yang L, Feng Y, Qin W, Li L, Jia C. Strategy Based on Deglycosylation, Multiprotease, and Hydrophilic Interaction Chromatography for Large-Scale Profiling of Protein Methylation. Anal Chem 2017; 89:12909-12917. [DOI: 10.1021/acs.analchem.7b03673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Ma
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyuan Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuo Chen
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yingyi Zhao
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lu yang
- Department
of Blood Transfusion, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Feng
- Beijing Hua LiShi Scientific Co. Ltd., Beijing 101300, China
| | - Weijie Qin
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lingjun Li
- School
of Life Sciences, Tianjin University, Tianjin 300072, China
- School
of Pharmacy and Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53705, United States
| | - Chenxi Jia
- National
Center for Protein Sciences-Beijing, Beijing Proteome Research Center,
State Key Laboratory of Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
168
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
169
|
Abstract
Forkhead box O (FOXO) transcription factors are central regulators of cellular homeostasis. FOXOs respond to a wide range of external stimuli, including growth factor signaling, oxidative stress, genotoxic stress, and nutrient deprivation. These signaling inputs regulate FOXOs through a number of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and methylation. Covalent modifications can affect localization, DNA binding, and interactions with other cofactors in the cell. FOXOs integrate the various modifications to regulate cell type-specific gene expression programs that are essential for metabolic homeostasis, redox balance, and the stress response. Together, these functions are critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis during development and to support healthy aging.
Collapse
|
170
|
Hirata Y, Katagiri K, Nagaoka K, Morishita T, Kudoh Y, Hatta T, Naguro I, Kano K, Udagawa T, Natsume T, Aoki J, Inada T, Noguchi T, Ichijo H, Matsuzawa A. TRIM48 Promotes ASK1 Activation and Cell Death through Ubiquitination-Dependent Degradation of the ASK1-Negative Regulator PRMT1. Cell Rep 2017; 21:2447-2457. [DOI: 10.1016/j.celrep.2017.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/05/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022] Open
|
171
|
Stouth DW, vanLieshout TL, Shen NY, Ljubicic V. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders. Front Physiol 2017; 8:870. [PMID: 29163212 PMCID: PMC5674940 DOI: 10.3389/fphys.2017.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD). PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS) suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs). This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nicole Y Shen
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
172
|
Stouth DW, Manta A, Ljubicic V. Protein arginine methyltransferase expression, localization, and activity during disuse-induced skeletal muscle plasticity. Am J Physiol Cell Physiol 2017; 314:C177-C190. [PMID: 29092819 DOI: 10.1152/ajpcell.00174.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein arginine methyltransferase 1 (PRMT1), PRMT4, and PRMT5 catalyze the methylation of arginine residues on target proteins. Previous work suggests that these enzymes regulate skeletal muscle plasticity. However, the function of PRMTs during disuse-induced muscle remodeling is unknown. The purpose of our study was to determine whether denervation-induced muscle disuse alters PRMT expression and activity in skeletal muscle, as well as to contextualize PRMT biology within the early disuse-evoked events that precede atrophy, which remain largely undefined. Mice were subjected to 6, 12, 24, 72, or 168 h of unilateral hindlimb denervation. Muscle mass decreased by ~30% after 72 or 168 h of neurogenic disuse, depending on muscle fiber type composition. The expression, localization, and activities of PRMT1, PRMT4, and PRMT5 were modified, exhibiting changes in gene expression and activity that were PRMT-specific. Rapid alterations in canonical muscle atrophy signaling such as forkhead box protein O1, muscle RING-finger protein-1, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) content, AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase, were observed before measurable decrements in muscle mass. Denervation-induced modifications in AMPK-PRMT1 and PGC-1α-PRMT1 binding revealed a novel, putative PRMT1-AMPK-PGC-1α signaling axis in skeletal muscle. Here, PGC-1α-PRMT1 binding was elevated after 6 h of disuse, whereas AMPK-PRMT1 interactions were reduced following 168 h of denervation. Our data suggest that PRMT biology is integral to the mechanisms that precede and initiate skeletal muscle atrophy during conditions of neurogenic disuse. This study furthers our understanding of the role of PRMTs in governing skeletal muscle plasticity.
Collapse
Affiliation(s)
- Derek W Stouth
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Alexander Manta
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
173
|
Infantino S, Light A, O'Donnell K, Bryant V, Avery DT, Elliott M, Tangye SG, Belz G, Mackay F, Richard S, Tarlinton D. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nat Commun 2017; 8:891. [PMID: 29026071 PMCID: PMC5638811 DOI: 10.1038/s41467-017-01009-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced. In vitro activation of Prmt1-deficient B cells with a variety of mitogens results in diminished proliferation, differentiation and survival, effects that are correlated with altered signal transduction from the B cell receptor. Thus PRMT1 activity in B cells is required for correct execution of multiple processes that in turn are necessary for humoral immunity. PRMT1 is an arginine methyltransferase involved in a variety of cell functions. Here the authors delete PRMT1 specifically in mature B cells to show the importance of arginine methylation for B cell proliferation, differentiation and survival, and thereby for humoral immunity.
