151
|
Saera-Vila A, Louie KW, Sha C, Kelly RM, Kish PE, Kahana A. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors. PLoS One 2018; 13:e0192214. [PMID: 29415074 PMCID: PMC5802911 DOI: 10.1371/journal.pone.0192214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.
Collapse
Affiliation(s)
- Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ke’ale W. Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cuilee Sha
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan M. Kelly
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
152
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
153
|
Liu H, Pang M, Yu X, Zhou Y, Tong J, Fu B. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix). DNA Res 2018; 25:4791395. [PMID: 29315393 PMCID: PMC6014435 DOI: 10.1093/dnares/dsx054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Sex-specific markers are powerful tools for identifying sex-determination system in various animals. Bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) are two of the most important edible fish in Asia, which have a long juvenility period that can lasts for 4-5 years. In this study, we found one sex-specific marker by next-generation sequencing together with bioinformatics analysis in bighead carp. The male-specific markers were used to perform molecular sexing in the progenies of artificial gynogenetic diploids and found all progenies (n = 160) were females. Meanwhile, around 1 : 1 sex ratio was observed in a total of 579 juvenile offspring from three other families. To further extend the male-specific region, we performed genome walking and got a male-specific sequence of 8,661 bp. Five pairs of primers were designed and could be used to efficiently distinguish males from females in bighead carp and silver carp. The development of these male-specific markers and results of their molecular sexing in different populations provide strong evidence for a sex determination system of female homogametry or male heterogametry (XX/XY) in bighead carp and silver carp. To the best of our knowledge, this is the first report of effective sex-specific markers in these two large carp species.
Collapse
Affiliation(s)
- Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
154
|
Targeted deletion of the zebrafish actin-bundling protein L-plastin (lcp1). PLoS One 2018; 13:e0190353. [PMID: 29293625 PMCID: PMC5749806 DOI: 10.1371/journal.pone.0190353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023] Open
Abstract
Regulation of the cytoskeleton is essential for cell migration in health and disease. Lymphocyte cytosolic protein 1 (lcp1, also called L-plastin) is a hematopoietic-specific actin-bundling protein that is highly conserved in zebrafish, mice and humans. In addition, L-plastin expression is documented as both a genetic marker and a cellular mechanism contributing to the invasiveness of tumors and transformed cell lines. Despite L-plastin’s role in both immunity and cancer, in zebrafish there are no direct studies of its function, and no mutant, knockout or reporter lines available. Using CRISPR-Cas9 genome editing, we generated null alleles of zebrafish lcp1 and examined the phenotypes of these fish throughout the life cycle. Our editing strategy used gRNA to target the second exon of lcp1, producing F0 mosaic fish that were outcrossed to wild types to confirm germline transmission. F1 heterozygotes were then sequenced to identify three unique null alleles, here called ‘Charlie’, ‘Foxtrot’ and ‘Lima’. In silico, each allele truncates the endogenous protein to less than 5% normal size and removes both essential actin-binding domains (ABD1 and ABD2). Although none of the null lines express detectable LCP1 protein, homozygous mutant zebrafish (-/-) can develop and reproduce normally, a finding consistent with that of the L-plastin null mouse (LPL -/-). However, such mice do have a profound immune defect when challenged by lung bacteria. Interestingly, we observed reduced long-term survival of zebrafish lcp1 -/- homozygotes (~30% below the expected numbers) in all three of our knockout lines, with greatest mortality corresponding to the period (4–6 weeks post-fertilization) when the innate immune system is functional, but the adaptive immune system is not yet mature. This suggests that null zebrafish may have reduced capacity to combat opportunistic infections, which are more easily transmissible in the aquatic environment. Overall, our novel mutant lines establish a sound genetic model and an enhanced platform for further studies of L-plastin gene function in hematopoiesis and cancer.
Collapse
|
155
|
Xie X, Chen M, Zhu A. Identification and characterization of two selenium-dependent glutathione peroxidase 1 isoforms from Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2017; 71:411-422. [PMID: 28964863 DOI: 10.1016/j.fsi.2017.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Glutathione peroxidases, a vital family of antioxidant enzymes in oxybiotic organisms, are involved in anti-pathogen immune response. In this study, two complete selenium-dependent glutathione peroxidase 1 cDNAs (designated as LcGPx1a and LcGPx1b) were obtained from the large yellow croaker Larimichthys crocea by rapid amplification of cDNA ends. The full-length sequence of LcGPx1a was 917 bp with a 5'-untranslated region (UTR) of 52 bp, a 3'-UTR of 289 bp, and an open reading frame of 576 bp encoding 191 amino acid (aa) polypeptides. The cDNA of LcGPx1b was composed of 884 bp with a 5'-UTR of 59 bp, a 3'-UTR of 258 bp, and an open reading frame of 567 bp encoding 188 aa polypeptides. The conserved selenocysteine insertion sequence was detected in the 3'-UTR of both isoforms, which can classify types I and II. Protein sequence analysis revealed that both isoforms included a selenocysteine encoded by an opal codon (TGA) and formed the functioning tetrad site with glutamine, tryptophan, and asparagine. Three conservative motifs, including one active site motif ("GKVVLIENVASLUGTT") and two signature site motifs ("LVILGVPCNQFGHQENC" and "V(A/S)WNFEKFLI"), were conserved both in sequence and location. Multiple alignments revealed that they exhibited a high level of identities with GPx1 from other organisms, especially in the abovementioned conserved amino acid sequence motifs. Tissue expression analysis indicated that LcGPx1a and LcGPx1b had a wide distribution in nine tissues with various abundances. The transcript level of LcGPx1a was not significantly different among the nine tissues, whereas that of LcGPx1b was higher in the kidney and head kidney than in the other tissues. After Vibrio parahaemolyticus stimulation, the expression levels of LcGPx1a and LcGPx1b were unanimously altered in the liver, spleen, kidney, and head kidney but with different magnitudes and response time. LcGPx1a and LcGPx1b showed distinct expression trends in the liver, where LcGPx1b was induced and LcGPx1a was depressed in response to pathogen infection. These results indicate that LcGPx1a and LcGPx1b display functional diversities and play crucial roles in mediating the immune response of fish.
