151
|
Zhang J, Lu H, Jiang Y, Ma Y, Deng L. ncRNA Coding Potential Prediction Using BiLSTM and Transformer Encoder-Based Model. J Chem Inf Model 2024; 64:6712-6722. [PMID: 39120528 DOI: 10.1021/acs.jcim.4c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Many noncoding RNAs (ncRNAs) have been identified, and many of them play vital roles in various biological processes, including gene expression regulation, epigenetic regulation, transcription, and control. Recently, a few observations revealed that ncRNAs are translated into functional peptides. Moreover, many computational methods have been developed to predict the coding potential of these transcripts, which contributes to a deeper investigation of their functions. However, most of these are used to distinguish ncRNAs and mRNAs. It is important to develop a highly accurate computational tool for identifying the coding potential of ncRNAs, thereby contributing to the discovery of novel peptides. In this Article, we propose a novel BiLSTM And Transformer encoder-based model (nBAT) with intrinsic features encoded for ncRNA coding potential prediction. In nBAT, we introduce a learnable position encoding mechanism to better obtain the embeddings of the ncRNA sequence. Moreover, we extract 43 intrinsic features from different perspectives and encode these features into the Transformer encoder by calculating their distances. Our performance comparisons show that nBAT achieves a superior performance than the state-of-the-art methods for coding potential prediction on different datasets. We also apply the method to new ncRNAs for identifying the coding potential, and the results further indicate the competitive performance of nBAT. We expect the method can be exploited as a useful tool for high-throughput coding potential prediction for ncRNAs.
Collapse
Affiliation(s)
- Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Hao Lu
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Ying Jiang
- School of Computer Science and Engineering, Central South University, Changsha 410018, China
| | - Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410018, China
| |
Collapse
|
152
|
Zhai J, Gokaslan A, Schiff Y, Berthel A, Liu ZY, Lai WY, Miller ZR, Scheben A, Stitzer MC, Romay MC, Buckler ES, Kuleshov V. Cross-species modeling of plant genomes at single nucleotide resolution using a pre-trained DNA language model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596709. [PMID: 38895432 PMCID: PMC11185591 DOI: 10.1101/2024.06.04.596709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Interpreting function and fitness effects in diverse plant genomes requires transferable models. Language models (LMs) pre-trained on large-scale biological sequences can learn evolutionary conservation and offer cross-species prediction better than supervised models through fine-tuning limited labeled data. We introduce PlantCaduceus, a plant DNA LM based on the Caduceus and Mamba architectures, pre-trained on a curated dataset of 16 Angiosperm genomes. Fine-tuning PlantCaduceus on limited labeled Arabidopsis data for four tasks, including predicting translation initiation/termination sites and splice donor and acceptor sites, demonstrated high transferability to 160 million year diverged maize, outperforming the best existing DNA LM by 1.45 to 7.23-fold. PlantCaduceus is competitive to state-of-the-art protein LMs in terms of deleterious mutation identification, and is threefold better than PhyloP. Additionally, PlantCaduceus successfully identifies well-known causal variants in both Arabidopsis and maize. Overall, PlantCaduceus is a versatile DNA LM that can accelerate plant genomics and crop breeding applications.
Collapse
Affiliation(s)
- Jingjing Zhai
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
| | - Aaron Gokaslan
- Department of Computer Science, Cornell University, Ithaca, NY, USA 14853
| | - Yair Schiff
- Department of Computer Science, Cornell University, Ithaca, NY, USA 14853
| | - Ana Berthel
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
| | - Zong-Yan Liu
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY USA 14853
| | - Wei-Yun Lai
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
| | - Zachary R. Miller
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY USA 11724
| | | | - M. Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY USA 14853
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY USA 14853
- USDA-ARS; Ithaca, NY, USA 14853
| | - Volodymyr Kuleshov
- Department of Computer Science, Cornell University, Ithaca, NY, USA 14853
| |
Collapse
|
153
|
Li S, Moayedpour S, Li R, Bailey M, Riahi S, Kogler-Anele L, Miladi M, Miner J, Pertuy F, Zheng D, Wang J, Balsubramani A, Tran K, Zacharia M, Wu M, Gu X, Clinton R, Asquith C, Skaleski J, Boeglin L, Chivukula S, Dias A, Strugnell T, Montoya FU, Agarwal V, Bar-Joseph Z, Jager S. CodonBERT large language model for mRNA vaccines. Genome Res 2024; 34:1027-1035. [PMID: 38951026 PMCID: PMC11368176 DOI: 10.1101/gr.278870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
mRNA-based vaccines and therapeutics are gaining popularity and usage across a wide range of conditions. One of the critical issues when designing such mRNAs is sequence optimization. Even small proteins or peptides can be encoded by an enormously large number of mRNAs. The actual mRNA sequence can have a large impact on several properties, including expression, stability, immunogenicity, and more. To enable the selection of an optimal sequence, we developed CodonBERT, a large language model (LLM) for mRNAs. Unlike prior models, CodonBERT uses codons as inputs, which enables it to learn better representations. CodonBERT was trained using more than 10 million mRNA sequences from a diverse set of organisms. The resulting model captures important biological concepts. CodonBERT can also be extended to perform prediction tasks for various mRNA properties. CodonBERT outperforms previous mRNA prediction methods, including on a new flu vaccine data set.