Collapse
Affiliation(s)
- Simona Infantino
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia.
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kristy O'Donnell
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia
| | - Vanessa Bryant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, NSW, 2010, Australia
| | - Gabrielle Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stephane Richard
- Lady Davis Institute for Medical Research, McGill University, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada, H3T 1E2
| | - David Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, 3004, Australia.
| |
Collapse
|
174
|
Hirota K, Shigekawa C, Araoi S, Sha L, Inagawa T, Kanou A, Kako K, Daitoku H, Fukamizu A. Simultaneous ablation of prmt-1 and prmt-5 abolishes asymmetric and symmetric arginine dimethylations in Caenorhabditis elegans. J Biochem 2017; 161:521-527. [PMID: 28158808 DOI: 10.1093/jb/mvw101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to arginine residues and are classified into two types: type I producing asymmetric dimethylarginine (ADMA) and type II producing symmetric dimethylarginine (SDMA). PRMTs have been shown to regulate many cellular processes, including signal transduction, transcriptional regulation and RNA processing. Since the loss-of-function mutation of PRMT1 and PRMT5, each of which is the predominant type I and II, respectively, causes embryonic lethality in mice, their physiological significance at the whole-body level remains largely unknown. Here, we show the morphological and functional phenotypes of single or double null alleles of prmt-1 and prmt-5 in Caenorhabditis elegans. The prmt-1;prmt-5 double mutants are viable, and exhibit short body length and small brood size compared to N2 and each of the single mutants. The liquid chromatography-tandem mass spectrometry analysis demonstrated that the levels of ADMA and SDMA were abolished in the prmt-1;prmt-5 double mutants. Both prmt-1 and prmt-5 were required for resistance to heat and oxidative stresses, whereas prmt-5 is not involved in lifespan regulation even when prmt-1 is ablated. This mutant strain would be a useful model animal for investigating the role of asymmetric and symmetric arginine dimethylation in vivo.
Collapse
Affiliation(s)
- Keiko Hirota
- Ph.D. Program in Human Biology, School of Integrative and Global Majors.,Faculty of Life and Environmental Sciences
| | - Chihiro Shigekawa
- Graduate School of Comprehensive Human Sciences, Master's Program in Medical Sciences
| | - Sho Araoi
- Graduate School of Life and Environmental Sciences
| | - Liang Sha
- Ph.D. Program in Human Biology, School of Integrative and Global Majors
| | | | | | | | - Hiroaki Daitoku
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
175
|
Shukla S, Saxena S, Singh BK, Kakkar P. BH3-only protein BIM: An emerging target in chemotherapy. Eur J Cell Biol 2017; 96:728-738. [PMID: 29100606 DOI: 10.1016/j.ejcb.2017.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
BH3-only proteins constitute major proportion of pro-apoptotic members of B-cell lymphoma 2 (Bcl-2) family of apoptotic regulatory proteins and participate in embryonic development, tissue homeostasis and immunity. Absence of BH3-only proteins contributes to autoimmune disorders and tumorigenesis. Bim (Bcl-2 Interacting Mediator of cell death), most important member of BH3-only proteins, shares a BH3-only domain (9-16 aa) among 4 domains (BH1-BH4) of Bcl-2 family proteins and highly pro-apoptotic in nature. Bim initiates the intrinsic apoptotic pathway under both physiological and patho-physiological conditions. Reduction in Bim expression was found to be associated with tumor promotion and autoimmunity, while overexpression inhibited tumor growth and drug resistance as cancer cells suppress Bim expression and stability. Apart from its role in normal homeostasis, Bim has emerged as a central player in regulation of tumorigenesis, therefore gaining attention as a plausible target for chemotherapy. Regulation of Bim expression and stability is complicated and regulated at multiple levels viz. transcriptional, post-transcriptional, post-translational (preferably by phosphorylation and ubiquitination), epigenetic (by promoter acetylation or methylation) including miRNAs. Furthermore, control over Bim expression and stability may be exploited to enhance chemotherapeutic efficacy, overcome drug resistance and select anticancer drug regimen as various chemotherapeutic agents exploit Bim as an executioner of cell death. Owing to its potent anti-tumorigenic activity many BH3 mimetics e.g. ABT-737, ABT-263, obatoclax, AT-101and A-1210477 have been developed and entered in clinical trials. It is more likely that in near future strategies commanding Bim expression and stability ultimately lead to Bim based therapeutic regimen for cancer treatment.