Collapse
Affiliation(s)
- Xiaoze Xie
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mengnan Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
156
|
Basta HA, Buzak AJ, McClure MA. Identification of Novel Retroid Agents in Danio rerio, Oryzias latipes, Gasterosteus aculeatus and Tetraodon nigroviridis. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Retroid agents are genomes that encode a reverse transcriptase (RT) and replicate or transpose by way of an RNA intermediate. The Genome Parsing Suite (GPS) is software created to identify and characterize Retroid agents in any genome database (McClure et al. 2005). The detailed analysis of all Retroid agents found by the GPS in Danio rerio (zebrafish), Oryzias latipes (medaka), Gasterosteus aculeatus (stickleback) and Tetraodon nigroviridis (spotted green pufferfish) reveals extensive Retroid agent diversity in the compact genomes of all four fish. Novel Retroid agents were identified by the GPS software: the telomerase reverse transcriptase (TERT) in O. latipes, G aculeatus and T. nigroviridis and a potential TERT in D. rerio, a retrotransposon in D. rerio, and multiple lineages of endogenous retroviruses (ERVs) in D. rerio, O. latipes and G aculeatus.
Collapse
Affiliation(s)
- Holly A. Basta
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| | - Alex J. Buzak
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| | - Marcella A. McClure
- Department of Microbiology and the Center for Computational Biology, Montana State University at Bozeman, 109 Lewis Hall, Bozeman, MT 59717, U.S.A
| |
Collapse
|
157
|
Chalopin D, Volff JN. Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:629-637. [PMID: 28921831 DOI: 10.1002/jez.b.22761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022]
Abstract
Teleost fish have been shown to contain many superfamilies of transposable elements (TEs) that are absent from most tetrapod genomes. Since theories predict an increase in TE activity following polyploidization, such diversity might be linked to the 3R whole-genome duplication that occurred approximately 300 million years ago before the teleost radiation. To test this hypothesis, we have analyzed the genome of the spotted gar Lepisosteus oculatus, which diverged from the teleost lineage before the 3R duplication. Our results indicate that TE diversity and copy numbers are similar in gar and teleost genomes, suggesting that TE diversity was ancestral and not linked to the 3R whole-genome duplication. We propose that about 25 distinct superfamilies of TEs were present in the last ancestor of gars and teleost fish about 300 million years ago in the ray-finned fish lineage.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
158
|
Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. PLoS One 2017; 12:e0180936. [PMID: 28738066 PMCID: PMC5524304 DOI: 10.1371/journal.pone.0180936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/24/2017] [Indexed: 01/11/2023] Open
Abstract
It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts.
Collapse
|
159
|
Firmino J, Carballo C, Armesto P, Campinho MA, Power DM, Manchado M. Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis. BMC DEVELOPMENTAL BIOLOGY 2017; 17:11. [PMID: 28716037 PMCID: PMC5513168 DOI: 10.1186/s12861-017-0154-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Background The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2′-deoxycytidine) and temperature was evaluated. Results Five paralog genes of dnmt3, namely dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb.1 and dnmt3bb.2 and one gene for dnmt1 were identified. Phylogenetic analysis revealed that the dnmt gene family was highly conserved in teleosts and three fish-specific genes, dnmt3aa, dnmt3ba and dnmt3bb.2 have evolved. The spatio-temporal expression patterns of four dnmts (dnmt1, dnmt3aa, dnmt3ab and dnmt3bb.1) were different in early larval stages although all of them reduced expression with the age and were detected in neural organs and dnmt3aa appeared specific to somites. In juveniles, the four dnmt genes were expressed in brain and hematopoietic tissues such as kidney, spleen and gills. Treatment of sole embryos with 5-aza-2′-deoxycytidine down-regulated dntm1 and up-regulated dntm3aa. Moreover, in lecithotrophic larval stages, dnmt3aa and dnmt3ab were temperature sensitive and their expression was higher in larvae incubated at 16 °C relative to 20 °C. Conclusion Five dnmt3 and one dnmt1 paralog were identified in sole and their distinct developmental and tissue-specific expression patterns indicate that they may have different roles during development. The inhibitor 5-aza-2′-deoxycytidine modified the transcript abundance of dntm1 and dntm3aa in embryos, which suggests that a regulatory feedback mechanism exists for these genes. The impact of thermal regime on expression levels of dnmt3aa and dnmt3ab in lecithotrophic larval stages suggests that these paralogs might be involved in thermal programing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0154-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joana Firmino
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.,Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Carlos Carballo
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Paula Armesto
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Marco A Campinho
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Molecular Endocrinology Group, Marine Science Centre (CCMAR), Universidade do Algarve, 8005-139, Faro, Portugal
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
160
|
Differential chromosomal organization between Saguinus midas and Saguinus bicolor with accumulation of differences the repetitive sequence DNA. Genetica 2017. [PMID: 28634866 DOI: 10.1007/s10709-017-9971-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Saguinus is the largest and most complex genus of the subfamily Callitrichinae, with 23 species distributed from the south of Central America to the north of South America with Saguinus midas having the largest geographical distribution while Saguinus bicolor has a very restricted one, affected by the population expansion in the state of Amazonas. Considering the phylogenetic proximity of the two species along with evidence on the existence of hybrids between them, as well as cytogenetic studies on Saguinus describing a conserved karyotypic macrostructure, we carried out a physical mapping of DNA repeated sequences in the mitotic chromosome of both species, since these sequences are less susceptible to evolutionary pressure and possibly perform an important function in speciation. Both species presented 2n = 46 chromosomes; in S. midas, chromosome Y is the smallest. Multiple ribosomal sites occur in both species, but chromosome pairs three and four may be regarded as markers that differ the species when subjected to G banding and distribution of retroelement LINE 1, suggesting that it may be cytogenetic marker in which it can contribute to identification of first generation hybrids in contact zone. Saguinus bicolor also presented differences in the LINE 1 distribution pattern for sexual chromosome X in individuals from different urban fragments, probably due to geographical isolation. In this context, cytogenetic analyses reveal a differential genomic organization pattern between species S. midas and S. bicolor, in addition to indicating that individuals from different urban fragments have been accumulating differences because of the isolation between them.