Collapse
Affiliation(s)
- Sizhen Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Ruijiang Li
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Michael Bailey
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | - Saleh Riahi
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| | | | - Milad Miladi
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jacob Miner
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Fabien Pertuy
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Dinghai Zheng
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Jun Wang
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Khang Tran
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Minnie Zacharia
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Monica Wu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Xiaobo Gu
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ryan Clinton
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Carla Asquith
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Joseph Skaleski
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Lianne Boeglin
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Sudha Chivukula
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Anusha Dias
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Tod Strugnell
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | | | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi, Waltham, Massachusetts 02451, USA
| | - Ziv Bar-Joseph
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA;
| | - Sven Jager
- Digital R&D, Sanofi, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
154
|
Wang B, Li W. Advances in the Application of Protein Language Modeling for Nucleic Acid Protein Binding Site Prediction. Genes (Basel) 2024; 15:1090. [PMID: 39202449 PMCID: PMC11353971 DOI: 10.3390/genes15081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Protein and nucleic acid binding site prediction is a critical computational task that benefits a wide range of biological processes. Previous studies have shown that feature selection holds particular significance for this prediction task, making the generation of more discriminative features a key area of interest for many researchers. Recent progress has shown the power of protein language models in handling protein sequences, in leveraging the strengths of attention networks, and in successful applications to tasks such as protein structure prediction. This naturally raises the question of the applicability of protein language models in predicting protein and nucleic acid binding sites. Various approaches have explored this potential. This paper first describes the development of protein language models. Then, a systematic review of the latest methods for predicting protein and nucleic acid binding sites is conducted by covering benchmark sets, feature generation methods, performance comparisons, and feature ablation studies. These comparisons demonstrate the importance of protein language models for the prediction task. Finally, the paper discusses the challenges of protein and nucleic acid binding site prediction and proposes possible research directions and future trends. The purpose of this survey is to furnish researchers with actionable suggestions for comprehending the methodologies used in predicting protein-nucleic acid binding sites, fostering the creation of protein-centric language models, and tackling real-world obstacles encountered in this field.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China;
| |
Collapse
|
155
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
156
|
Malusare A, Kothandaraman H, Tamboli D, Lanman NA, Aggarwal V. Understanding the natural language of DNA using encoder-decoder foundation models with byte-level precision. BIOINFORMATICS ADVANCES 2024; 4:vbae117. [PMID: 39176288 PMCID: PMC11341122 DOI: 10.1093/bioadv/vbae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Summary This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results. Availability and implementation The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).
Collapse
Affiliation(s)
- Aditya Malusare
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Harish Kothandaraman
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Dipesh Tamboli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, United States
| | - Vaneet Aggarwal
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
157
|
Du D, Zhong F, Liu L. Enhancing recognition and interpretation of functional phenotypic sequences through fine-tuning pre-trained genomic models. J Transl Med 2024; 22:756. [PMID: 39135093 PMCID: PMC11318145 DOI: 10.1186/s12967-024-05567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Decoding human genomic sequences requires comprehensive analysis of DNA sequence functionality. Through computational and experimental approaches, researchers have studied the genotype-phenotype relationship and generate important datasets that help unravel complicated genetic blueprints. Thus, the recently developed artificial intelligence methods can be used to interpret the functions of those DNA sequences. METHODS This study explores the use of deep learning, particularly pre-trained genomic models like DNA_bert_6 and human_gpt2-v1, in interpreting and representing human genome sequences. Initially, we meticulously constructed multiple datasets linking genotypes and phenotypes to fine-tune those models for precise DNA sequence classification. Additionally, we evaluate the influence of sequence length on classification results and analyze the impact of feature extraction in the hidden layers of our model using the HERV dataset. To enhance our understanding of phenotype-specific patterns recognized by the model, we perform enrichment, pathogenicity and conservation analyzes of specific motifs in the human endogenous retrovirus (HERV) sequence with high average local representation weight (ALRW) scores. RESULTS We have constructed multiple genotype-phenotype datasets displaying commendable classification performance in comparison with random genomic sequences, particularly in the HERV dataset, which achieved binary and multi-classification accuracies and F1 values exceeding 0.935 and 0.888, respectively. Notably, the fine-tuning of the HERV dataset not only improved our ability to identify and distinguish diverse information types within DNA sequences but also successfully identified specific motifs associated with neurological disorders and cancers in regions with high ALRW scores. Subsequent analysis of these motifs shed light on the adaptive responses of species to environmental pressures and their co-evolution with pathogens. CONCLUSIONS These findings highlight the potential of pre-trained genomic models in learning DNA sequence representations, particularly when utilizing the HERV dataset, and provide valuable insights for future research endeavors. This study represents an innovative strategy that combines pre-trained genomic model representations with classical methods for analyzing the functionality of genome sequences, thereby promoting cross-fertilization between genomics and artificial intelligence.
