151
|
Vicari D, Foy KC, Liotta EM, Kaumaya PTP. Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways. J Biol Chem 2011; 286:13612-25. [PMID: 21321115 DOI: 10.1074/jbc.m110.216812] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors. In this work, peptides were designed to mimic the VEGF-binding site to its receptor VEGFR-2. The VEGF conformational peptide mimic, VEGF-P3(CYC), included two artificial cysteine residues, which upon cyclization constrained the peptide in a loop native-like conformation to better mimic the anti-parallel structure of VEGF. The engineered cyclic VEGF mimic peptide demonstrated the highest affinity to VEGFR-2 by surface plasmon resonance assay. The VEGF peptide mimics were evaluated as inhibitors in several in vitro assays in which VEGF-dependent signaling pathways were observed. All VEGF mimics inhibited VEGFR-2 phosphorylation with VEGF-P3(CYC) showing the highest inhibitory effects when compared with unstructured peptides. Additionally, we show in several angiogenic in vitro assays that all the VEGF mimics inhibited endothelial cell proliferation, migration, and network formation with the conformational VEGF-P3 (CYC) being the best. The VEGF-P3(CYC) also caused a significant delay in tumor development in a transgenic model of VEGF(+/-)Neu2-5(+/-). These results indicate that the structure-based design is important for the development of this peptidomimetic and for its anti-angiogenic effects.
Collapse
Affiliation(s)
- Daniele Vicari
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
152
|
Dai Y, Chen S, Shah R, Pei XY, Wang L, Almenara JA, Kramer LB, Dent P, Grant S. Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood 2011; 117:1947-1957. [PMID: 21148814 PMCID: PMC3056642 DOI: 10.1182/blood-2010-06-291146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/05/2010] [Indexed: 02/05/2023] Open
Abstract
Ras/MEK/ERK pathway activation represents an important compensatory response of human multiple myeloma (MM) cells to checkpoint kinase 1 (Chk1) inhibitors. To investigate the functional roles of Src in this event and potential therapeutic significance, interactions between Src and Chk1 inhibitors (eg, UCN-01 or Chk1i) were examined in vitro and in vivo. The dual Src/Abl inhibitors BMS354825 and SKI-606 blocked Chk1-inhibitor-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, markedly increasing apoptosis in association with BimEL up-regulation, p34(cdc2) activation, and DNA damage in MM cell lines and primary CD138(+) MM samples. Loss-of-function Src mutants (K297R, K296R/Y528F) or shRNA knock-down of Src prevented the ERK1/2 activation induced by Chk1 inhibitors and increased apoptosis. Conversely, constitutively active Ras or mitogen-activated protein kinase/ERK kinase 1 (MEK1) significantly diminished the ability of Src inhibitors to potentiate Chk1-inhibitor lethality. Moreover, Src/Chk1-inhibitor cotreatment attenuated MM-cell production of vascular endothelial growth factor and other angiogenic factors (eg, ANG [angiogenin], TIMP1/2 [tissue inhibitor of metalloproteinases 1/2], and RANTES [regulated on activation normal T-cell expressed and secreted]), and inhibited in vitro angiogenesis. Finally, coadministration of BMS354825 and UCN-01 suppressed human MM tumor growth in a murine xenograft model, increased apoptosis, and diminished angiogenesis. These findings suggest that Src kinase is required for Chk1-inhibitor-mediated Ras → ERK1/2 signaling activation, and that disruption of this event sharply potentiates the anti-MM activity of Chk1 inhi-bitors in vitro and in vivo.
Collapse
Affiliation(s)
- Yun Dai
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, and the Massey Cancer Center, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Ponnambalam S, Alberghina M. Evolution of the VEGF-regulated vascular network from a neural guidance system. Mol Neurobiol 2011; 43:192-206. [PMID: 21271303 DOI: 10.1007/s12035-011-8167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/12/2011] [Indexed: 12/27/2022]
Abstract
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.
Collapse
Affiliation(s)
- Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Leeds, UK.
| | | |
Collapse
|
154
|
Jais A, Klein D, Wolfesberger B, Walter I. Gene expression profile of vascular endothelial growth factor (VEGF) and its receptors in various cell types of the canine lymph node using laser capture microdissection (LCM). Vet Immunol Immunopathol 2010; 140:207-14. [PMID: 21211854 DOI: 10.1016/j.vetimm.2010.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 02/03/2023]
Abstract
The role of VEGF and its receptors has extensively been studied in tumours. In contrast, the presence and function of VEGF in normal tissues like the lymph node has not been given much attention until now. To study the expression of VEGF, VEGFR-1, VEGFR-2 and VEGFR-3 in the heterogenous cell population of the canine lymph node, laser capture microdissection was used to isolate pure cell fractions of macrophages, lymphocytes, endothelial cells, and capsule cells of the canine lymph node. To clarify if macrophages take up VEGF from the environment or express VEGF, VEGFR-1, VEGFR-2 or VEGFR-3 themselves, the mRNA expression was studied by real-time RT-PCR. After RNA isolation and subsequent analysis with the Agilent 2100 Bioanalyzer only RNA samples with appropriate RNA integrity were used for real-time PCR. For the accurate relative quantification of mRNA expression levels several reference genes were evaluated. It was shown that the reference genes HPRT1 and B2M serve as reliable reference genes for gene expression studies in the canine lymph node. Expression data analysis revealed no significant difference in VEGF expression levels between endothelial cells and the other investigated cells. VEGFR-1 expression was significantly lower in lymphocytes. Also macrophages showed a highly significant lower expression of VEGFR-1 compared to endothelial cells. In addition, the VEGFR-2 expression in lymphocytes and macrophages was significantly lower in comparison to endothelial cells. We were not able to detect VEGFR-3 mRNA in the lymphocyte cell population, in macrophages and cells of the lymph node capsule VEGFR-3 was expressed at very low levels. It was shown that laser capture microdissection in combination with quantitative real-time PCR is a valuable tool for studying the expression patterns of specific cells in their microenvironment. Our results support the hypothesis that VEGF and its receptors have other biological roles besides stimulating angiogenesis in the normal lymph node. These biological functions need to be clarified in further studies.
Collapse
Affiliation(s)
- Alexander Jais
- VetOMICS Core Facility for Research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210 Vienna, Austria
| | | | | | | |
Collapse
|
155
|
Oommen S, Gupta SK, Vlahakis NE. Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J Biol Chem 2010; 286:1083-92. [PMID: 21071450 DOI: 10.1074/jbc.m110.175158] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.