Collapse
|
161
|
CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol 2017; 428:63-73. [PMID: 28527702 DOI: 10.1016/j.ydbio.2017.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/06/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Wilms tumor 1 (Wt1) is an essential factor for urogenital system development. Teleosts have two wt1s, named as wt1a and wt1b. In this study, the expression pattern of wt1a and wt1b and their functions on the urogenital system were analyzed by in situ hybridization and CRISPR/Cas9. wt1a was found to be expressed in the glomerulus at 3 dah (days after hatching), earlier than wt1b. wt1a and wt1b were simultaneously expressed in the somatic cells of gonads at 3 dah, while their cell locations were similar, but not identical in adult fish gonads. The wt1a-/- fish displayed pericardial edema and yolk sac edema at 3 dah and subsequently expanded as general body edema at 6 dah, failed to develop glomerulus and died during 6-10 dah, whereas the wt1b-/- fish were phenotypically normal. Immunohistochemical analyses revealed that the germ cell marker Vasa was expressed, while somatic cell genes Cyp19a1a, Amh, Gsdf and Dmrt1 were not expressed in the wt1a-/- gonads at 6 dah. The sex phenotypes of XX and XY in the wt1b-/- fish were not affected. Real-time PCR revealed that the ovarian cyp19a1a expression was up-regulated in XX wt1b-/- fish, compared with XX control at 90 dah. Serum estradiol-17β level was also up-regulated in XX wt1b-/- fish at 90 and 180 dah. The XY wt1b-/- fish had normal serum estradiol-17β and 11-ketotestosterone levels and remained fertile. These results suggest that Wt1a and Wt1b have different functions in the kidneys and gonads of tilapia.
Collapse
|
162
|
Alves RN, Cardoso JCR, Harboe T, Martins RST, Manchado M, Norberg B, Power DM. Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis. Gen Comp Endocrinol 2017; 246:279-293. [PMID: 28062304 DOI: 10.1016/j.ygcen.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs.
Collapse
Affiliation(s)
- R N Alves
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - J C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - T Harboe
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - B Norberg
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - D M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
163
|
Solbakken MH, Voje KL, Jakobsen KS, Jentoft S. Linking species habitat and past palaeoclimatic events to evolution of the teleost innate immune system. Proc Biol Sci 2017; 284:20162810. [PMID: 28446692 PMCID: PMC5413918 DOI: 10.1098/rspb.2016.2810] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Host-intrinsic factors as well as environmental changes are known to be strong evolutionary drivers defining the genetic foundation of immunity. Using a novel set of teleost genomes and a time-calibrated phylogeny, we here investigate the family of Toll-like receptor (TLR) genes and address the underlying evolutionary processes shaping the diversity of the first-line defence. Our findings reveal remarkable flexibility within the evolutionary design of teleost innate immunity characterized by prominent TLR gene losses and expansions. In the order of Gadiformes, expansions correlate with the loss of major histocompatibility complex class II (MHCII) and diversifying selection analyses support that this has fostered new immunological innovations in TLRs within this lineage. In teleosts overall, TLRs expansions correlate with species latitudinal distributions and maximum depth. By contrast, lineage-specific gene losses overlap with well-described changes in palaeoclimate (global ocean anoxia) and past Atlantic Ocean geography. In conclusion, we suggest that the evolvability of the teleost immune system has most likely played a prominent role in the survival and successful radiation of this lineage.
Collapse
Affiliation(s)
- Monica Hongrø Solbakken
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Kjetil Lysne Voje
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Kjetill Sigurd Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
164
|
Laurent S, Salamin N, Robinson-Rechavi M. No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS One 2017; 12:e0176384. [PMID: 28426792 PMCID: PMC5398669 DOI: 10.1371/journal.pone.0176384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The short and long term effects of polyploidization on the evolutionary fate of lineages is still unclear despite much interest. First recognized in land plants, it has become clear that polyploidization is widespread in eukaryotes, notably at the origin of vertebrates and teleost fishes. Many hypotheses have been proposed to link the species richness of lineages and whole genome duplications. For instance, the radiation time lag model suggests that paleopolyploidy would favour the apparition of new phenotypic traits, although the radiation of the lineage would not occur before a later dispersion event. Some results indicate that this model may be observed during land plant evolution. In this work, we test predictions of the radiation time lag model using both fossil data and molecular phylogenies in ancient and more recent teleost whole genome duplications. We fail to find any evidence of delayed increase of the species number after any of these events and conclude that paleopolyploidization still remains to be unambiguously linked to taxonomic diversity in teleosts.
Collapse
Affiliation(s)
- Sacha Laurent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
165
|
Pankova MV, Kukhlevsky AD, Brykov VA. Fish growth hormone genes: Divergence of coding sequences in salmonid fishes. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795416100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
166
|
Dynamics of miRNA transcriptome during gonadal development of zebrafish. Sci Rep 2017; 7:43850. [PMID: 28262836 PMCID: PMC5338332 DOI: 10.1038/srep43850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/28/2022] Open
Abstract
Studies in non-teleost vertebrates have found microRNAs (miRNAs) to be essential for proper gonadal development. However, comparatively little is known about their role during gonadal development in teleost fishes. So far in zebrafish, a model teleost, transcript profiling throughout gonadal development has not been established because of a tiny size of an organ in juvenile stages and its poor distinguishability from surrounding tissues. We performed small RNA sequencing on isolated gonads of See-Thru-Gonad line, from the undifferentiated state at 3 weeks post fertilization (wpf) to fully mature adults at 24 wpf. We identified 520 gonadal mature miRNAs; 111 of them had significant changes in abundance over time, while 50 miRNAs were either testis- or ovary-enriched significantly in at least one developmental stage. We characterized patterns of miRNA abundance over time including isomiR variants. We identified putative germline versus gonadal somatic miRNAs through differential small RNA sequencing of isolated gametes versus the whole gonads. This report is the most comprehensive analysis of the miRNA repertoire in zebrafish gonads during the sexual development to date and provides an important database from which functional studies can be performed.