Collapse
Affiliation(s)
- Shatrunajay Shukla
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Sugandh Saxena
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India
| | - Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, No 8 College Road, 169857, Singapore
| | - Poonam Kakkar
- Herbal Research Laboratory, Food Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR, Lucknow campus, India.
| |
Collapse
|
176
|
Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc Natl Acad Sci U S A 2017; 114:E7832-E7840. [PMID: 28847950 DOI: 10.1073/pnas.1711042114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) are well-known accelerants of aging, but, paradoxically, we show that physiological levels of ROS extend life span in pupae of the moth Helicoverpa armigera, resulting in the dormant state of diapause. This developmental switch appears to operate through a variant of the conventional insulin-signaling pathway, as evidenced by the facts that Akt, p-Akt, and PRMT1 are elevated by ROS, but not insulin, and that high levels of p-Akt fail to phosphorylate FoxO through PRMT1-mediated methylation. These results suggest a distinct signaling pathway culminating in the elevation of FoxO, which in turn promotes the extension of life span characteristic of diapause.
Collapse
|
177
|
Sun X, Chen WD, Wang YD. DAF-16/FOXO Transcription Factor in Aging and Longevity. Front Pharmacol 2017; 8:548. [PMID: 28878670 PMCID: PMC5572328 DOI: 10.3389/fphar.2017.00548] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023] Open
Abstract
Aging is associated with age-related diseases and an increase susceptibility of cancer. Dissecting the molecular mechanisms that underlie aging and longevity would contribute to implications for preventing and treating the age-dependent diseases or cancers. Multiple signaling pathways such as the insulin/IGF-1 signaling pathway, TOR signaling, AMPK pathway, JNK pathway and germline signaling have been found to be involved in aging and longevity. And DAF-16/FOXO, as a key transcription factor, could integrate different signals from these pathways to modulate aging, and longevity via shuttling from cytoplasm to nucleus. Hence, understanding how DAF-16/FOXO functions will be pivotal to illustrate the processes of aging and longevity. Here, we summarized how DAF-16/FOXO receives signals from these pathways to affect aging and longevity. We also briefly discussed the transcriptional regulation and posttranslational modifications of DAF-16/FOXO, its co-factors as well as its potential downstream targets participating in lifespan according to the published data in C. elegans and in mammals, and in most cases, we may focus on the studies in C. elegans which has been considered to be a very good animal model for longevity research.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Key Laboratory of Receptor-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptor-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing, China
| |
Collapse
|
178
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The impact of FOXO-1 to cardiac pathology in diabetes mellitus and diabetes-related metabolic abnormalities. Int J Cardiol 2017; 245:236-244. [PMID: 28781146 DOI: 10.1016/j.ijcard.2017.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
Diabetic heart pathology has a serious social impact due to high prevalence worldwide and significant mortality/invalidation of diabetic patients suffered from cardiomyopathy. The pathogenesis of diabetic and diabetes-related cardiomyopathy is associated with progressive loss and impairment of cardiac function due to adverse effects of metabolic, prooxidant, proinflammatory, and pro-apoptotic stress factors. In the adult heart, the transcriptional factor forkhead box-1 (FOXO-1) is involved in maintaining cardiomyocytes in the homeostatic state and induction of their adaptation to metabolic and pro-oxidant stress stimuli. Insulin inhibits cardiac FOXO-1 expression/activity through the IRS1/Akt signaling in order to prevent gluconeogenesis. In diabetes and insulin resistance, both insulin production and insulin-dependent signaling is weakened or absent. Indeed, FOXO-1 becomes overproduced/overactivated in response to stress stimuli. In diabetic cardiac tissue, FOXO-1 overactivity induces the metabolic switch from the glucose uptake to the predominant lipid uptake. FOXO-1 limits mitochondrial glucose oxidation by stimulation of pyruvate dehydrogenase kinase 4 (PDK4) and increases the lipid uptake through up-regulation of surface expression of CD36. In cardiac muscle cells, lipid accumulation leads to lipotoxicity via increased lipid oxidation, oxidative stress, and cardiomyocyte apoptosis. Indeed, cardiac FOXO-1 levels and activity should be strictly regulated. FOXO-1 deregulation (that is observed in the diabetic heart) causes detrimental effects that finally lead to heart failure.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
179
|
Muhammad AB, Xing B, Liu C, Naji A, Ma X, Simmons RA, Hua X. Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB. Am J Physiol Endocrinol Metab 2017; 313:E148-E166. [PMID: 28270438 PMCID: PMC5582886 DOI: 10.1152/ajpendo.00241.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022]
Abstract
Menin is a scaffold protein that interacts with several epigenetic mediators to regulate gene transcription, and suppresses pancreatic β-cell proliferation. Tamoxifen-inducible deletion of multiple endocrine neoplasia type 1 (MEN1) gene, which encodes the protein menin, increases β-cell mass in multiple murine models of diabetes and ameliorates diabetes. Glucagon-like-peptide-1 (GLP1) is another key physiological modulator of β-cell mass and glucose homeostasis. However, it is not clearly understood whether menin crosstalks with GLP1 signaling. Here, we show that menin and protein arginine methyltransferase 5 (PRMT5) suppress GLP1 receptor (GLP1R) transcript levels. Notably, a GLP1R agonist induces phosphorylation of forkhead box protein O1 (FOXO1) at S253, and the phosphorylation is mediated by PKA. Interestingly, menin suppresses GLP1-induced and PKA-mediated phosphorylation of both FOXO1 and cAMP response element binding protein (CREB), likely through a protein arginine methyltransferase. Menin-mediated suppression of FOXO1 and CREB phosphorylation increases FOXO1 levels and suppresses CREB target genes, respectively. A small-molecule menin inhibitor reverses menin-mediated suppression of both FOXO1 and CREB phosphorylation. In addition, ex vivo treatment of both mouse and human pancreatic islets with a menin inhibitor increases levels of proliferation marker Ki67. In conclusion, our results suggest that menin and PRMT5 suppress GLP1R transcript levels and PKA-mediated phosphorylation of FOXO1 and CREB, and a menin inhibitor may reverse this suppression to induce β-cell proliferation.