Collapse
Affiliation(s)
- Saji Oommen
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
156
|
Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U, Werner C. FGF-2 and VEGF functionalization of starPEG–heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials 2010; 31:7985-94. [DOI: 10.1016/j.biomaterials.2010.07.021] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
157
|
Lee IL, Li PS, Yu WL, Shen HH. Prokaryotic expression, refolding, and purification of functional human vascular endothelial growth factor isoform 165: purification procedures and refolding conditions revisited. Protein Expr Purif 2010; 76:54-8. [PMID: 20826215 DOI: 10.1016/j.pep.2010.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/16/2010] [Accepted: 08/30/2010] [Indexed: 12/31/2022]
Abstract
Human vascular endothelial growth factor isoform 165 (VEGF165) is the first known member belonging to the VEGF protein family that plays a critical role in new blood vessel formation in vivo. This study presents a new protocol with optimized conditions for rapidly producing untagged recombinant and biological active human VEGF165 (rhVEGF165) using Escherichia coli cells. Protein was isolated from inclusion bodies, purified by gel filtration and ion exchange chromatography, and subjected to protein refolding and renaturation. The biological activity of rhVEGF165 is comparable with VEFG from eukaryotic source according to human umbilical vein endothelial cells (HUVEC) proliferation assay. Therefore, the present procedures provide a fast and easy way to produce this therapeutic protein.
Collapse
Affiliation(s)
- I-Liang Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | | | | |
Collapse
|
158
|
Jiang C, Xiong W, Lu BY, Gonda MA, Chang JY. Synthesis and Immune Response of Non-native Isomers of Vascular Endothelial Growth Factor. Biochemistry 2010; 49:6550-6. [DOI: 10.1021/bi100815n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chuantao Jiang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | - Wei Xiong
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | - Bao-Yuan Lu
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| | | | - Jui-Yoa Chang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine, and Department of Biochemistry and Molecular Biology, The University of Texas, Houston, Texas 77030
| |
Collapse
|
159
|
Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 2010; 87:262-71. [PMID: 20400620 PMCID: PMC2895541 DOI: 10.1093/cvr/cvq105] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/19/2010] [Accepted: 03/25/2010] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are key regulators of permeability. The principal evidence behind how they increase vascular permeability in vivo and in vitro and the consequences of that increase are addressed here. Detailed analysis of the published literature has shown that in vivo and in vitro VEGF-mediated permeability differs in its time course, but has common involvement of many specific signalling pathways, in particular VEGF receptor-2 activation, calcium influx through transient receptor potential channels, activation of phospholipase C gamma and downstream activation of nitric oxide synthase. Pathways downstream of endothelial nitric oxide synthase appear to involve the guanylyl cyclase-mediated activation of the Rho-Rac pathway and subsequent involvement of junctional signalling proteins such as vascular endothelial cadherin and the tight junctional proteins zona occludens and occludin linked to the actin cytoskeleton. The signalling appears to be co-ordinated through spatial organization of the cascade into a signalplex, and arguments for why this may be important are considered. Many proteins have been identified to be involved in the regulation of vascular permeability by VEGF, but still the mechanisms through which these are thought to interact to control permeability are dependent on the experimental system, and a synthesis of existing data reveals that in intact vessels the co-ordination of the pathways is still not understood.
Collapse
Affiliation(s)
- David O Bates
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, Bristol Heart Institute, University of Bristol, Southwell Street, Bristol, UK.
| |
Collapse
|
160
|
Sala A, Ehrbar M, Trentin D, Schoenmakers RG, Vörös J, Weber FE. Enzyme mediated site-specific surface modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11127-11134. [PMID: 20545368 DOI: 10.1021/la1008895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Stable tethering of bioactive peptides like RGD to surfaces can be achieved via chemical bonding, biotin streptavidin interaction, or photocross-linking. More challenging is the immobilization of proteins, since methods applied to immobilize peptides are either not specific or versatile enough or might even compromise the protein's bioactivity. To overcome this limitation, we have employed a scheme that by enzymatic (transglutaminase) reaction allows the site-directed and site-specific coupling of growth factors and other molecules to nonfouling poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coated surfaces under physiological conditions. By our modular and flexible design principle, we are able to functionalize these surfaces directly with peptides and growth factors or precisely position poly(ethylene glycol) (PEG)-like hydrogels for the presentation of growth factors as exemplified with vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Ana Sala
- Department of Cranio-Maxillofacial Surgery, Oral Biotechnology & Bioengineering, University Hospital Zurich and Dental School, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
161
|
Gautier B, Goncalves V, Diana D, Di Stasi R, Teillet F, Lenoir C, Huguenot F, Garbay C, Fattorusso R, D'Andrea LD, Vidal M, Inguimbert N. Biochemical and structural analysis of the binding determinants of a vascular endothelial growth factor receptor peptidic antagonist. J Med Chem 2010; 53:4428-40. [PMID: 20462213 DOI: 10.1021/jm1002167] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclic peptide antagonist c[YYDEGLEE]-NH(2), which disrupts the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), represents a promising tool in the fight against cancer and age-related macular degeneration. Furthermore, coupled to a cyclen derivative, this ligand could be used as a medicinal imaging agent. Nevertheless, before generating such molecular probes, some preliminary studies need to be undertaken in order to define the more suitable positions for introduction of the cyclen macrocycle. Through an Ala-scan study on this peptide, we identified its binding motif, and an NMR study highlights its binding sites on the VEGFR-1D2 Ig-like domain. Guided by the structural relationship results deduced from the effect of the peptides on endothelial cells, new peptides were synthesized and grafted on beads. Used in a pull-down assay, these new peptides trap the VEGFRs, thus confirming that the identified amino acid positions are suitable for further derivatization.
Collapse
Affiliation(s)
- Benoit Gautier
- Université Paris Descartes, UFR Biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, INSERM U648, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Chiang CK, Chowdhury MF, Iyer RK, Stanford WL, Radisic M. Engineering surfaces for site-specific vascular differentiation of mouse embryonic stem cells. Acta Biomater 2010; 6:1904-16. [PMID: 20004260 DOI: 10.1016/j.actbio.2009.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/15/2009] [Accepted: 12/03/2009] [Indexed: 01/27/2023]
Abstract
Differentiation of stem and progenitor cells routinely relies on the application of soluble growth factors, an approach that enables temporal control of cell fate but enables no spatial control of the differentiation process. Angiogenic progenitor cells derived from mouse embryonic stem cells (ESCs) were differentiated here according to the pattern of immobilized vascular endothelial growth factor-A (VEGF). Mouse ESCs engineered to express green fluorescent protein (eGFP) under control of promoter for the receptor tyrosine kinase Flk1 were used. The Flk1+ angiogenic progenitors were selected from day 3 differentiating embryoid bodies based on their expression of eGFP using fluorescence activated cell sorting. Mouse VEGF(165) was covalently immobilized onto collagen IV (ColIV) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) chemistry. A non-cell adhesive layer of photocrosslinkable chitosan was first created, after which VEGF-ColIV was stamped as 100mum wide lanes on top of the chitosan layer and the Flk1+ angiogenic progenitors were seeded for site-specific differentiation. Lanes stamped with only ColIV served as controls. The results presented here demonstrate that the cultivation of Flk1+ progenitors on surfaces with immobilized VEGF yielded primarily endothelial cells (53+/-13% CD31 positive and 17+/-2% smooth muscle actin positive), whereas surfaces without VEGF favored vascular smooth muscle-like cell differentiation (26+/-17% CD31 positive and 38+/-9% smooth muscle actin positive).