Collapse
|
167
|
Li M, Wang D. Gene editing nuclease and its application in tilapia. Sci Bull (Beijing) 2017; 62:165-173. [PMID: 36659401 DOI: 10.1016/j.scib.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Gene editing nucleases including zinc-finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system (CRISPR/Cas9) provide powerful tools that improve our ability to understand the physiological processes and their underlying mechanisms. To date, these approaches have already been widely used to generate knockout and knockin models in a large number of species. Fishes comprise nearly half of extant vertebrate species and provide excellent models for studying many aspects of biology. In this review, we present an overview of recent advances in the use of gene editing nucleases for studies of fish species. We focus particularly on the use of TALENs and CRISPR/Cas9 genome editing for studying sex determination in tilapia.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
168
|
Majtánová Z, Symonová R, Arias-Rodriguez L, Sallan L, Ráb P. "Holostei versus Halecostomi" Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:620-628. [PMID: 28074622 DOI: 10.1002/jez.b.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Bowfin belongs to an ancient lineage of nonteleost ray-finned fishes (actinopterygians) and is the only extant survivor of a once diverged group, the Halecomorphi or Amiiformes. Owing to the scarcity of extant nonteleost ray-finned lineages, also referred as "living fossils," their phylogenetic interrelationships have been the target of multiple hypotheses concerning their sister group relationships. Molecular and morphological data sets have produced controversial results; bowfin is considered as either the sister group to genome-duplicated teleosts (together forming the group of Halecostomi) or to gars (Lepisosteiformes; together forming the group of Holostei). However, any detailed cytogenetic analysis of bowfin chromosomes has never been performed to address this issue. Here we examined bowfin chromosomes by conventional (Giemsa-staining, C-banding, base-specific fluorescence and silver staining) and molecular (FISH with rDNA probes) cytogenetic protocols. We identified diploid chromosome number 2n = 46 with a middle-sized submetacentric chromosome pair as the major ribosomal DNA-bearing (45S rDNA), GC-positive and silver-positive element. The minor rDNA (5S rDNA) sites were localized in the pericentromeric region of one middle-sized acrocentric chromosome pair. Comparison with available cytogenetic data of other nonteleost actinopterygians (bichirs, sturgeons, gars) and teleost species including representative of basally branching lineages showed bowfin chromosomal characteristics more similar to the teleost type than to any other nonteleosts. Particularly striking differences were identified between bowfin and gars, the latter of which were found to mimic mammalian AT/GC genomic organisation. Such conclusion however contradicts the most recent phylogenomic results and raises the question what states are ancestral and what are derived.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Lauren Sallan
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| |
Collapse
|
169
|
Diversity, distribution, and significance of transposable elements in the genome of the only selfing hermaphroditic vertebrate Kryptolebias marmoratus. Sci Rep 2017; 7:40121. [PMID: 28071692 PMCID: PMC5223126 DOI: 10.1038/srep40121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022] Open
Abstract
The Kryptolebias marmoratus is unique because it is the only self-fertilizing hermaphroditic vertebrate, known to date. It primarily reproduces by internal self-fertilization in a mixed ovary/testis gonad. Here, we report on a high-quality genome assembly for the K. marmoratus South Korea (SK) strain highlighting the diversity and distribution of transposable elements (TEs). We find that K. marmoratus genome maintains number and composition of TEs. This can be an important genomic attribute promoting genome recombination in this selfing fish, while, in addition to a mixed mating strategy, it may also represent a mechanism contributing to the evolutionary adaptation to ecological pressure of the species. Future work should help clarify this point further once genomic information is gathered for other taxa of the family Rivulidae that do not self-fertilize. We provide a valuable genome resource that highlights the potential impact of TEs on the genome evolution of a fish species with an uncommon life cycle.
Collapse
|
170
|
Ribeiro LB, Moraes Neto A, Artoni RF, Matoso DA, Feldberg E. Chromosomal Mapping of Repetitive Sequences (Rex3, Rex6, and rDNA Genes) in Hybrids Between Colossoma macropomum (Cuvier, 1818) and Piaractus mesopotamicus (Holmberg, 1887). Zebrafish 2017; 14:155-160. [PMID: 28067606 DOI: 10.1089/zeb.2016.1378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Some species of Characiformes are known for their high economic value, such as Colossoma macropomum and Piaractus mesopotamicus, and are used in aquaculture programs to generate hybrid tambacu (interbreeding of C. macropomum females and P. mesopotamicus males). The present work aimed to investigate the location of the Rex3 and Rex6 transposable elements in the hybrid and in the species, in addition to checking the genomic organization of the 18S and 5S rDNA in tambacu. The diploid number found for the hybrid was equal to 54 chromosomes, with heterochromatic blocks distributed mainly in the centromeric portions. The chromosomal location of the mobile elements Rex3 and Rex6 in C. macropomum, P. mesopotamicus, and in the hybrid between these species enabled knowledge expansion and the generation of data on such mobile elements. In addition, the location of such elements is not related to the distribution of ribosomal DNA sites. The mapping of the 18S rDNA was shown to be effective in cytogenetic identification of the hybrid tambacu, allowing for differentiation from the parent species and from the hybrid between C. macropomum and the other species from Piaractus (P. brachypomus).