Collapse
Affiliation(s)
- Abdul Bari Muhammad
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bowen Xing
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Chengyang Liu
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong Ma
- Shenzen University School of Medicine, Institute of Diabetes Research, Shenzhen, Guangdong, China
| | - Rebecca A Simmons
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xianxin Hua
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
- Institute for Diabetes, Obesity, and Metabolism Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
180
|
Park MJ, Han HJ, Kim DI. Lipotoxicity-Induced PRMT1 Exacerbates Mesangial Cell Apoptosis via Endoplasmic Reticulum Stress. Int J Mol Sci 2017; 18:ijms18071421. [PMID: 28671608 PMCID: PMC5535913 DOI: 10.3390/ijms18071421] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Lipotoxicity-induced mesangial cell apoptosis is implicated in the exacerbation of diabetic nephropathy (DN). Protein arginine methyltransferases (PRMTs) have been known to regulate a variety of biological functions. Recently, it was reported that PRMT1 expression is increased in proximal tubule cells under diabetic conditions. However, their roles in mesangial cells remain unexplored. Thus, we examined the pathophysiological roles of PRMTs in mesangial cell apoptosis. Treatment with palmitate, which mimics cellular lipotoxicity, induced mesangial cell apoptosis via protein kinase RNA-like endoplasmic reticulum kinase (PERK) and ATF6-mediated endoplasmic reticulum (ER) stress signaling. Palmitate treatment increased PRMT1 expression and activity in mesangial cells as well. Moreover, palmitate-induced ER stress activation and mesangial cell apoptosis was diminished by PRMT1 knockdown. In the mice study, high fat diet-induced glomerular apoptosis was attenuated in PRMT1 haploinsufficient mice. Together, these results provide evidence that lipotoxicity-induced PRMT1 expression promotes ER stress-mediated mesangial cell apoptosis. Strategies to regulate PRMT1 expression or activity could be used to prevent the exacerbation of DN.
Collapse
Affiliation(s)
- Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
- BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea.
| | - Dong-Il Kim
- Life Science Institutes, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
181
|
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is often overexpressed in triple-negative breast cancer (TNBC). However, clinical studies have shown that therapies against EGFR are not effective in patients with TNBC. Recently, it has been reported that arginine 198/200 in EGFR extracellular domain is methylated by PRMT1 and that the methylation confers resistance to EGFR monoclonal antibody cetuximab in colorectal cancer cells. To explore a potential mechanism underlying intrinsic resistance to anti-EGFR therapy in TNBC, we investigated the role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 (468) TNBC cells. METHODS We knocked down PRMT1 in 468 cells by shRNA, and subjected the cell lysates to Western blot analysis to examine EGFR activation and its downstream molecules. We also evaluated cell proliferation and sphere formation of PRMT1-knockdown cells. Finally, we examined the effects of pan-PRMT inhibitor, AMI-1, on cetuximab by colony formation and soft agar assays. RESULTS EGFR methylation and activity was significantly reduced in PRMT1-knockdown cells compared to the parental cells. Knockdown of PRMT1 also reduced cell proliferation and sphere formation. Moreover, AMI-1 sensitized 468 cells to cetuximab. CONCLUSION The results indicate that PRMT1 is critical for EGFR activity in 468 cells. Our data also suggest that inhibition of PRMT1 sensitizes TNBC cells to cetuximab. Thus, inhibition of PRMT1 may be an effective therapeutic strategy to overcome intrinsic resistance to cetuximab in TNBC.