Collapse
Affiliation(s)
- Duo Du
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- School of Basic Medical Sciences and Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
158
|
Wang XF, Yu CQ, You ZH, Wang Y, Huang L, Qiao Y, Wang L, Li ZW. BEROLECMI: a novel prediction method to infer circRNA-miRNA interaction from the role definition of molecular attributes and biological networks. BMC Bioinformatics 2024; 25:264. [PMID: 39127625 DOI: 10.1186/s12859-024-05891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Circular RNA (CircRNA)-microRNA (miRNA) interaction (CMI) is an important model for the regulation of biological processes by non-coding RNA (ncRNA), which provides a new perspective for the study of human complex diseases. However, the existing CMI prediction models mainly rely on the nearest neighbor structure in the biological network, ignoring the molecular network topology, so it is difficult to improve the prediction performance. In this paper, we proposed a new CMI prediction method, BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, and biological network topology to define the specific role feature representation for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack of network topology in the CMI prediction model and achieves the highest prediction performance in three commonly used data sets. In the case study, 14 of the 15 pairs of unknown CMIs were correctly predicted.
Collapse
Affiliation(s)
- Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi'an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an, China.
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
- School of Artificial Intelligence, Jilin University, Changchun, China.
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yan Qiao
- College of Agriculture and Forestry, Longdong University, Qingyang, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
- Guangxi Academy of Sciences, Nanning, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
159
|
Hong L, Hu Z, Sun S, Tang X, Wang J, Tan Q, Zheng L, Wang S, Xu S, King I, Gerstein M, Li Y. Fast, sensitive detection of protein homologs using deep dense retrieval. Nat Biotechnol 2024:10.1038/s41587-024-02353-6. [PMID: 39123049 DOI: 10.1038/s41587-024-02353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The identification of protein homologs in large databases using conventional methods, such as protein sequence comparison, often misses remote homologs. Here, we offer an ultrafast, highly sensitive method, dense homolog retriever (DHR), for detecting homologs on the basis of a protein language model and dense retrieval techniques. Its dual-encoder architecture generates different embeddings for the same protein sequence and easily locates homologs by comparing these representations. Its alignment-free nature improves speed and the protein language model incorporates rich evolutionary and structural information within DHR embeddings. DHR achieves a >10% increase in sensitivity compared to previous methods and a >56% increase in sensitivity at the superfamily level for samples that are challenging to identify using alignment-based approaches. It is up to 22 times faster than traditional methods such as PSI-BLAST and DIAMOND and up to 28,700 times faster than HMMER. The new remote homologs exclusively found by DHR are useful for revealing connections between well-characterized proteins and improving our knowledge of protein evolution, structure and function.
Collapse
Affiliation(s)
- Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China.
- Shanghai AI Laboratory, Shanghai, China.
| | - Xiangru Tang
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- OneAIM Ltd., Hong Kong SAR, China
| | - Qingxiong Tan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangzhen Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shanghai Zelixir Biotech Company Ltd., Shanghai, China
| | - Sheng Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shanghai Zelixir Biotech Company Ltd., Shanghai, China
| | - Sheng Xu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai AI Laboratory, Shanghai, China
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mark Gerstein
- Department of Computer Science, Yale University, New Haven, CT, USA.
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA.