Collapse
Affiliation(s)
- Leila Braga Ribeiro
- 1 Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR) , Boa Vista, Brazil
| | - Americo Moraes Neto
- 2 Programa de Pós-Graduação em Ciência Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul (UFMS) , Campo Grande, Brazil
| | - Roberto Ferreira Artoni
- 3 Programa de Pós-Graduação em Biologia Evolutiva, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa (UEPG) , Ponta Grossa, Brazil
| | | | - Eliana Feldberg
- 5 Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA) , Manaus, Brazil
| |
Collapse
|
171
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
172
|
Yan AF, Chen T, Chen S, Tang DS, Liu F, Jiang X, Huang W, Ren CH, Hu CQ. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver. Int J Biol Sci 2016; 12:1544-1554. [PMID: 27994518 PMCID: PMC5166495 DOI: 10.7150/ijbs.16612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model.
Collapse
Affiliation(s)
- Ai-Fen Yan
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shuang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Dong-Sheng Tang
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Fang Liu
- School of stomatology and medicine, Foshan University, Foshan 528000, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| |
Collapse
|
173
|
Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C. Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. FISH & SHELLFISH IMMUNOLOGY 2016; 59:250-255. [PMID: 27818343 DOI: 10.1016/j.fsi.2016.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, "foam cells" in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.
Collapse
Affiliation(s)
- E R Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - S Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - G Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - M Kuciel
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
174
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
175
|
Schrötter K, Dayal A, Grabner M. The mammalian skeletal muscle DHPR has larger Ca 2+ conductance and is phylogenetically ancient to the early ray-finned fish sterlet (Acipenser ruthenus). Cell Calcium 2016; 61:22-31. [PMID: 27793347 PMCID: PMC5538450 DOI: 10.1016/j.ceca.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 01/01/2023]
Abstract
The L-type Ca2+ channel or dihydropyridine receptor (DHPR) in vertebrate skeletal muscle is responsible for sensing sarcolemmal depolarizations and transducing this signal to the sarcoplasmic Ca2+ release channel RyR1 via conformational coupling to initiate muscle contraction. During this excitation-contraction (EC) coupling process there is a slow Ca2+ current through the mammalian DHPR which is fully missing in euteleost fishes. In contrast to ancestral evolutionary stages where skeletal muscle EC coupling is still depended on Ca2+-induced Ca2+-release (CICR), it is possible that the DHPR Ca2+ conductivity during mammalian (conformational) EC coupling was retained as an evolutionary remnant (vestigiality). Here, we wanted to test the hypothesis that due to the lack of evolutionary pressure in post-CICR species skeletal muscle DHPR Ca2+ conductivity gradually reduced as evolution progressed. Interestingly, we identified that the DHPR of the early ray-finned fish sterlet (Acipenser ruthenus) is phylogenetically positioned above the mammalian rabbit DHPR which retained robust Ca2+ conductivity, but below the euteleost zebrafish DHPR which completely lost Ca2+ conductivity. Remarkably, our results revealed that sterlet DHPR still retained the Ca2+ conductivity but currents are significantly reduced compared to rabbit. This decrease is due to lower DHPR membrane expression similar to zebrafish, as well as due to reduced channel open probability (Po). In both these fish species the lower DHPR expression density is partially compensated by higher efficacy of DHPR-RyR1 coupling. The complete loss of Po in zebrafish and other euteleost species was presumably based on the teleost specific 3rd round of genome duplication (Ts3R). Ts3R headed into the appearance of two skeletal muscle DHPR isoforms which finally, together with the radiation of the euteleost clade, fully lost the Po.
Collapse
Affiliation(s)
- Kai Schrötter
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Anamika Dayal
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria
| | - Manfred Grabner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Medical University of Innsbruck, Peter Mayr Strasse 1, A-6020, Innsbruck, Austria.
| |
Collapse
|
176
|
Thorpe M, Akula S, Hellman L. Channel catfish granzyme-like I is a highly specific serine protease with metase activity that is expressed by fish NK-like cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:84-95. [PMID: 27216028 DOI: 10.1016/j.dci.2016.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Here we present the extended cleavage specificity of catfish granzyme-like I, previously identified in fish NK-like cells. This protease has been characterised using substrate phage display and further validated by using a panel of recombinant substrates. A strict preference for Met in the P1 (cleavage) position, indicating metase specificity was observed. A screening of potential in vivo substrates was performed based on the derived P5-P3' consensus: Arg-Val-Thr-Gly-Met(↓)Ser-Leu-Val. Channel catfish caspase 6 was one very interesting potential target identified. This site was present in an adjacent position to the classic caspase activation site (Asp179 in human caspase 6). Cleavage of this site (hence potential activation) by the catfish granzyme-like I could reveal a novel mechanism of caspase 6 activation. This poses an interesting idea that the role of granzyme-like proteases in the activation of caspase dependent apoptosis mechanisms has been conserved for over 400 million years.
Collapse
Affiliation(s)
- Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
177
|
Munehara H, Horita M, Kimura-Kawaguchi MR, Yamazaki A. Origins of two hemiclonal hybrids among three Hexagrammos species (Teleostei: Hexagrammidae): genetic diversification through host switching. Ecol Evol 2016; 6:7126-7140. [PMID: 28725387 PMCID: PMC5513241 DOI: 10.1002/ece3.2446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/03/2022] Open
Abstract
Two natural, hemiclonal hybrid strains were discovered in three Hexagrammos species. The natural hybrids, all of which were females that produced haploid eggs containing only the Hexagrammos octogrammus genome (maternal ancestor; hereafter Hoc), generated F1 hybrid‐type offspring by fertilization with haploid sperm of Hexagrammos agrammus or Hexagrammos otakii (paternal species; Hag and Hot, respectively). This study was performed to clarify the extent of diversification between the two hybrids and the maternal ancestor. Genealogical analysis using mtDNA revealed that all 38 Hoc/Hot hybrids formed a branch (Branch I) with 18 of the 33 Hoc/Hag hybrids. No haplotype sharing was observed with the maternal ancestor. Further, microsatellite DNA analysis suggested that the members of Branch I shared the same hemiclonal genome set. The results suggested that Hoc/Hot hybrids originated by anomalous hybridization, or “host switching,” between Hoc/Hag and Hot, and not from interspecific hybridization between Hoc and Hot. The remaining 9 of 11 Hoc/Hag haplotypes and all of the 27 Hoc haplotypes were mixed within the genealogical tree, as if they had originated from multiple mutations. However, Hoc/Hag could also mate with Hoc. Although offspring from this host switch (Backcross‐Hoc) have the same genome as normal Hoc, a part of their genome retains genetic factors capable of producing hemiclones. Consequently, when a descendant of a BC‐Hoc hybrid mates with Hag males, a new hemiclone lineage will arise. Multiple haplotype revival through host switching from a single mutation in hybrids is another possible hypothesis for the observed mixing of Hoc/Hag haplotypes within the mtDNA genealogical tree.