Collapse
|
182
|
Dolezal E, Infantino S, Drepper F, Börsig T, Singh A, Wossning T, Fiala GJ, Minguet S, Warscheid B, Tarlinton DM, Jumaa H, Medgyesi D, Reth M. The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. Nat Immunol 2017. [PMID: 28628091 DOI: 10.1038/ni.3774] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements. We found that PRMT1 methylated cyclin-dependent kinase 4 (CDK4), thereby preventing the formation of a CDK4-Cyclin-D3 complex and cell cycle progression. Moreover, BTG2 in concert with PRMT1 efficiently blocked the proliferation of BCR-ABL1-transformed pre-B cells in vitro and in vivo. Our results identify a key molecular mechanism by which the BTG2-PRMT1 module regulates pre-B cell differentiation and inhibits pre-B cell leukemogenesis.
Collapse
Affiliation(s)
- Elmar Dolezal
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM) Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Simona Infantino
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Friedel Drepper
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Department of Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Theresa Börsig
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Aparajita Singh
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Wossning
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gina J Fiala
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Susana Minguet
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Department of Biochemistry and Functional Proteomics, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Hassan Jumaa
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - David Medgyesi
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Department for Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
183
|
Clancy KW, Russell AM, Subramanian V, Nguyen H, Qian Y, Campbell RM, Thompson PR. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription. ACS Chem Biol 2017; 12:1691-1702. [PMID: 28485572 DOI: 10.1021/acschembio.7b00241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.
Collapse
Affiliation(s)
- Kathleen W. Clancy
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
- Department
of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Anna-Maria Russell
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Venkataraman Subramanian
- Department
of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Hannah Nguyen
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Robert M. Campbell
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, United States
| | - Paul R. Thompson
- Department
of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Program
in Chemical Biology, UMass Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
184
|
Jeong HC, Park SJ, Choi JJ, Go YH, Hong SK, Kwon OS, Shin JG, Kim RK, Lee MO, Lee SJ, Shin HD, Moon SH, Cha HJ. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis. Stem Cells 2017; 35:2037-2049. [DOI: 10.1002/stem.2642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ho-Chang Jeong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Jung Park
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Jong-Jin Choi
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Young-Hyun Go
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Soon-Ki Hong
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Ok-Seon Kwon
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| | - Joong-Gon Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Rae-Kwon Kim
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Mi-Ok Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejeon Republic of Korea
| | - Su-Jae Lee
- Department of Life Science; Research Institute for Natural Sciences, Hanyang University; Seoul Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
- Research Institute for Basic Science, Sogang University; Seoul Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine; School of Medicine, Konkuk University; Seoul Republic of Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University; Seoul Republic of Korea
| |
Collapse
|
185
|
Ishimaru T, Ishida J, Kim JD, Mizukami H, Hara K, Hashimoto M, Yagami KI, Sugiyama F, Fukamizu A. Angiodysplasia in embryo lacking protein arginine methyltransferase 1 in vascular endothelial cells. J Biochem 2017; 161:255-258. [PMID: 28003433 DOI: 10.1093/jb/mvw095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 01/29/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is involved in multiple cellular functions including proliferation and differentiation. Although PRMT1 is expressed in vascular endothelial cells (ECs), which are responsible for angiogenesis during embryonic development, its role has remained elusive. In this study, we generated endothelial-specific prmt1-knockout (Prmt1-ECKO) mice, and found that they died before embryonic day 15. The superficial temporal arteries in these embryos were poorly perfused with blood, and whole-mount 3D imaging revealed dilated and segmentalized luminal structures in Prmt1-ECKO fetuses in comparison with those of controls. Our findings provide evidence that PRMT1 is important for embryonic vascular formation.
Collapse
Affiliation(s)
- Tomohiro Ishimaru
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Junji Ishida
- Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jun-Dal Kim
- Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hayase Mizukami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kanako Hara
- Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Misuzu Hashimoto
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Life science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Master's Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
186
|
Abstract
The FOXO family of transcription factors plays a conserved role in longevity and tissue homeostasis across species. In the mammalian nervous system, emerging evidence has implicated FOXOs in cognitive performance, stem cell maintenance, regeneration, and protection against stress. Much of what we know about neuronal functions of FOXO emerged from recent studies in C. elegans. Similar to mammalian FOXO, the worm FOXO ortholog, called DAF-16, regulates learning and memory, regeneration, and stress resistance in neurons. Here, we discuss the current state of our knowledge of FOXO’s functions in neurons in mammals and invertebrates, and highlight areas where our understanding is limited. Defining the function of FOXO factors in the healthy, aged, and diseased brain may have important implications for improving healthspan and treating neurodegenerative disease.