| | - Yu Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shanghai AI Laboratory, Shanghai, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
160
|
Liu B, Zhang W, Zeng X, Loza M, Park SJ, Nakai K. TF-EPI: an interpretable enhancer-promoter interaction detection method based on Transformer. Front Genet 2024; 15:1444459. [PMID: 39184348 PMCID: PMC11341371 DOI: 10.3389/fgene.2024.1444459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The detection of enhancer-promoter interactions (EPIs) is crucial for understanding gene expression regulation, disease mechanisms, and more. In this study, we developed TF-EPI, a deep learning model based on Transformer designed to detect these interactions solely from DNA sequences. The performance of TF-EPI surpassed that of other state-of-the-art methods on multiple benchmark datasets. Importantly, by utilizing the attention mechanism of the Transformer, we identified distinct cell type-specific motifs and sequences in enhancers and promoters, which were validated against databases such as JASPAR and UniBind, highlighting the potential of our method in discovering new biological insights. Moreover, our analysis of the transcription factors (TFs) corresponding to these motifs and short sequence pairs revealed the heterogeneity and commonality of gene regulatory mechanisms and demonstrated the ability to identify TFs relevant to the source information of the cell line. Finally, the introduction of transfer learning can mitigate the challenges posed by cell type-specific gene regulation, yielding enhanced accuracy in cross-cell line EPI detection. Overall, our work unveils important sequence information for the investigation of enhancer-promoter pairs based on the attention mechanism of the Transformer, providing an important milestone in the investigation of cis-regulatory grammar.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Weihang Zhang
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Xin Zeng
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Martin Loza
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sung-Joon Park
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
161
|
Luo H, Tang L, Zeng M, Yin R, Ding P, Luo L, Li M. BertSNR: an interpretable deep learning framework for single-nucleotide resolution identification of transcription factor binding sites based on DNA language model. Bioinformatics 2024; 40:btae461. [PMID: 39107889 PMCID: PMC11310455 DOI: 10.1093/bioinformatics/btae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
MOTIVATION Transcription factors are pivotal in the regulation of gene expression, and accurate identification of transcription factor binding sites (TFBSs) at high resolution is crucial for understanding the mechanisms underlying gene regulation. The task of identifying TFBSs from DNA sequences is a significant challenge in the field of computational biology today. To address this challenge, a variety of computational approaches have been developed. However, these methods face limitations in their ability to achieve high-resolution identification and often lack interpretability. RESULTS We propose BertSNR, an interpretable deep learning framework for identifying TFBSs at single-nucleotide resolution. BertSNR integrates sequence-level and token-level information by multi-task learning based on pre-trained DNA language models. Benchmarking comparisons show that our BertSNR outperforms the existing state-of-the-art methods in TFBS predictions. Importantly, we enhanced the interpretability of the model through attentional weight visualization and motif analysis, and discovered the subtle relationship between attention weight and motif. Moreover, BertSNR effectively identifies TFBSs in promoter regions, facilitating the study of intricate gene regulation. AVAILABILITY AND IMPLEMENTATION The BertSNR source code can be found at https://github.com/lhy0322/BertSNR.
Collapse
Affiliation(s)
- Hanyu Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
- School of Computer Science, University of South China, Hengyang, Hunan 421001, China
| | - Li Tang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Rui Yin
- Department of Health Outcome and Biomedical Informatics, University of Florida, Gainesville, FL 32611, United States
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, Hunan 421001, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
162
|
Lin J, Luo R, Pinello L. EPInformer: a scalable deep learning framework for gene expression prediction by integrating promoter-enhancer sequences with multimodal epigenomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606099. [PMID: 39131276 PMCID: PMC11312614 DOI: 10.1101/2024.08.01.606099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Transcriptional regulation, critical for cellular differentiation and adaptation to environmental changes, involves coordinated interactions among DNA sequences, regulatory proteins, and chromatin architecture. Despite extensive data from consortia like ENCODE, understanding the dynamics of cis-regulatory elements (CREs) in gene expression remains challenging. Deep learning is a powerful tool for learning gene expression and epigenomic signals from DNA sequences, exhibiting superior performance compared to conventional machine learning approaches. However, even the most advanced deep learning-based methods may fall short in capturing the regulatory effects of distal elements such as enhancers, limiting their predictive accuracy. In addition, these methods may require significant resources to train or to adapt to newly generated data. To address these challenges, we present EPInformer, a scalable deep-learning framework for predicting gene expression by integrating promoter-enhancer interactions with their sequences, epigenomic signals, and chromatin contacts. Our model outperforms existing gene expression prediction models in rigorous cross-chromosome validation, accurately recapitulates enhancer-gene interactions validated by CRISPR perturbation experiments, and identifies crucial transcription factor motifs within regulatory sequences. EPInformer is available as open-source software at https://github.com/pinellolab/EPInformer.
Collapse
Affiliation(s)
- Jiecong Lin
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
| |
Collapse
|
163
|
Chen V, Yang M, Cui W, Kim JS, Talwalkar A, Ma J. Applying interpretable machine learning in computational biology-pitfalls, recommendations and opportunities for new developments. Nat Methods 2024; 21:1454-1461. [PMID: 39122941 PMCID: PMC11348280 DOI: 10.1038/s41592-024-02359-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
Recent advances in machine learning have enabled the development of next-generation predictive models for complex computational biology problems, thereby spurring the use of interpretable machine learning (IML) to unveil biological insights. However, guidelines for using IML in computational biology are generally underdeveloped. We provide an overview of IML methods and evaluation techniques and discuss common pitfalls encountered when applying IML methods to computational biology problems. We also highlight open questions, especially in the era of large language models, and call for collaboration between IML and computational biology researchers.