Collapse
Affiliation(s)
- Hiroyuki Munehara
- Field Science Center for Northern Biosphere Hokkaido University Hakodate Hokkaido Japan
| | - Miho Horita
- Field Science Center for Northern Biosphere Hokkaido University Hakodate Hokkaido Japan.,Graduate School of Environmental Science Hokkaido University Hakodate Hokkaido Japan.,Division of Analytical Bio-Medicine Advanced Research Support Center Ehime University Toon City Ehime Japan
| | - Motoko R Kimura-Kawaguchi
- Field Science Center for Northern Biosphere Hokkaido University Hakodate Hokkaido Japan.,Graduate School of Environmental Science Hokkaido University Hakodate Hokkaido Japan
| | - Aya Yamazaki
- Field Science Center for Northern Biosphere Hokkaido University Hakodate Hokkaido Japan.,Graduate School of Environmental Science Hokkaido University Hakodate Hokkaido Japan
| |
Collapse
|
178
|
Naville M, Volff JN. Endogenous Retroviruses in Fish Genomes: From Relics of Past Infections to Evolutionary Innovations? Front Microbiol 2016; 7:1197. [PMID: 27555838 PMCID: PMC4977317 DOI: 10.3389/fmicb.2016.01197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
The increasing availability of fish genome sequences has allowed to gain new insights into the diversity and host distribution of retroviruses in fish and other vertebrates. This distribution can be assessed through the identification and analysis of endogenous retroviruses, which are proviral remnants of past infections integrated in genomes. Retroviral sequences are probably important for evolution through their ability to induce rearrangements and to contribute regulatory and coding sequences; they may also protect their host against new infections. We argue that the current mass of genome sequences will soon strongly improve our understanding of retrovirus diversity and evolution in aquatic animals, with the identification of new/re-emerging elements and host resistance genes that restrict their infectivity.
Collapse
Affiliation(s)
- Magali Naville
- Génomique Évolutive des Poissons, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1 Lyon, France
| | - Jean-Nicolas Volff
- Génomique Évolutive des Poissons, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1 Lyon, France
| |
Collapse
|
179
|
Ahn DH, Kang S, Park H. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps. FISH & SHELLFISH IMMUNOLOGY 2016; 55:315-322. [PMID: 27276114 DOI: 10.1016/j.fsi.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.
Collapse
Affiliation(s)
- Do-Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Seunghyun Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea; Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
180
|
Korbut R, Mehrdana F, Kania PW, Larsen MH, Frees D, Dalsgaard I, Jørgensen LVG. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri. PLoS One 2016; 11:e0158968. [PMID: 27404564 PMCID: PMC4942034 DOI: 10.1371/journal.pone.0158968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/26/2016] [Indexed: 12/04/2022] Open
Abstract
Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.
Collapse
Affiliation(s)
- Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Foojan Mehrdana
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne Halberg Larsen
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Dorte Frees
- Food Safety and Zoonoses, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Inger Dalsgaard
- Section for Bacteriology and Pathology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
181
|
Hrytsenko O, Pohajdak B, Wright JR. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene. Islets 2016; 8:e1187352. [PMID: 27222321 PMCID: PMC4987019 DOI: 10.1080/19382014.2016.1187352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.
Collapse
Affiliation(s)
- Olga Hrytsenko
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bill Pohajdak
- Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James R. Wright
- Department of Pathology & Laboratory Medicine/Calgary Laboratory Services, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- CONTACT James R. Wright, Jr. Departments of Pathology & Laboratory Medicine; University of Calgary and Calgary Laboratory Services; Alberta Children's Hospital;2888 Shaganappi Trail NW; Calgary, Alberta, Canada T3B 6A8
| |
Collapse
|
182
|
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 2016; 219:1941-52. [DOI: 10.1242/jeb.128439] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na+ channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K+ current and inward Na+ current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
183
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
184
|
Wcisel DJ, Yoder JA. The confounding complexity of innate immune receptors within and between teleost species. FISH & SHELLFISH IMMUNOLOGY 2016; 53:24-34. [PMID: 26997203 DOI: 10.1016/j.fsi.2016.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/03/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Teleost genomes encode multiple multigene families of immunoglobulin domain-containing innate immune receptors (IIIRs) with unknown function and no clear mammalian orthologs. However, the genomic organization of IIIR gene clusters and the structure and signaling motifs of the proteins they encode are similar to those of mammalian innate immune receptor families such as the killer cell immunoglobulin-like receptors (KIRs), leukocyte immunoglobulin-like receptors (LILRs), Fc receptors, triggering receptors expressed on myeloid cells (TREMs) and CD300s. Teleost IIIRs include novel immune-type receptors (NITRs); diverse immunoglobulin domain containing proteins (DICPs); polymeric immunoglobulin receptor-like proteins (PIGRLs); novel immunoglobulin-like transcripts (NILTs) and leukocyte immune-type receptors (LITRs). The accumulation of genomic sequence data has revealed that IIIR gene clusters in zebrafish display haplotypic and gene content variation. This intraspecific genetic variation, as well as significant interspecific variation, frequently confounds the identification of definitive orthologous IIIR sequences between teleost species. Nevertheless, by defining which teleost lineages encode (and do not encode) different IIIR families, predictions can be made about the presence (or absence) of specific IIIR families in each teleost lineage. It is anticipated that further investigations into available genomic resources and the sequencing of a variety of multiple teleost genomes will identify additional IIIR families and permit the modeling of the evolutionary origins of IIIRs.