Collapse
Affiliation(s)
- Sun Y Kim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
187
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
188
|
Nuñez de Villavicencio-Diaz T, Rabalski AJ, Litchfield DW. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals (Basel) 2017; 10:ph10010027. [PMID: 28273877 PMCID: PMC5374431 DOI: 10.3390/ph10010027] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Collapse
Affiliation(s)
| | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
189
|
Li X, Eberhardt A, Hansen JN, Bohmann D, Li H, Schor NF. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31:2327-2339. [PMID: 28213359 DOI: 10.1096/fj.201601050rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| | - Allison Eberhardt
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne N Hansen
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Haitao Li
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, and.,School of Medicine, Tsinghua University, Beijing, China
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| |
Collapse
|
190
|
Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM. Comparative Monomethylarginine Proteomics Suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a Significant Contributor to Arginine Monomethylation in Toxoplasma gondii. Mol Cell Proteomics 2017; 16:567-580. [PMID: 28143887 DOI: 10.1074/mcp.m117.066951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
Arginine methylation is a common posttranslational modification found on nuclear and cytoplasmic proteins that has roles in transcriptional regulation, RNA metabolism and DNA repair. The protozoan parasite Toxoplasma gondii has a complex life cycle requiring transcriptional plasticity and has unique transcriptional regulatory pathways. Arginine methylation may play an important part in transcriptional regulation and splicing biology in this organism. The T. gondii genome contains five putative protein arginine methyltransferases (PRMTs), of which PRMT1 is important for cell division and growth. In order to better understand the function(s) of the posttranslational modification monomethyl arginine (MMA) in T. gondii, we performed a proteomic analysis of MMA proteins using affinity purification employing anti-MMA specific antibodies followed by mass spectrometry. The arginine monomethylome of T. gondii contains a large number of RNA binding proteins and multiple ApiAP2 transcription factors, suggesting a role for arginine methylation in RNA biology and transcriptional regulation. Surprisingly, 90% of proteins that are arginine monomethylated were detected as being phosphorylated in a previous phosphoproteomics study which raises the possibility of interplay between MMA and phosphorylation in this organism. Supporting this, a number of kinases are also arginine methylated. Because PRMT1 is thought to be a major PRMT in T. gondii, an organism which lacks a MMA-specific PRMT, we applied comparative proteomics to understand how PRMT1 might contribute to the MMA proteome in T. gondii We identified numerous putative PRMT1 substrates, which include RNA binding proteins, transcriptional regulators (e.g. AP2 transcription factors), and kinases. Together, these data highlight the importance of MMA and PRMT1 in arginine methylation in T. gondii, as a potential regulator of a large number of processes including RNA biology and transcription.
Collapse
Affiliation(s)
- Rama R Yakubu
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Natalie C Silmon de Monerri
- §Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Edward Nieves
- ¶Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,‖Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York.,**Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Louis M Weiss
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
191
|
The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence. Sci Rep 2017; 7:41390. [PMID: 28120917 PMCID: PMC5264599 DOI: 10.1038/srep41390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase inhibitor p16INK4a (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferation and inducing apoptosis, while the Ser 140 mutation (p16S140A) exhibited the opposite alteration. We also demonstrated that H2O2 was able to induce the phosphorylation of p16, which facilitated the interaction between CDK4 (Cyclin-dependent protein kinase) and p16, in 293T (human emborynic kidney) cells. Furthermore, the elevated arginine methylation in p16S140A mutant and increased serine phosphorylation in p16R138K mutant suggest that a antagonizing mechanism coordinating Arg 138 methylation and Ser 140 phosphorylation to regulates p16 function as well as cellular apoptosis and senescence. These findings will therefore contribute to therapeutic treatment for p16-related gene therapy by providing theoretical and experimental evidence.
Collapse
|
192
|
Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA. Sci Rep 2017; 7:40531. [PMID: 28094290 PMCID: PMC5240148 DOI: 10.1038/srep40531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation.
Collapse
|
193
|
Peng C, Wong CC. The story of protein arginine methylation: characterization, regulation, and function. Expert Rev Proteomics 2017; 14:157-170. [PMID: 28043171 DOI: 10.1080/14789450.2017.1275573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Arginine methylation is an important post-translational modification (PTM) in cells, which is catalyzed by a group of protein arginine methyltransferases (PRMTs). It plays significant roles in diverse cellular processes and various diseases. Misregulation and aberrant expression of PRMTs can provide potential biomarkers and therapeutic targets for drug discovery. Areas covered: Herein, we review the arginine methylation literature and summarize the methodologies for the characterization of this modification, as well as describe the recent insights into arginine methyltransferases and their biological functions in diseases. Expert commentary: Benefits from the enzyme-based large-scale screening approach, the novel affinity enrichment strategies, arginine methylated protein family is the focus of attention. Although a number of arginine methyltransferases and related substrates are identified, the catalytic mechanism of different types of PRMTs remains unclear and few related demethylases are characterized. Novel functional studies continuously reveal the importance of this modification in the cell cycle and diseases. A deeper understanding of arginine methylated proteins, modification sites, and their mechanisms of regulation is needed to explore their role in life processes, especially their relationship with diseases, thus accelerating the generation of potent, selective, cell-penetrant drug candidates.