Collapse
Affiliation(s)
- Valerie Chen
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Muyu Yang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wenbo Cui
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Joon Sik Kim
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ameet Talwalkar
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
164
|
Sokolova K, Chen KM, Hao Y, Zhou J, Troyanskaya OG. Deep Learning Sequence Models for Transcriptional Regulation. Annu Rev Genomics Hum Genet 2024; 25:105-122. [PMID: 38594933 DOI: 10.1146/annurev-genom-021623-024727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Deciphering the regulatory code of gene expression and interpreting the transcriptional effects of genome variation are critical challenges in human genetics. Modern experimental technologies have resulted in an abundance of data, enabling the development of sequence-based deep learning models that link patterns embedded in DNA to the biochemical and regulatory properties contributing to transcriptional regulation, including modeling epigenetic marks, 3D genome organization, and gene expression, with tissue and cell-type specificity. Such methods can predict the functional consequences of any noncoding variant in the human genome, even rare or never-before-observed variants, and systematically characterize their consequences beyond what is tractable from experiments or quantitative genetics studies alone. Recently, the development and application of interpretability approaches have led to the identification of key sequence patterns contributing to the predicted tasks, providing insights into the underlying biological mechanisms learned and revealing opportunities for improvement in future models.
Collapse
Affiliation(s)
- Ksenia Sokolova
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; , ,
| | - Kathleen M Chen
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; , ,
| | - Yun Hao
- Flatiron Institute, Simons Foundation, New York, NY, USA;
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Olga G Troyanskaya
- Princeton Precision Health, Princeton University, Princeton, New Jersey, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA;
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; , ,
| |
Collapse
|
165
|
Madan S, Lentzen M, Brandt J, Rueckert D, Hofmann-Apitius M, Fröhlich H. Transformer models in biomedicine. BMC Med Inform Decis Mak 2024; 24:214. [PMID: 39075407 PMCID: PMC11287876 DOI: 10.1186/s12911-024-02600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Deep neural networks (DNN) have fundamentally revolutionized the artificial intelligence (AI) field. The transformer model is a type of DNN that was originally used for the natural language processing tasks and has since gained more and more attention for processing various kinds of sequential data, including biological sequences and structured electronic health records. Along with this development, transformer-based models such as BioBERT, MedBERT, and MassGenie have been trained and deployed by researchers to answer various scientific questions originating in the biomedical domain. In this paper, we review the development and application of transformer models for analyzing various biomedical-related datasets such as biomedical textual data, protein sequences, medical structured-longitudinal data, and biomedical images as well as graphs. Also, we look at explainable AI strategies that help to comprehend the predictions of transformer-based models. Finally, we discuss the limitations and challenges of current models, and point out emerging novel research directions.
Collapse
Affiliation(s)
- Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
- Institute of Computer Science, University of Bonn, Bonn, 53115, Germany.
| | - Manuel Lentzen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany
| | - Johannes Brandt
- School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University Munich, Munich, Germany
- Department of Computing, Imperial College London, London, UK
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, 53757, Germany.
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
166
|
Dong Y, Chen WH, Zhao XM. VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes. Genome Biol 2024; 25:177. [PMID: 38965579 PMCID: PMC11229495 DOI: 10.1186/s13059-024-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Identifying viruses from metagenomes is a common step to explore the virus composition in the human gut. Here, we introduce VirRep, a hybrid language representation learning framework, for identifying viruses from human gut metagenomes. VirRep combines a context-aware encoder and an evolution-aware encoder to improve sequence representation by incorporating k-mer patterns and sequence homologies. Benchmarking on both simulated and real datasets with varying viral proportions demonstrates that VirRep outperforms state-of-the-art methods. When applied to fecal metagenomes from a colorectal cancer cohort, VirRep identifies 39 high-quality viral species associated with the disease, many of which cannot be detected by existing methods.
Collapse
Affiliation(s)
- Yanqi Dong
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
167
|
Si Y, Zou J, Gao Y, Chuai G, Liu Q, Chen L. Foundation models in molecular biology. BIOPHYSICS REPORTS 2024; 10:135-151. [PMID: 39027316 PMCID: PMC11252241 DOI: 10.52601/bpr.2024.240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 07/20/2024] Open
Abstract
Determining correlations between molecules at various levels is an important topic in molecular biology. Large language models have demonstrated a remarkable ability to capture correlations from large amounts of data in the field of natural language processing as well as image generation, and correlations captured from data using large language models can also be applicable to solving a wide range of specific tasks, hence large language models are also referred to as foundation models. The massive amount of data that exists in the field of molecular biology provides an excellent basis for the development of foundation models, and the recent emergence of foundation models in the field of molecular biology has really pushed the entire field forward. We summarize the foundation models developed based on RNA sequence data, DNA sequence data, protein sequence data, single-cell transcriptome data, and spatial transcriptome data respectively, and further discuss the research directions for the development of foundation models in molecular biology.