Collapse
Affiliation(s)
- C Katherine Chiang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
163
|
Murphy BF, Belov K, Thompson MB. Evolution of viviparity and uterine angiogenesis: vascular endothelial growth factor (VEGF) in oviparous and viviparous skinks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:148-56. [PMID: 19676116 DOI: 10.1002/jez.b.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During pregnancy, uterine vasculature of live-bearing lizards proliferates to support embryonic growth and development. Vascular endothelial growth factor (VEGF) is the most potent of a suite of growth factors responsible for uterine vascularization in mammals. We have sequenced VEGF mRNA transcripts expressed in the uterus of oviparous and viviparous Australian skinks, and compared uterine VEGF expression in nonreproductive and late-reproductive Saiphos equalis, a fossorial viviparous skink. VEGF sequences differed between phylogenetic groups of skinks, rather than oviparous and viviparous skinks. Two transcripts were identified in the uterus of each species that had the same splice sites as human VEGF(165) and VEGF(189). A third transcript, found only in uterine and testis tissue from S. equalis, had the same splice sites as human VEGF(111). This is the first natural expression of VEGF(111), previously found only in human cultured cells subjected to environmental stress. All the three VEGF transcripts identified showed higher expression in uterus from late-reproductive S. equalis than nonreproductive females. The different angiogenic properties of VEGF transcripts provide a mechanism that may produce the variety of placental complexities observed in viviparous skinks. The presence of VEGF(111) in S. equalis may be an opportunity to investigate the function of this unique transcript in a whole animal system.
Collapse
Affiliation(s)
- Bridget F Murphy
- Integrative Physiology Research Group, School of Biological Sciences, University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|
164
|
Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci U S A 2010; 107:2425-30. [PMID: 20145116 DOI: 10.1073/pnas.0914318107] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel formation through activation of three receptor tyrosine kinases, VEGFR-1, -2, and -3. The extracellular domain of VEGF receptors consists of seven immunoglobulin homology domains, which, upon ligand binding, promote receptor dimerization. Dimerization initiates transmembrane signaling, which activates the intracellular tyrosine kinase domain of the receptor. VEGF-C stimulates lymphangiogenesis and contributes to pathological angiogenesis via VEGFR-3. However, proteolytically processed VEGF-C also stimulates VEGFR-2, the predominant transducer of signals required for physiological and pathological angiogenesis. Here we present the crystal structure of VEGF-C bound to the VEGFR-2 high-affinity-binding site, which consists of immunoglobulin homology domains D2 and D3. This structure reveals a symmetrical 22 complex, in which left-handed twisted receptor domains wrap around the 2-fold axis of VEGF-C. In the VEGFs, receptor specificity is determined by an N-terminal alpha helix and three peptide loops. Our structure shows that two of these loops in VEGF-C bind to VEGFR-2 subdomains D2 and D3, while one interacts primarily with D3. Additionally, the N-terminal helix of VEGF-C interacts with D2, and the groove separating the two VEGF-C monomers binds to the D2/D3 linker. VEGF-C, unlike VEGF-A, does not bind VEGFR-1. We therefore created VEGFR-1/VEGFR-2 chimeric proteins to further study receptor specificity. This biochemical analysis, together with our structural data, defined VEGFR-2 residues critical for the binding of VEGF-A and VEGF-C. Our results provide significant insights into the structural features that determine the high affinity and specificity of VEGF/VEGFR interactions.
Collapse
|
165
|
Ji JA, Liu J, Shire SJ, Kamerzell TJ, Hong S, Billeci K, Shen Y, Wang YJ. Characteristics of rhVEGF release from topical hydrogel formulations. Pharm Res 2010; 27:644-54. [PMID: 20155389 DOI: 10.1007/s11095-009-0039-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/14/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE To study recombinant human vascular endothelial growth factor (rhVEGF), the release characteristics from topical gel formulations, and its interaction with the gelling agents. METHODS The release kinetics were followed by quantifying rhVEGF that diffused into the receptor chamber of Franz cells. Analytical ultracentrifuge (AUC) was used to characterize the sedimentation velocity of rhVEGF experienced in the gel. The interactions were characterized by isothermal calorimetry (ITC), and rhVEGF conformation was assessed by circular dichroism (CD). RESULTS The fraction of protein released was linear with the square root of time. The release rate constants did not show significant change within a wide range of bulk viscosities created by different concentrations of hydroxypropyl methylcellulose (HPMC) or MC gels. Sedimentation velocity determined by AUC generated comparable sedimentation coefficients of protein in these gels. AUC and ITC revealed no significant interaction between rhVEGF and HPMC and some change on secondary structure of the protein by Far UV CD, which was not the case with carboxymethyl cellulose (CMC). CONCLUSIONS Microviscosity, not bulk viscosity, was the key factor for the release of rhVEGF from cellulosic gels such as HPMC. Interaction between rhVEGF and CMC resulted in slower, and reduced amount of, release from the gel.
Collapse
Affiliation(s)
- Junyan A Ji
- Late Stage Pharmaceutical and Processing Development, 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
A humanized anti-VEGF rabbit monoclonal antibody inhibits angiogenesis and blocks tumor growth in xenograft models. PLoS One 2010; 5:e9072. [PMID: 20140208 PMCID: PMC2816707 DOI: 10.1371/journal.pone.0009072] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/08/2010] [Indexed: 12/17/2022] Open
Abstract
Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics.
Collapse
|
167
|
Horta BAC, Sodero ACR, Alencastro RBD. Investigating the differential activation of vascular endothelial growth factor (VEGF) receptors. J Mol Graph Model 2009; 28:287-96. [DOI: 10.1016/j.jmgm.2009.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/09/2009] [Accepted: 08/10/2009] [Indexed: 12/13/2022]
|
168
|
Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:567-80. [PMID: 19761875 DOI: 10.1016/j.bbapap.2009.09.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/22/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.