Collapse
Affiliation(s)
- Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
185
|
Yan AF, Chen T, Chen S, Ren CH, Hu CQ, Cai YM, Liu F, Tang DS. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control. Int J Mol Sci 2016; 17:ijms17060783. [PMID: 27249000 PMCID: PMC4926331 DOI: 10.3390/ijms17060783] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC). By intraperitoneal (IP) injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY) injection. High levels of leptin receptor (lepR) mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP) and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART), cholecystokinin (CCK), melanin-concentrating hormone (MCH) and proopiomelanocortin (POMC) in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.
Collapse
Affiliation(s)
- Ai-Fen Yan
- College of Medicine, Foshan University, Foshan 528000, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Shuang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Yi-Ming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Fang Liu
- College of Medicine, Foshan University, Foshan 528000, China.
| | - Dong-Sheng Tang
- College of Medicine, Foshan University, Foshan 528000, China.
| |
Collapse
|
186
|
Byers KJRP, Xu S, Schlüter PM. Molecular mechanisms of adaptation and speciation: why do we need an integrative approach? Mol Ecol 2016; 26:277-290. [DOI: 10.1111/mec.13678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
187
|
Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann Anat 2016; 205:75-84. [DOI: 10.1016/j.aanat.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/01/2015] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
|
188
|
Piccolo paralogs and orthologs display conserved patterns of alternative splicing within the C2A and C2B domains. Genes Genomics 2016. [DOI: 10.1007/s13258-015-0383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
189
|
Ota KG, Abe G. Goldfish morphology as a model for evolutionary developmental biology. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:272-95. [PMID: 26952007 PMCID: PMC6680352 DOI: 10.1002/wdev.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/06/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
190
|
Karyoevolution inPotamorhina(Cope, 1878) (Ostariophysi, Curimatidae): Using Repetitive DNA for the Elucidation of Genome Organization. Zebrafish 2016; 13:118-31. [DOI: 10.1089/zeb.2015.1187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
191
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
192
|
Nishiyama PB, Vieira MMR, Porto FE, Borin LA, Portela-Castro ALB, Santos ICM. Karyotypic diversity among three species of the genus Astyanax (Characiformes: Characidae). BRAZ J BIOL 2016; 76:360-6. [PMID: 26934153 DOI: 10.1590/1519-6984.15414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
The group Incertae sedis within the Characidae family currently includes 88 genera, previously included in the subfamily Tetragonopterinae. Among them is the genus Astyanax comprising a group of species with similar morphology and widely distributed in the Neotropics. Thus, the present study aimed to analyze the karyotype diversity in Astyanax species from different watersheds by conventional Giemsa staining, C-banding and fluorescence in situ hybridization (FISH rDNA 18S) probe.specimens of Astyanax aff. paranae belonging to the "scabripinnis complex", Astyanax asunsionensis and Astyanax aff. bimaculatus were analyzed". Two sympatric karyomorphs were observed in Astyanax.aff paranae, one of them having2n=48andthe other one with 2n=50 chromosomes. Other population of this same species also presented 2n=50 chromosomes, but differing in the karyotype formula and with macro supernumerary chromosome found in 100% of the cells in about 80%of females analyzed. Two population of A. asuncionensis and one population of Astyanax. aff. bimaculatus, also showed a diploid number of 50 chromosomes, but also differing in their karyotype formulas. Therefore, A. asuncionensis was also characterized by intraspecific chromosome diversity. The C-banding analysis was able to demonstrate a distinctable to demonstrate a distinct pattern of heterochromatin differing A. asuncionensis from Astyanax aff. paranae and Astyanax aff. bimaculatus. The supernumerary chromosome of Astyanax aff. paranae proved completely heterochromatic. Only Astyanax.aff. bimaculatus multiple showed multiple sites of nucleolar organizing regions. The other species were characterized by having a simple system of NOR. These data contributes to the know ledge of the existing biodiversity in our fish fauna, here highlighted by the inter- and intraspecific chromosomal diversity in the genus Astyanax.