Collapse
Affiliation(s)
- Yunda Si
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiawei Zou
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicheng Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Guohui Chuai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Qi Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201804, China
| | - Luonan Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
168
|
Wang X, Yang L, Wang R. mRCat: A Novel CatBoost Predictor for the Binary Classification of mRNA Subcellular Localization by Fusing Large Language Model Representation and Sequence Features. Biomolecules 2024; 14:767. [PMID: 39062481 PMCID: PMC11274395 DOI: 10.3390/biom14070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The subcellular localization of messenger RNAs (mRNAs) is a pivotal aspect of biomolecules, tightly linked to gene regulation and protein synthesis, and offers innovative insights into disease diagnosis and drug development in the field of biomedicine. Several computational methods have been proposed to predict the subcellular localization of mRNAs within cells. However, there remains a deficiency in the accuracy of these predictions. In this study, we propose an mRCat predictor based on the gradient boosting tree algorithm specifically to predict whether mRNAs are localized in the nucleus or in the cytoplasm. This predictor firstly uses large language models to thoroughly explore hidden information within sequences and then integrates traditional sequence features to collectively characterize mRNA gene sequences. Finally, it employs CatBoost as the base classifier for predicting the subcellular localization of mRNAs. The experimental validation on an independent test set demonstrates that mRCat obtained accuracy of 0.761, F1 score of 0.710, MCC of 0.511, and AUROC of 0.751. The results indicate that our method has higher accuracy and robustness compared to other state-of-the-art methods. It is anticipated to offer deep insights for biomolecular research.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
- Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Lixiang Yang
- School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Rong Wang
- School of Electronic Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| |
Collapse
|
169
|
Zhang J, Zhao L, Wang W, Zhang Q, Wang XT, Xing DF, Ren NQ, Lee DJ, Chen C. Large language model for horizontal transfer of resistance gene: From resistance gene prevalence detection to plasmid conjugation rate evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172466. [PMID: 38626826 DOI: 10.1016/j.scitotenv.2024.172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.
Collapse
Affiliation(s)
- Jiabin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
170
|
Peng B, Sun G, Fan Y. iProL: identifying DNA promoters from sequence information based on Longformer pre-trained model. BMC Bioinformatics 2024; 25:224. [PMID: 38918692 PMCID: PMC11201334 DOI: 10.1186/s12859-024-05849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Promoters are essential elements of DNA sequence, usually located in the immediate region of the gene transcription start sites, and play a critical role in the regulation of gene transcription. Its importance in molecular biology and genetics has attracted the research interest of researchers, and it has become a consensus to seek a computational method to efficiently identify promoters. Still, existing methods suffer from imbalanced recognition capabilities for positive and negative samples, and their recognition effect can still be further improved. We conducted research on E. coli promoters and proposed a more advanced prediction model, iProL, based on the Longformer pre-trained model in the field of natural language processing. iProL does not rely on prior biological knowledge but simply uses promoter DNA sequences as plain text to identify promoters. It also combines one-dimensional convolutional neural networks and bidirectional long short-term memory to extract both local and global features. Experimental results show that iProL has a more balanced and superior performance than currently published methods. Additionally, we constructed a novel independent test set following the previous specification and compared iProL with three existing methods on this independent test set.
Collapse
Affiliation(s)
- Binchao Peng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Guicong Sun
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
171
|
Xia Y, Du X, Liu B, Guo S, Huo YX. Species-specific design of artificial promoters by transfer-learning based generative deep-learning model. Nucleic Acids Res 2024; 52:6145-6157. [PMID: 38783063 PMCID: PMC11194083 DOI: 10.1093/nar/gkae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Native prokaryotic promoters share common sequence patterns, but are species dependent. For understudied species with limited data, it is challenging to predict the strength of existing promoters and generate novel promoters. Here, we developed PromoGen, a collection of nucleotide language models to generate species-specific functional promoters, across dozens of species in a data and parameter efficient way. Twenty-seven species-specific models in this collection were finetuned from the pretrained model which was trained on multi-species promoters. When systematically compared with native promoters, the Escherichia coli- and Bacillus subtilis-specific artificial PromoGen-generated promoters (PGPs) were demonstrated to hold all distribution patterns of native promoters. A regression model was developed to score generated either by PromoGen or by another competitive neural network, and the overall score of PGPs is higher. Encouraged by in silico analysis, we further experimentally characterized twenty-two B. subtilis PGPs, results showed that four of tested PGPs reached the strong promoter level while all were active. Furthermore, we developed a user-friendly website to generate species-specific promoters for 27 different species by PromoGen. This work presented an efficient deep-learning strategy for de novo species-specific promoter generation even with limited datasets, providing valuable promoter toolboxes especially for the metabolic engineering of understudied microorganisms.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaowen Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Hebei 063611, China
| |
Collapse
|
172
|
Yaacov A, Ben Cohen G, Landau J, Hope T, Simon I, Rosenberg S. Cancer mutational signatures identification in clinical assays using neural embedding-based representations. Cell Rep Med 2024; 5:101608. [PMID: 38866015 PMCID: PMC11228799 DOI: 10.1016/j.xcrm.2024.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
While mutational signatures provide a plethora of prognostic and therapeutic insights, their application in clinical-setting, targeted gene panels is extremely limited. We develop a mutational representation model (which learns and embeds specific mutation signature connections) that enables prediction of dominant signatures with only a few mutations. We predict the dominant signatures across more than 60,000 tumors with gene panels, delineating their landscape across different cancers. Dominant signature predictions in gene panels are of clinical importance. These included UV, tobacco, and apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures that are associated with better survival, independently from mutational burden. Further analyses reveal gene and mutation associations with signatures, such as SBS5 with TP53 and APOBEC with FGFR3S249C. In a clinical use case, APOBEC signature is a robust and specific predictor for resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Our model provides an easy-to-use way to detect signatures in clinical setting assays with many possible clinical implications for an unprecedented number of cancer patients.