Collapse
|
169
|
Sato T, Gotoh N. The FRS2 family of docking/scaffolding adaptor proteins as therapeutic targets of cancer treatment. Expert Opin Ther Targets 2009; 13:689-700. [PMID: 19456272 DOI: 10.1517/14728220902942330] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There are two members--FRS2alpha and FRS2beta--in the fibroblast growth factor receptor substrate 2 (FRS2) family of docking/scaffolding adaptor proteins. These proteins function downstream of certain kinds of receptor tyrosine kinases (RTKs) that are important for tumorigenesis. FRS2alpha acts as a control centre for fibroblast growth factor receptor signalling and encourages tumorigenesis, while FRS2beta regulates EGFR signalling negatively, and might have a tumour suppressive role. Therefore, both proteins could be good therapeutic targets for the treatment of cancer. OBJECTIVE To examine the physiological and pathological roles of FRS2, especially in cancer, and describe their potential value as therapeutic targets. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Although it is still difficult to develop small compounds to modify functions of FRS2 adaptor proteins, such compounds may be useful as the next generation of molecular targeting drugs. Combination therapy with RTK-targeting drugs and FRS2-targeting drugs may be useful for cancer treatment in the near future.
Collapse
Affiliation(s)
- Takuya Sato
- The University of Tokyo, Institute of Medical Science, Division of Systems Biomedical Technology, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
170
|
Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppänen VM, Jeltsch M, Ylä-Herttuala S, Alitalo K. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 2009; 104:1302-12. [PMID: 19443835 PMCID: PMC2776655 DOI: 10.1161/circresaha.109.197830] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The therapeutic potential of vascular endothelial growth factor (VEGF)-C and VEGF-D in skeletal muscle has been of considerable interest as these factors have both angiogenic and lymphangiogenic activities. Previous studies have mainly used adenoviral gene delivery for short-term expression of VEGF-C and VEGF-D in pig, rabbit, and mouse skeletal muscles. Here we have used the activated mature forms of VEGF-C and VEGF-D expressed via recombinant adeno-associated virus (rAAV), which provides stable, long-lasting transgene expression in various tissues including skeletal muscle. Mouse tibialis anterior muscle was transduced with rAAV encoding human or mouse VEGF-C or VEGF-D. Two weeks later, immunohistochemical analysis showed increased numbers of both blood and lymph vessels, and Doppler ultrasound analysis indicated increased blood vessel perfusion. The lymphatic vessels further increased at the 4-week time point were functional, as shown by FITC-lectin uptake and transport. Furthermore, receptor activation and arteriogenic activity were increased by an alanine substitution mutant of human VEGF-C (C137A) having an increased dimer stability and by a chimeric CAC growth factor that contained the VEGF receptor-binding domain flanked by VEGF-C propeptides, but only the latter promoted significantly more blood vessel perfusion when compared to the other growth factors studied. We conclude that long-term expression of VEGF-C and VEGF-D in skeletal muscle results in the generation of new functional blood and lymphatic vessels. The therapeutic value of intramuscular lymph vessels in draining tissue edema and lymphedema can now be evaluated using this model system.
Collapse
Affiliation(s)
- Andrey Anisimov
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| | - Annamari Alitalo
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | - Petra Korpisalo
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | - Jarkko Soronen
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| | - Seppo Kaijalainen
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| | - Veli-Matti Leppänen
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| | - Michael Jeltsch
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.B. 1627, 70211 Kuopio, Finland
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, P.O.B. 63, (Haartmaninkatu 8), 00014 University of Helsinki, Finland
| |
Collapse
|
171
|
Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 2009; 45:2077-86. [PMID: 19493674 DOI: 10.1016/j.ejca.2009.04.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/10/2009] [Accepted: 04/24/2009] [Indexed: 12/12/2022]
Abstract
Omega-3 fatty acid (omega-3 FA) consumption has long been associated with a lower incidence of colon, breast and prostate cancers in many human populations. Human trials have demonstrated omega-3 FA to have profound anti-inflammatory effects in those with cancer. In vitro and small animal studies have yielded a strong body of evidence establishing omega-3 FA as having anti-inflammatory, anti-apoptotic, anti-proliferative and anti-angiogenic effects. This review explores the evidence and the mechanisms by which omega-3 FA may act as angiogenesis inhibitors and identifies opportunities for original research trialling omega-3 FAs as anti-cancer agents in humans. The conclusions drawn from this review suggest that omega-3 FAs in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found principally in oily fish have potent anti-angiogenic effects inhibiting production of many important angiogenic mediators namely; Vascular Endothelial Growth Factor (VEGF), Platelet-Derived Growth Factor (PDGF), Platelet-Derived Endothelial Cell Growth Factor (PDECGF), cyclo-oxygenase 2 (COX-2), prostaglandin-E2 (PGE2), nitric oxide, Nuclear Factor Kappa Beta (NFKB), matrix metalloproteinases and beta-catenin.
Collapse
Affiliation(s)
- Laura Spencer
- Department of HPB and Pancreatic Surgery, Leicester General Hospital, Gwendolen Road, Leicester LE5 4PW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Potty ASR, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC. Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 2009; 91:145-56. [PMID: 19025993 DOI: 10.1002/bip.21097] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The binding of a DNA aptamer (5'-CCGTCTTCCAGACAAGAGTGCAGGG-3') to recombinant human vascular endothelial growth factor (VEGF(165)) was characterized using surface plasmon resonance (SPR), fluorescence anisotropy and isothermal titration calorimetry (ITC). Results from both fluorescence anisotropy and ITC indicated that a single aptamer molecule binds to each VEGF homodimer, unlike other VEGF inhibitors that exhibit 2(ligand):1(VEGF homodimer) stoichiometry. In addition, ITC revealed that the association of the aptamer to VEGF at 20 degrees C is enthalpically driven, with an unfavorable entropy contribution. SPR kinetic studies, with careful control of possible mass transfer effects, demonstrated that the aptamer binds to VEGF with an association rate constant k(on) = 4.79 +/- 0.03 x 10(4) M(-1) s(-1) and a dissociation rate constant k(off) = 5.21 +/- 0.02 x 10(-4) s(-1) at 25 degrees C. Key recognition hot-spots were determined by a combination of aptamer sequence substitutions, truncations, and extensions. Most single-nucleotide substitutions, particularly within an mfold-predicted stem, suppress binding, whereas those within a predicted loop have a minimal effect. The 5'-end of the aptamer plays a key role in VEGF recognition, as a single-nucleotide truncation abolished VEGF binding. Conversely, an 11-fold increase in the association rate (and affinity) is observed with a single cytosine nucleotide extension, due to pairing of the 3'-GGG with 5'-CCC in the extended aptamer. Our approach effectively maps the secondary structural elements in the free aptamer, which present the unpaired interface for high affinity VEGF recognition. These data demonstrate that a directed binding analysis can be used in concert with library screening to characterize and improve aptamer/ligand recognition.