Collapse
Affiliation(s)
- Chao Peng
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| | - Catherine Cl Wong
- a National Center for Protein Science (Shanghai), Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , China.,b Shanghai Science Research Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
194
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Oleinikova GN, Lapikov IA, Tanyanskiy DA, Perevozchikov AP, Orlov SV. FOXO1 and LXRα downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones 2017; 22:123-134. [PMID: 27896567 PMCID: PMC5225066 DOI: 10.1007/s12192-016-0749-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species damage various cell components including DNA, proteins, and lipids, and these impairments could be a reason for severe human diseases including atherosclerosis. Forkhead box O1 (FOXO1), an important metabolic transcription factor, upregulates antioxidant and proapoptotic genes during oxidative stress. Apolipoprotein A-I (ApoA-I) forms high density lipoprotein (HDL) particles that are responsible for cholesterol transfer from peripheral tissues to liver for removal in bile in vertebrates. The main sources for plasma ApoA-I in mammals are liver and jejunum. Hepatic apoA-I transcription depends on a multitude of metabolic transcription factors. We demonstrate that ApoA-I synthesis and secretion are decreased during H2O2-induced oxidative stress in human hepatoma cell line HepG2. Here, we first show that FOXO1 binds to site B of apoA-I hepatic enhancer and downregulates apoA-I gene activity in HepG2 cells. Moreover, FOXO1 and LXRα transcription factors participate in H2O2-triggered downregulation of apoA-I gene together with Src, JNK, p38, and AMPK kinase cascades. Mutations of sites B or C as well as the administration of siRNAs against FOXO1 or LXRα to HepG2 cells abolished the hydrogen peroxide-mediated suppression of apoA-I gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Ivan A Lapikov
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
195
|
Jeffery N, Harries LW. β-cell differentiation status in type 2 diabetes. Diabetes Obes Metab 2016; 18:1167-1175. [PMID: 27550203 DOI: 10.1111/dom.12778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide and is characterized by chronic hyperglycaemia and insulin resistance, progressing to insufficient insulin production, as a result of β-cell failure. Over time, chronic hyperglycaemia can ultimately lead to loss of β-cell function, leaving patients insulin-dependent. Until recently the loss of β-cell mass seen in T2D was considered to be the result of increased rates of apoptosis; however, it has been proposed that apoptosis alone cannot account for the extent of β-cell mass loss seen in the disease, and that a loss of function may also occur as a result of changes in β-cell differentiation status. In the present review, we consider current knowledge of determinants of β-cell fate in the context of understanding its relevance to disease process in T2D, and also the impact of a diabetogenic environment (hyperglycaemia, hypoxia, inflammation and dyslipidaemia) on the expression of genes involved in maintenance of β-cell identity. We describe current knowledge of the impact of the diabetic microenvironment on gene regulatory processes such alternative splicing, the expression of disallowed genes and epigenetic modifications. Elucidating the molecular mechanisms that underpin changes to β-cell differentiation status and the concomitant β-cell failure offers potential treatment targets for the future management of patients with T2D.
Collapse
Affiliation(s)
- Nicola Jeffery
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| | - Lorna W Harries
- Department of Molecular Genetics, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Devon, UK
| |
Collapse
|
196
|
Wang Z, Yu T, Huang P. Post-translational modifications of FOXO family proteins (Review). Mol Med Rep 2016; 14:4931-4941. [PMID: 27779663 DOI: 10.3892/mmr.2016.5867] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/21/2016] [Indexed: 12/30/2022] Open
Abstract
The Forkhead box O (FOXO) protein family is predominantly involved in apoptosis, oxidative stress, DNA damage/repair, tumor angiogenesis, glycometabolism, regulating life span and other important biological processes. Its activity is affected by a variety of posttranslational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, methylation and glycosylation. When cells are subjected to different environments, the corresponding PTMs act on the FOXO protein family, to change transcriptional activity or subcellular localization, and the expression of downstream target genes, will ultimately affect the biological behavior of the cells. In this review, we will discuss the biological characteristics of FOXO protein PTMs.