Collapse
Affiliation(s)
- Adar Yaacov
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Gil Ben Cohen
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jakob Landau
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tom Hope
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
173
|
Liu F, Hou K, Dong Y. Deep parallel contextual analysis framework based emotion prediction in community wellness communications on social media. Heliyon 2024; 10:e31626. [PMID: 38841475 PMCID: PMC11152678 DOI: 10.1016/j.heliyon.2024.e31626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding public emotion on social media about community wellness is crucial for enhancing health awareness and guiding policy-making. In order to more fully mine the deep contextual semantical information of short texts and further enhance the effectiveness of emotion prediction in social media, we propose the Deep Parallel Contextual Analysis Framework (DPCAF) in the community wellness domain, specifically addressing the challenges of limited text length and available semantical features in social media text. Specifically, at the embedding layer, we first utilize two different word embedding techniques to generate high-quality vector representations, aiming to achieve more comprehensive semantical capture, stronger generalization ability, and more robust model performance. Subsequently, in the deep contextual layer, the obtained representations are fused with POS and locational representations, and processed through a deep parallel layer composed of Convolutional Neural Networks and Bidirectional Long Short-Term Memory Network. An attention model is then used to further extract semantical features of social media texts. Finally, these deep parallel contextual representations are post-integrated for emotion prediction. Experiments on a dataset collected from social media regarding community wellness demonstrate that compared to benchmark models, DPCAF achieves at least a 4.81 % increase in Precision, a 3.44 % increase in Recall, and a 10.81 % increase in F1-score. Relative to the most advanced models, DPCAF shows a minimum improvement of 2.65 % in Precision, 3.02 % in Recall, and 2.53 % in F1-score.
Collapse
Affiliation(s)
- Feng Liu
- School of Law, WeiFang University, Shandong, WeiFang, 261061, China
- Weifang Municipal Government Hospital, Department of Ultrasound, Shandong, WeiFang, 261041, China
| | - Kun Hou
- Weifang People's Hospital, Department of Radiology, Shandong, WeiFang, 261000, China
| | - Yang Dong
- Weifang People's Hospital, Department of Radiology, Shandong, WeiFang, 261000, China
| |
Collapse
|
174
|
Pham NT, Terrance AT, Jeon YJ, Rakkiyappan R, Manavalan B. ac4C-AFL: A high-precision identification of human mRNA N4-acetylcytidine sites based on adaptive feature representation learning. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102192. [PMID: 38779332 PMCID: PMC11108997 DOI: 10.1016/j.omtn.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
RNA N4-acetylcytidine (ac4C) is a highly conserved RNA modification that plays a crucial role in controlling mRNA stability, processing, and translation. Consequently, accurate identification of ac4C sites across the genome is critical for understanding gene expression regulation mechanisms. In this study, we have developed ac4C-AFL, a bioinformatics tool that precisely identifies ac4C sites from primary RNA sequences. In ac4C-AFL, we identified the optimal sequence length for model building and implemented an adaptive feature representation strategy that is capable of extracting the most representative features from RNA. To identify the most relevant features, we proposed a novel ensemble feature importance scoring strategy to rank features effectively. We then used this information to conduct the sequential forward search, which individually determine the optimal feature set from the 16 sequence-derived feature descriptors. Utilizing these optimal feature descriptors, we constructed 176 baseline models using 11 popular classifiers. The most efficient baseline models were identified using the two-step feature selection approach, whose predicted scores were integrated and trained with the appropriate classifier to develop the final prediction model. Our rigorous cross-validations and independent tests demonstrate that ac4C-AFL surpasses contemporary tools in predicting ac4C sites. Moreover, we have developed a publicly accessible web server at https://balalab-skku.org/ac4C-AFL/.