Collapse
|
173
|
Mirassou Y, Santiveri CM, Pérez de Vega MJ, González-Muñiz R, Jiménez MA. Disulfide Bonds versus Trp⋅⋅⋅Trp Pairs in Irregular β-Hairpins: NMR Structure of Vammin Loop 3-Derived Peptides as a Case Study. Chembiochem 2009; 10:902-10. [DOI: 10.1002/cbic.200800834] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
174
|
Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C, Fuh G. Variants of the Antibody Herceptin That Interact with HER2 and VEGF at the Antigen Binding Site. Science 2009; 323:1610-4. [DOI: 10.1126/science.1165480] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
175
|
Hu HQ, Sun YN, Luo SP, Zhou Q, Tao FL, Chen Z, Xu Y, Zhou Q. Generation of a mouse monoclonal antibody recognizing both the native and denatured forms of human VEGF. Hybridoma (Larchmt) 2009; 28:51-7. [PMID: 19207011 DOI: 10.1089/hyb.2008.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor (VEGF) and its related member, placental growth factor (PlGF), play important roles in stimulating vascular growth (angiogenesis) in both physiological conditions such as embryonic development and pathological conditions such as inflammation and tumor growth. Development of monoclonal antibodies (MAbs) capable of blocking the interaction of VEGF and its receptors, which in turn block VEGF-mediated angiogenesis, has become a novel and very powerful approach for cancer management. Here we report the generation of a mouse monoclonal antibody M23, which binds to both the natural and denatured forms of human VEGF165, as well as to two other major VEGF isoforms (VEGF121 and VEGF189) being tested. MAb M23 does not bind to other VEGF-related proteins such as PlGF. This MAb will have great future potential in VEGF-related research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Hong-Qun Hu
- Stainwei Biotech, Inc., Suzhou 215125, China
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 2009; 284:10890-900. [PMID: 19208630 DOI: 10.1074/jbc.m807994200] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted glycoprotein sclerostin has recently emerged as a key negative regulator of Wnt signaling in bone and has stimulated considerable interest as a potential target for therapeutics designed to treat conditions associated with low bone mass, such as osteoporosis. We have determined the structure of sclerostin, which resulted in the identification of a previously unknown binding site for heparin, suggestive of a functional role in localizing sclerostin to the surface of target cells. We have also mapped the interaction site for an antibody that blocks the inhibition of Wnt signaling by sclerostin. This shows minimal overlap with the heparin binding site and highlights a key role for this region of sclerostin in protein interactions associated with the inhibition of Wnt signaling. The conserved N- and C-terminal arms of sclerostin were found to be unstructured, highly flexible, and unaffected by heparin binding, which suggests a role in stabilizing interactions with target proteins.
Collapse
Affiliation(s)
- Vaclav Veverka
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Yamazaki Y, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M, Morita T. Snake venom Vascular Endothelial Growth Factors (VEGF-Fs) exclusively vary their structures and functions among species. J Biol Chem 2009; 284:9885-91. [PMID: 19208624 DOI: 10.1074/jbc.m809071200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF-A) and its family proteins are crucial regulators of blood vessel formation and vascular permeability. Snake venom has recently been shown to be an exogenous source of unique VEGF (known as VEGF-F), and now, two types of VEGF-F with distinct biochemical properties have been reported. Here, we show that VEGF-Fs (venom-type VEGFs) are highly variable in structure and function among species, in contrast to endogenous tissue-type VEGFs (VEGF-As) of snakes. Although the structures of tissue-type VEGFs are highly conserved among venomous snake species and even among all vertebrates, including humans, those of venom-type VEGFs are extensively variegated, especially in the regions around receptor-binding loops and C-terminal putative coreceptor-binding regions, indicating that highly frequent variations are located around functionally key regions of the proteins. Genetic analyses suggest that venom-type VEGF gene may have developed from a tissue-type gene and that the unique sequence of its C-terminal region was generated by an alteration in the translation frame in the corresponding exons. We further verified that a novel venom-type VEGF from Bitis arietans displays unique properties distinct from already known VEGFs. Our results may provide evidence of a novel mechanism causing the generation of multiple snake toxins and also of a new model of molecular evolution.
Collapse
Affiliation(s)
- Yasuo Yamazaki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | |
Collapse
|
178
|
Kurtagic E, Jedrychowski MP, Nugent MA. Neutrophil elastase cleaves VEGF to generate a VEGF fragment with altered activity. Am J Physiol Lung Cell Mol Physiol 2009; 296:L534-46. [PMID: 19136576 DOI: 10.1152/ajplung.90505.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Excessive neutrophil elastase (NE) activity and altered vascular endothelial growth factor (VEGF) signaling have independently been implicated in the development and progression of pulmonary emphysema. In the present study, we investigated the potential link between NE and VEGF. We noted that VEGF(165) is a substrate for NE. Digestion of purified VEGF(165) with NE generated a partially degraded disulfide-linked fragment of VEGF. Mass spectrometric analysis revealed that NE likely cleaves VEGF(165) at both the NH(2) and COOH termini to produce VEGF fragment chains approximately 5 kDa reduced in size. NE treatment of VEGF-laden endothelial cell cultures and smooth muscle cells endogenously expressing VEGF generated VEGF fragments similar to those observed with purified VEGF(165). NE-generated VEGF fragment showed significantly reduced binding to VEGF receptor 2 and heparin yet retained the ability to bind to VEGF receptor 1. Interestingly, VEGF fragment showed altered signaling in pulmonary artery endothelial cells compared with intact VEGF(165). Specifically, treatment with VEGF fragment did not activate extracellular-regulated kinases 1 and 2 (ERK1/2), yet resulted in enhanced activation of protein kinase B (Akt). Treatment of monocyte/macrophage RAW 264.7 cells with VEGF fragment, on the other hand, led to both Akt and ERK1/2 activation, increased VEGFR1 expression, and stimulated chemotaxis. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment and activation via VEGF receptor 1.
Collapse
Affiliation(s)
- Elma Kurtagic
- Departments of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
179
|
Abstract
Several cytokine families have roles in the development, maintenance, and remodeling of the microcirculation. Of these, the vascular endothelial growth factor (VEGF) family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell-surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth-factor expression, processing, and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
180
|
Crawford Y, Ferrara N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 2008; 335:261-9. [PMID: 18766380 DOI: 10.1007/s00441-008-0675-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/29/2008] [Indexed: 12/27/2022]
Abstract
Angiogenesis, the growth of new blood vessels, is required for a variety of normal proliferative processes. Furthermore, angiogenesis is well established as also playing an important role in neoplastic growth and metastasis. Numerous regulators of angiogenesis have been identified and characterized over the last few decades. Among these, vascular endothelial growth factor (VEGF)-A appears especially important in several pathophysiological processes. Several VEGF inhibitors have been approved, by the US Food and Drug Administration, for the treatment of tumors or age-releted macular degeneration. This review examines the various mouse tumor models in which VEGF inhibitors have been tested and the lessons learned from these studies.