Collapse
Affiliation(s)
- Ziyao Wang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| | - Tinghe Yu
- Chongqing Key Medical Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
197
|
Liu X, Cai X, Zhang D, Xu C, Xiao W. Zebrafish foxo3b Negatively Regulates Antiviral Response through Suppressing the Transactivity of irf3 and irf7. THE JOURNAL OF IMMUNOLOGY 2016; 197:4736-4749. [PMID: 27815423 DOI: 10.4049/jimmunol.1601187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
Forkhead box O (FOXO)3, a member of the FOXO family of transcription factors, plays key roles in various cellular processes, including development, longevity, reproduction, and metabolism. Recently, FOXO3 has also been shown to be involved in modulating the immune response. However, how FOXO3 regulates immunity and the underlying mechanisms are still largely unknown. In this study, we show that zebrafish (Danio rerio) foxo3b, an ortholog of mammalian FOXO3, is induced by polyinosinic-polycytidylic acid stimulation and spring viremia of carp virus (SVCV) infection. We found that foxo3b interacted with irf3 and irf7 to inhibit ifr3/irf7 transcriptional activity, thus resulting in suppression of SVCV or polyinosinic-polycytidylic acid-induced IFN activation. By suppressing expression of key antiviral genes, foxo3b negatively regulated the cellular antiviral response. Furthermore, upon SVCV infection, the expression of the key antiviral genes was significantly enhanced in foxo3b-null zebrafish larvae compared with wild-type larvae. Additionally, the replication of SVCV was inhibited in foxo3b-null zebrafish larvae, leading to a higher survival rate. Our findings suggest that by suppressing irf3/irf7 activity, zebrafish foxo3b negatively regulates the antiviral response, implicating the vital role of the FOXO gene family in innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Xiaolian Cai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Dawei Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Chenxi Xu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and
| | - Wuhan Xiao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China; and .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| |
Collapse
|
198
|
The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells. Cancer Lett 2016; 382:147-156. [PMID: 27609066 DOI: 10.1016/j.canlet.2016.08.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/05/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) as an oncoprotein plays crucial roles in the development of cancer, involving glucose metabolism reprogramming. In this study, we are interested in whether the oncoprotein HBXIP is involved in the modulation of gluconeogenesis in liver cancer. Here, we showed that the expression level of phosphoenolpyruvate carboxykinase (PCK1), a key enzyme of gluconeogenesis, was lower in clinical hepatocellular carcinoma (HCC) tissues than that in normal tissues. Mechanistically, HBXIP inhibited the expression of PCK1 through down-regulating transcription factor FOXO1 in hepatoma cells, and up-regulated miR-135a targeting the 3'UTR of FOXO1 mRNA in the cells. In addition, HBXIP increased the phosphorylation levels of FOXO1 protein by activating PI3K/Akt pathway, leading to the export of FOXO1 from nucleus to cytoplasm. Strikingly, over-expression of PCK1 could abolish the HBXIP-promoted growth of hepatoma cells in vitro and in vivo. Thus, we conclude that the oncoprotein HBXIP is able to depress the gluconeogenesis through suppressing PCK1 to promote hepatocarcinogenesis, involving miR-135a/FOXO1 axis and PI3K/Akt/p-FOXO1 pathway. Our finding provides new insights into the mechanism by which oncoprotein HBXIP modulates glucose metabolism reprogramming in HCC.
Collapse
|
199
|
Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 2016; 9:rs9. [DOI: 10.1126/scisignal.aaf7329] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
200
|
Zhang B, Dong S, Zhu R, Hu C, Hou J, Li Y, Zhao Q, Shao X, Bu Q, Li H, Wu Y, Cen X, Zhao Y. Targeting protein arginine methyltransferase 5 inhibits colorectal cancer growth by decreasing arginine methylation of eIF4E and FGFR3. Oncotarget 2016; 6:22799-811. [PMID: 26078354 PMCID: PMC4673200 DOI: 10.18632/oncotarget.4332] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/25/2015] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) plays critical roles in cancer. PRMT5 has been implicated in several types of tumors. However, the role of PRMT5 in cancer development remains to be fully elucidated. Here, we provide evidence that PRMT5 is overexpressed in colorectal cancer (CRC) cells and patient-derived primary tumors, correlated with increased cell growth and decreased overall patient survival. Arginine methyltransferase inhibitor 1 (AMI-1)strongly inhibited tumor growth, increased the ratio of Bax/Bcl-2, and induced apoptosis in mouse CRC xenograt model. AMI-1 also induced apoptosis and decreased the migratory activity in several CRC cells. In CRC xenografts AMI-1 significantly decreased symmetric dimethylation of histone 4 (H4R3me2s), a histone mark of type II PRMT5, but not the expression of H4R3me2a, a histone mark of type I PRMTs. These results suggest that the inhibition of PRMT5 contributes to the antitumor efficacy of AMI-1. Chromatin immunoprecipitation (ChIP) identified FGFR3 and eIF4E as two key genes regulated by PRMT5. PRMT5 knockdown reduced the levels of H4R3me2s and H3R8me2s methylation on FGFR3 and eIF4E promoters, leading to decreased expressions of FGFR3 and eIF4E. Collectively, our findings provide new evidence that PRMT5 plays an important role in CRC pathogenesis through epigenetically regulating arginine methylation of oncogenes such as eIF4E and FGFR3.
Collapse
Affiliation(s)
- Baolai Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruiming Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chunyan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xue Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qian Bu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hongyu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|