Collapse
Affiliation(s)
- P B Nishiyama
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | - M M R Vieira
- Unidade Universitária de Coxim, Universidade Estadual do Mato Grosso do Sul, Coxim, MS, Brazil
| | - F E Porto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - L A Borin
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - A L B Portela-Castro
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - I C M Santos
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
193
|
Gao B, Shen D, Xue S, Chen C, Cui H, Song C. The contribution of transposable elements to size variations between four teleost genomes. Mob DNA 2016; 7:4. [PMID: 26862351 PMCID: PMC4746887 DOI: 10.1186/s13100-016-0059-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Teleosts are unique among vertebrates, with a wide range of haploid genome sizes in very close lineages, varying from less than 400 mega base pairs (Mb) for pufferfish to over 3000 Mb for salmon. The cause of the difference in genome size remains largely unexplained. Results In this study, we reveal that the differential success of transposable elements (TEs) correlates with the variation of genome size across four representative teleost species (zebrafish, medaka, stickleback, and tetraodon). The larger genomes represent a higher diversity within each clade (superfamily) and family and a greater abundance of TEs compared with the smaller genomes; zebrafish, representing the largest genome, shows the highest diversity and abundance of TEs in its genome, followed by medaka and stickleback; while the tetraodon, representing the most compact genome, displays the lowest diversity and density of TEs in its genome. Both of Class I (retrotransposons) and Class II TEs (DNA transposons) contribute to the difference of TE accumulation of teleost genomes, however, Class II TEs are the major component of the larger teleost genomes analyzed and the most important contributors to genome size variation across teleost lineages. The hAT and Tc1/Mariner superfamilies are the major DNA transposons of all four investigated teleosts. Divergence distribution revealed contrasting proliferation dynamics both between clades of retrotransposons and between species. The TEs within the larger genomes of the zebrafish and medaka represent relatively stronger activity with an extended time period during the evolution history, in contrast with the very young activity in the smaller stickleback genome, or the very low level of activity in the tetraodon genome. Conclusion Overall, our data shows that teleosts represent contrasting profiles of mobilomes with a differential density, diversity and activity of TEs. The differences in TE accumulation, dominated by DNA transposons, explain the main size variations of genomes across the investigated teleost species, and the species differences in both diversity and activity of TEs contributed to the variations of TE accumulations across the four teleost species. TEs play major roles in teleost genome evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0059-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Dan Shen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Songlei Xue
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Cai Chen
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Hengmi Cui
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| | - Chengyi Song
- Institute of Epigenetics & Epigenomics, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
194
|
Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 2016; 529:383-6. [DOI: 10.1038/nature16156] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/13/2015] [Indexed: 01/07/2023]
|
195
|
McEllin JA, Alexander TB, Tümpel S, Wiedemann LM, Krumlauf R. Analyses of fugu hoxa2 genes provide evidence for subfunctionalization of neural crest cell and rhombomere cis-regulatory modules during vertebrate evolution. Dev Biol 2016; 409:530-42. [DOI: 10.1016/j.ydbio.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022]
|
196
|
Chen T, Chen S, Ren C, Hu C, Tang D, Yan A. Two isoforms of leptin in the White-clouds Mountain minnow (Tanichthys albonubes): Differential regulation by estrogen despite similar response to fasting. Gen Comp Endocrinol 2016; 225:174-184. [PMID: 26386182 DOI: 10.1016/j.ygcen.2015.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 01/03/2023]
Abstract
Leptin has been well-established as a canonical anorexic peptide hormone in mammals, though much of its function in fish remains obscure. In this study, the cDNAs of two leptin isoforms (leptin-A and leptin-B) were cloned from the liver of a small cyprinid fish, Tanichthys albonubes. The two T. albonubes leptins, sharing low primary amino acid sequence homology with their mammalian counterparts, and between themselves, are highly conserved in three-dimensional protein structures and gene structures. Liver is a major source of leptin mRNA in T. albonubes with leptin-A being the dominant form. The expression of hepatic leptin-A but not leptin-B mRNA in female fish is significantly higher than in male fish. Transcriptional hepatic levels of leptin-A and leptin-B in both male and female fish were demonstrated to increase after long-term fasting (10-25days) but decline upon re-feeding (3days). Strikingly, estrogen (E2) administration induced only leptin-A but not leptin-B hepatic mRNA expression in both male and female fish. Our study here provides the first evidence for differential regulation of two leptins in fish, and sheds new light on the possible origin of leptin in lower vertebrates.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Shuang Chen
- Department of Anatomy, University of Hong Kong, Hong Kong, China.
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China.
| | | | - Aifen Yan
- College of Medicine, Foshan University, Foshan, China.
| |
Collapse
|
197
|
Waits ER, Martinson J, Rinner B, Morris S, Proestou D, Champlin D, Nacci D. Genetic Linkage Map and Comparative Genome Analysis for the Atlantic Killifish (<i>Fundulus heteroclitus</i>). ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojgen.2016.61004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
198
|
Honji RM, Caneppele D, Pandolfi M, Nostro FLL, Moreira RG. A case of intersex occurrence in Steindachneridion parahybae (Steindachner, 1877) (Siluriformes: Pimelodidae) under captivity condition: a cytogenetic and morphological study. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20160077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Little is known about reproductive biology of endangered Steindachneridion parahybae , a gonochoristic teleost species inhabiting the Paraíba do Sul River Basin, and herein is the first description of intersex in S. parahybae juvenile. The normal appearance of ovaries and testes in juvenile from the same lot of breeding were also described for comparison, even as cytogenetic analysis was performed in these juveniles. One specimen was a priori classified as female due to the macroscopic characteristic of ovaries, with small yellow oocytes, without fringes (a main characteristic of catfish male), and larger than testes; however the microscopic analysis revealed the presence of ovotestes, including the complete spermatogenesis. S. parahybae had diploid number, 2n = 56 chromosomes with no evidence of differentiated sex chromosomes or supernumerary chromosomes among them. These findings may be due to the result of exposure to endocrine disrupting compounds or may also be influenced by environmental conditions. The possibility of intersexes might also happen spontaneously and it cannot be ruled out. Therefore, the functional significance and reproductive consequences of this anomaly remain to be determined, suggesting that this species may be susceptible to endocrine disruption. These results contribute to gain expertise about reproductive biology of an endangered species in captivity.
Collapse
|
199
|
Abstract
The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.
Collapse
Affiliation(s)
- Matti Vornanen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| | - Minna Hassinen
- a Department of Biology , University of Eastern Finland , Joensuu , Finland
| |
Collapse
|
200
|
Mei Q, Sadovy Y, Dvornyk V. Molecular evolution of cryptochromes in fishes. Gene 2015; 574:112-20. [PMID: 26238701 DOI: 10.1016/j.gene.2015.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
Circadian rhythmicity is an endogenous biological cycle of about 24h, which exists in cyanobacteria and fungi, plants and animals. Circadian rhythms improve the adaptability of organisms in both constant and changing environments. The cryptochrome (CRY) is a key element of the circadian system in various animal groups including fishes. We studied evolution of cryptochromes in the phylogenetically and ecologically diverse fish taxa. The phylogenetic tree of fish Cry features two major clades: Cry1 and Cry2. Teleosts possess extra copies of Cry1 due to the genome duplication, which resulted in 3 main paralogous subfamilies (1A, 1B and 1C). Cry1 experienced further diversification through additional duplications in some taxa. 1A of Cry1 is more conserved than the other paralogs (dN=0.010 ± 0.003, π=0.119 ± 0.058). The analysis of selection indicated that, while the Cry homologs in fish evolved under the different levels of selection pressure, strong purifying selection (average ω=0.017) dominated in their evolution.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yvonne Sadovy
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|