Collapse
|
181
|
Nagy JA, Dvorak AM, Dvorak HF. VEGF-A and the induction of pathological angiogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:251-75. [PMID: 18039100 DOI: 10.1146/annurev.pathol.2.010506.134925] [Citation(s) in RCA: 314] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors, wounds, and chronic inflammatory disorders generate a new vascular supply by a process known as pathological angiogenesis. Whereas formation of the normal blood vasculature requires the interaction of many different agonists and inhibitors, including vascular endothelial growth factor-A (VEGF-A) and other members of the vascular permeability factor/VEGF family, pathological angiogenesis is a cruder, simpler process that can be replicated by a single VEGF-A isoform, VEGF-A(164/5). VEGF-A(164/5) induces the formation of several distinctly different types of new blood vessels that differ from normal blood vessels with respect to organization, structure, and function. Elucidating the properties of these new vessels has led to a better understanding of angiogenesis and will hopefully lead to new approaches to antiangiogenic therapy.
Collapse
Affiliation(s)
- Janice A Nagy
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
182
|
Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N. Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. J Pept Sci 2008; 14:767-72. [PMID: 18044812 DOI: 10.1002/psc.965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysregulated angiogenesis is implicated in several pathologies, including cancer and age-related macular degeneration. A potential antiangiogenic strategy consists in developing VEGF receptor ligands capable of preventing VEGF binding and the subsequent activation of these receptors. Herein, we describe the structure-based design of a VEGF-mimicking peptide, VG3F. This 25-mer peptide was doubly cyclized, on-resin, by formation of both a disulfide bridge and an intramolecular amide bond to constrain it to adopt a bioactive conformation. Tested on in vitro assays, VG3F was able to prevent VEGF binding to VEGF receptor 1 and inhibit both VEGF-induced signal transduction and cell migration.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, Paris, France
| | | | | | | | | |
Collapse
|
183
|
Kasap M, Sazci A. The comparison of VEGFR-1-binding domain of VEGF-A with modelled VEGF-C sheds light on receptor specificity. J Theor Biol 2008; 253:446-51. [DOI: 10.1016/j.jtbi.2008.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 02/14/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|
184
|
Patel ZS, Ueda H, Yamamoto M, Tabata Y, Mikos AG. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Pharm Res 2008; 25:2370-8. [PMID: 18663411 DOI: 10.1007/s11095-008-9685-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/24/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE This work evaluated gelatin microparticles and biodegradable composite scaffolds for the controlled release of vascular endothelial growth factor (VEGF) in vitro and in vivo. METHODS Gelatin crosslinking, VEGF dose, and buffer type were investigated for their effects on VEGF release. Release was also evaluated from microparticles confined within porous polymer scaffolds (composites). In vitro and in vivo studies were conducted using radiolabeled VEGF. RESULTS The effect of VEGF dose on its fractional release from gelatin microparticles in vitro was minimal, but the addition of collagenase to the buffer resulted in a higher cumulative release of VEGF. Gelatin crosslinking extent was a significant factor on release from both microparticles alone and composite scaffolds in vitro and in vivo. VEGF bioactivity from composite scaffolds in vitro was maintained above 90% of the expected bioactivity over 14 days. CONCLUSIONS VEGF release kinetics were dependent on the extent of gelatin crosslinking and were characteristic of the specific growth factor due to the effects of growth factor size, charge, and conformation on its complexation with gelatin. These studies demonstrate the utility of gelatin microparticles and their composite scaffolds as delivery vehicles for the controlled release of VEGF for tissue engineering applications.
Collapse
Affiliation(s)
- Zarana S Patel
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, Texas 77251-1892, USA
| | | | | | | | | |
Collapse
|
185
|
Heinzman JM, Brower SL, Bush JE. Comparison of angiogenesis-related factor expression in primary tumor cultures under normal and hypoxic growth conditions. Cancer Cell Int 2008; 8:11. [PMID: 18616824 PMCID: PMC2474581 DOI: 10.1186/1475-2867-8-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background A localized hypoxic environment occurs during tumor growth necessitating an angiogenic response or tumor necrosis results. Novel cancer treatment strategies take advantage of tumor-induced vascularisation by combining standard chemotherapeutic agents with angiogenesis-inhibiting agents. This has extended the progression-free interval and prolonged survival in patients with various types of cancer. We postulated that the expression levels of angiogenesis-related proteins from various primary tumor cultures would be greater under hypoxic conditions than under normoxia. Methods Fifty cell sources, including both immortalized cell lines and primary carcinoma cells, were incubated under normoxic conditions for 48 hours. Then, cells were either transferred to a hypoxic environment (1% O2) or maintained at normoxic conditions for an additional 48 hours. Cell culture media from both conditions was collected and analyzed via an ELISA-based assay to determine expression levels of 11 angiogenesis-related factors: VEGF, PDGF-AA, PDGF-AA/BB, IL-8, bFGF/FGF-2, EGF, IP-10/CXCL10, Flt-3 ligand, TGF-β1, TGF-β2, and TGF-β3. Results A linear correlation between normoxic and hypoxic growth conditions exists for expression levels of eight of eleven angiogenesis-related proteins tested including: VEGF, IL-8, PDGF-AA, PDGF-AA/BB, TGF-β1, TGF-β2, EGF, and IP-10. For VEGF, the target of current therapies, this correlation between hypoxia and higher cytokine levels was greater in primary breast and lung carcinoma cells than in ovarian carcinoma cells or tumor cell lines. Of interest, patient cell isolates differed in the precise pattern of elevated cytokines. Conclusion As linear correlations exist between expression levels of angiogenic factors under normoxic and hypoxic conditions in vitro, we propose that explanted primary cells may be used to probe the in vivo hypoxic environment. Furthermore, differential expression levels for each sample across all proteins examined suggests it may be possible to build a predictor for angiogenesis-related anticancer agents, as each sample has a unique expression profile. Further studies should be performed to correlate in vitro protein expression levels of angiogenesis-related factors with in vivo patient response.
Collapse
Affiliation(s)
- Jamie M Heinzman
- Research and Development, Precision Therapeutics, Inc,, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
186
|
Peterson KJ, Sadowsky JD, Scheef EA, Pal S, Kourentzi KD, Willson RC, Bresnick EH, Sheibani N, Gellman SH. A fluorescence polarization assay for identifying ligands that bind to vascular endothelial growth factor. Anal Biochem 2008; 378:8-14. [PMID: 18413228 PMCID: PMC2814342 DOI: 10.1016/j.ab.2008.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/11/2008] [Accepted: 03/24/2008] [Indexed: 12/30/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a homodimeric proangiogenic protein that induces endothelial cell migration and proliferation primarily through interactions with its major receptors, VEGFR-1 and VEGFR-2. Inhibitors of one or both of these VEGF-receptor interactions could be beneficial as therapeutics for diseases caused by dysfunctional angiogenesis (e.g., cancer). Others have reported small peptides that bind to the VEGF dimer at surface regions that are recognized by the receptors. Here we report the development of a fluorescence polarization assay based on the binding to VEGF of a derivative of one of these peptides that has been labeled with BODIPY-tetramethylrhodamine (BODIPY(TMR)). This 384-well format assay is tolerant to dimethyl sulfoxide (DMSO, up to 4% [v/v]) and has a Z' factor of 0.76, making it useful for identifying molecules that associate with the receptor-binding surface of the VEGF dimer.
Collapse
Affiliation(s)
| | - Jack D. Sadowsky
- Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Elizabeth A. Scheef
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53792
| | - Soumen Pal
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
| | - Katerina D. Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706
| | - Nader Sheibani
- Department of Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53792
| | | |
Collapse
|
187
|
Udugamasooriya DG, Ritchie C, Brekken RA, Kodadek T. A peptoid antagonist of VEGF receptor 2 recognizes a 'hotspot' in the extracellular domain distinct from the hormone-binding site. Bioorg Med Chem 2008; 16:6338-43. [PMID: 18501615 PMCID: PMC2460570 DOI: 10.1016/j.bmc.2008.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 01/16/2023]
Abstract
Antagonists of VEGF-mediated angiogenesis are of great interest clinically for the treatment of solid tumors and certain forms of macular degeneration. We recently described a novel peptoid antagonist of VEGF Receptor 2 (VEGFR2) that binds to the extracellular domain of the receptor and inhibits VEGF-mediated autophosphorylation and subsequent downstream signaling. Given the structural similarities between peptides and peptoids, an obvious model for the mode of action of the peptoid is that it competes with VEGF for binding to VEGFR2. However, we present evidence here that this is not the case and that VEGF and the peptoid antagonist recognize non-overlapping surfaces located within the first three immunoglobulin-like subdomains of the receptor. These data argue that the peptoid inhibits receptor-mediated autophosphorylation by a novel allosteric mechanism that may prevent the receptor from acquiring the conformation necessary to propagate downstream signals.
Collapse
Affiliation(s)
- D. Gomika Udugamasooriya
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Caroline Ritchie
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Rolf A. Brekken
- Departments of Surgery and pharmacology, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Thomas Kodadek
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| |
Collapse
|
188
|
Kawamura H, Li X, Harper SJ, Bates DO, Claesson-Welsh L. Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res 2008; 68:4683-92. [PMID: 18559514 DOI: 10.1158/0008-5472.can-07-6577] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF)-A165b is a COOH-terminal splice variant of VEGF-A that has been implicated in negative regulation of angiogenesis. We compared the properties of VEGF-A165b with those of VEGF-A121, VEGF-A145, and VEGF-A165. Induction of tyrosine phosphorylation sites in VEGFR-2 differed between the VEGF ligands as determined by tryptic phosphopeptide mapping and by use of phosphosite-specific antibodies. VEGF-A165b was considerably poorer in inducing phosphorylation of the positive regulatory site Y1052 in VEGFR-2. Whereas this did not affect activation of VEGFR-2 in vitro, we show that VEGF-A165b failed to induce vasculogenesis and sprouting angiogenesis in differentiating embryonic stem cells and vascularization of s.c. Matrigel plugs. In addition, the ability of the different VEGF ligands to induce angiogenesis correlated with their abilities to bind the VEGF coreceptor neuropilin 1 (NRP1). Our data indicate that loss of VEGFR-2/NRP1 complex formation and Y1052 phosphorylation contribute to the lack of angiogenic properties of VEGF-A165b.
Collapse
Affiliation(s)
- Harukiyo Kawamura
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
189
|
Gutierrez J, Konecny GE, Hong K, Burges A, Henry TD, Lambiase PD, Lee Wong W, Meng YG. A new ELISA for use in a 3-ELISA system to assess concentrations of VEGF splice variants and VEGF(110) in ovarian cancer tumors. Clin Chem 2008; 54:597-601. [PMID: 18310147 DOI: 10.1373/clinchem.2007.096099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF), which affects tumor angiogenesis, is expressed as different splice variants, including the major isoforms VEGF(165) and VEGF(121), and can be cleaved by plasmin to generate VEGF(110). The amount of VEGF(121) and VEGF(110) in biological samples has not been well studied. METHODS We developed an ELISA that detects VEGF(165) and VEGF(121) equally, but does not detect VEGF(110). We used this ELISA together with 2 other ELISAs, one detecting VEGF(165) and the other detecting VEGF(165), VEGF(121), and VEGF(110) equally, to assess the concentrations of VEGF(121) and VEGF(110) in ovarian cancer tumors. RESULTS The median concentrations in ovarian cancer tumor lysates were 0.61 (range <0.055-74) fmol/mg protein for VEGF(165), 1.4 (range <0.20-500) fmol/mg protein for VEGF(165) plus VEGF(121), and 2.3 (range <0.079-520) fmol/mg protein for total VEGF including VEGF(110) (n = 248). VEGF concentrations measured by the 3 ELISAs were highly correlated (r = 0.91-0.94). Median estimated VEGF(121) and VEGF(110) concentrations were 0.77 and 0.58 fmol/mg protein, respectively. In lysates with measurable VEGF(165) and total VEGF concentrations, mean VEGF(165) was approximately 31% (SD 23%) of the total VEGF (n = 217). In contrast, VEGF(165) constituted approximately half of the total circulating VEGF. CONCLUSION VEGF(165), VEGF(121), and VEGF(110) may be present at significant amounts in ovarian cancer tumors.
Collapse
Affiliation(s)
- Johnny Gutierrez
- Department of Assay and Automation Technology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater 2008; 4:477-89. [PMID: 18328795 DOI: 10.1016/j.actbio.2007.12.011] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/20/2007] [Accepted: 12/18/2007] [Indexed: 11/19/2022]
Abstract
A key challenge in engineering functional tissues in vitro is the limited transport capacity of oxygen and nutrients into the tissue. Inducing vascularization within engineered tissues is a key strategy to improving their survival in vitro and in vivo. The presence of vascular endothelial growth factor (VEGF) in a three-dimensional porous collagen scaffold may provide a useful strategy to promote vascularization of the engineered tissue in a controlled manner. To this end, we investigated whether immobilized VEGF could promote the invasion and assembly of endothelial cells (ECs) into the collagen scaffolds. We conjugated VEGF onto collagen scaffolds using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride chemistry, and measured the concentrations of immobilized VEGF in collagen scaffolds by direct VEGF enzyme-linked immunosorbent assay. We demonstrated that immobilized VEGF (relative to soluble VEGF) promoted the penetration and proliferation of ECs in the collagen scaffold, based on results of cell density analysis in histological sections, immunohistochemistry, XTT proliferation assay, glucose consumption and lactate production. Furthermore, we observed increased viability of ECs cultured in scaffolds with immobilized VEGF relative to soluble VEGF. This research demonstrates that immobilization of VEGF is a useful strategy to promote the invasion and proliferation of ECs into a scaffold, which may in turn lead to a vascularized scaffold.
Collapse
Affiliation(s)
- Yi Hao Shen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Rm. 407, Toronto, Ontario, Canada M5S 3G9
| | | | | |
Collapse
|
191
|
Udugamasooriya DG, Dineen SP, Brekken RA, Kodadek T. A peptoid "antibody surrogate" that antagonizes VEGF receptor 2 activity. J Am Chem Soc 2008; 130:5744-52. [PMID: 18386897 DOI: 10.1021/ja711193x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a two-color, cell-based screen to identify specific receptor-binding compounds in a combinatorial library of peptoids displayed on beads. We apply this strategy to the isolation of vascular endothelial growth factor receptor 2 (VEGFR2)-binding peptoids. A dimeric derivative of one of these lead compounds is shown to be an antagonist of VEGFR2 activity both in vitro and in vivo. This methodology provides a potentially general route to synthetic molecules that bind integral membrane receptors with affinities and specificities similar to those of antibodies, but which are far smaller and easier to make and manipulate.
Collapse
Affiliation(s)
- D Gomika Udugamasooriya
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185, USA
| | | | | | | |
Collapse
|
192
|
Improvement of Aptamer Affinity by Dimerization. SENSORS 2008; 8:1090-1098. [PMID: 27879754 PMCID: PMC3927496 DOI: 10.3390/s8021090] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
Abstract
To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets.
Collapse
|
193
|
Abstract
Targeting the interfaces between proteins has huge therapeutic potential, but discovering small-molecule drugs that disrupt protein-protein interactions is an enormous challenge. Several recent success stories, however, indicate that protein-protein interfaces might be more tractable than has been thought. These studies discovered small molecules that bind with drug-like potencies to 'hotspots' on the contact surfaces involved in protein-protein interactions. Remarkably, these small molecules bind deeper within the contact surface of the target protein, and bind with much higher efficiencies, than do the contact atoms of the natural protein partner. Some of these small molecules are now making their way through clinical trials, so this high-hanging fruit might not be far out of reach.
Collapse
|
194
|
Xie D, Annex BH, Donatucci CF. Growth factors for therapeutic angiogenesis in hypercholesterolemic erectile dysfunction. Asian J Androl 2008; 10:23-7. [DOI: 10.1111/j.1745-7262.2008.00372.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
195
|
Abstract
Angiogenesis, the growth of new blood vessels, is required for a variety of normal proliferative processes. Furthermore, it is well established that angiogenesis plays an important role also in neoplastic growth and metastasis. Numerous regulators of angiogenesis have been identified and characterized over the last decades. Among these, vascular endothelial growth factor (VEGF)-A appears especially important in several pathophysiological processes. Several VEGF inhibitors have been approved by the Food and Drug Administration for the treatment of tumors or age-related macular degeneration. This chapter examines the various mouse tumor models in which VEGF inhibitors have been tested and the lessons learned from these studies.
Collapse
|
196
|
Kazlauskas A. Platelet-Derived Growth Factor. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
197
|
Inder MK, Wise LM, Fleming SB, Mercer AA. The C-terminus of viral vascular endothelial growth factor-E partially blocks binding to VEGF receptor-1. FEBS J 2007; 275:207-17. [PMID: 18076652 DOI: 10.1111/j.1742-4658.2007.06189.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular endothelial growth factor (VEGF) family members play important roles in embryonic development and angiogenesis during wound healing and in pathological conditions such as tumor formation. Parapoxviruses express a new member of the VEGF family which is a functional mitogen that specifically activates VEGF receptor (VEGFR)-2 but not VEGFR-1. In this study, we show that deletion from the viral VEGF of a unique C-terminal region increases both VEGFR-1 binding and VEGFR-1-mediated monocyte migration. Enzymatic removal of O-linked glycosylation from the C-terminus also increased VEGFR-1 binding and migration of THP-1 monocytes indicating that both the C-terminal residues and O-linked sugars contribute to blocking viral VEGF binding to VEGFR-1. The data suggest that conservation of the C-terminal residues throughout the viral VEGF subfamily may represent a means of reducing the immunostimulatory activities associated with VEGFR-1 activation while maintaining the ability to induce angiogenesis via VEGFR-2.
Collapse
Affiliation(s)
- Marie K Inder
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
198
|
|
199
|
Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007; 19:2003-12. [PMID: 17658244 DOI: 10.1016/j.cellsig.2007.05.013] [Citation(s) in RCA: 741] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/08/2007] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factors (VEGFs) regulate vascular development, angiogenesis and lymphangiogenesis by binding to a number of receptors. VEGFR-1 is required for the recruitment of haematopoietic stem cells and the migration of monocytes and macrophages, VEGFR-2 regulates vascular endothelial function and VEGFR-3 regulates lymphatic endothelial cell function. Over the last decade, considerable progress has been made in delineating the VEGFR-2 specific intracellular signalling cascades leading to proliferation, migration, survival and increased permeability, each of which contributes to the angiogenic response. Furthermore, therapeutic inhibition of VEGFR-2 action is now having an impact in the clinic for the treatment of a number of diseases.
Collapse
Affiliation(s)
- Katherine Holmes
- North West Cancer Research Fund Institute, School of Biological Sciences, College of Natural Sciences, University of Wales, Bangor, UK
| | | | | | | |
Collapse
|
200
|
Goncalves V, Gautier B, Regazzetti A, Coric P, Bouaziz S, Garbay C, Vidal M, Inguimbert N. On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition. Bioorg Med Chem Lett 2007; 17:5590-4. [PMID: 17826090 DOI: 10.1016/j.bmcl.2007.07.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Cyclic peptides were obtained, on-resin, by the copper (I) catalysed 1,3-dipolar cycloaddition of azides and alkynes. The reaction led exclusively to the formation of the expected cyclomonomeric products which acted as ligands of the Vascular Endothelial Growth Factor receptor 1.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 rue des saints Pères, F-75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|