Collapse
Affiliation(s)
- Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Annie Terrina Terrance
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Rajan Rakkiyappan
- Department of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
175
|
Luong KD, Singh A. Application of Transformers in Cheminformatics. J Chem Inf Model 2024; 64:4392-4409. [PMID: 38815246 PMCID: PMC11167597 DOI: 10.1021/acs.jcim.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
By accelerating time-consuming processes with high efficiency, computing has become an essential part of many modern chemical pipelines. Machine learning is a class of computing methods that can discover patterns within chemical data and utilize this knowledge for a wide variety of downstream tasks, such as property prediction or substance generation. The complex and diverse chemical space requires complex machine learning architectures with great learning power. Recently, learning models based on transformer architectures have revolutionized multiple domains of machine learning, including natural language processing and computer vision. Naturally, there have been ongoing endeavors in adopting these techniques to the chemical domain, resulting in a surge of publications within a short period. The diversity of chemical structures, use cases, and learning models necessitate a comprehensive summarization of existing works. In this paper, we review recent innovations in adapting transformers to solve learning problems in chemistry. Because chemical data is diverse and complex, we structure our discussion based on chemical representations. Specifically, we highlight the strengths and weaknesses of each representation, the current progress of adapting transformer architectures, and future directions.
Collapse
Affiliation(s)
- Kha-Dinh Luong
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Ambuj Singh
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
176
|
Xu J, Xu N, Xie W, Zhao C, Yu L, Feng W. BERT-siRNA: siRNA target prediction based on BERT pre-trained interpretable model. Gene 2024; 910:148330. [PMID: 38431236 DOI: 10.1016/j.gene.2024.148330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Silencing mRNA through siRNA is vital for RNA interference (RNAi), necessitating accurate computational methods for siRNA selection. Current approaches, relying on machine learning, often face challenges with large data requirements and intricate data preprocessing, leading to reduced accuracy. To address this challenge, we propose a BERT model-based siRNA target gene knockdown efficiency prediction method called BERT-siRNA, which consists of a pre-trained DNA-BERT module and Multilayer Perceptron module. It applies the concept of transfer learning to avoid the limitation of a small sample size and the need for extensive preprocessing processes. By fine-tuning on various siRNA datasets after pretraining on extensive genomic data using DNA-BERT to enhance predictive capabilities. Our model clearly outperforms all existing siRNA prediction models through testing on the independent public siRNA dataset. Furthermore, the model's consistent predictions of high-efficiency siRNA knockdown for SARS-CoV-2, as well as its alignment with experimental results for PDCD1, CD38, and IL6, demonstrate the reliability and stability of the model. In addition, the attention scores for all 19-nt positions in the dataset indicate that the model's attention is predominantly focused on the 5' end of the siRNA. The step-by-step visualization of the hidden layer's classification progressively clarified and explained the effective feature extraction of the MLP layer. The explainability of model by analysis the attention scores and hidden layers is also our main purpose in this work, making it more explainable and reliable for biological researchers.
Collapse
Affiliation(s)
- Jiayu Xu
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Weixin Xie
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Chengkui Zhao
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, No, 3663 North Zhongshan Road, Shanghai 200065, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai 201612, China.
| | - Weixing Feng
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
177
|
Taş G, Westerdijk T, Postma E, Veldink JH, Schönhuth A, Balvert M. Computing linkage disequilibrium aware genome embeddings using autoencoders. Bioinformatics 2024; 40:btae326. [PMID: 38775680 PMCID: PMC11208726 DOI: 10.1093/bioinformatics/btae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
MOTIVATION The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative methods for epistasis detection using, e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction. RESULTS We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block autoencoders to learn a compressed representation of the block's genetic content. We provide an adjustable autoencoder design to accommodate diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 99% average test reconstruction accuracy-i.e. minimal information loss-while compressing the input to nearly 10% of the original size. We demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage haplotype structure and DNNs for dimensionality reduction of genetic data. AVAILABILITY AND IMPLEMENTATION Data are available for academic use through Project MinE at https://www.projectmine.com/research/data-sharing/, contingent upon terms and requirements specified by the source studies. Code is available at https://github.com/gizem-tas/haploblock-autoencoders.
Collapse
Affiliation(s)
- Gizem Taş
- Department of Econometrics and Operations Research, Tilburg University, Tilburg 5037AB, The Netherlands
| | - Timo Westerdijk
- Department of Neurology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | - Eric Postma
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg 5037AB, The Netherlands
| | - Jan H Veldink
- Department of Neurology, University Medical Center Utrecht, Utrecht 3584CX, The Netherlands
| | | | - Marleen Balvert
- Department of Econometrics and Operations Research, Tilburg University, Tilburg 5037AB, The Netherlands
| |
Collapse
|
178
|
Hwang H, Jeon H, Yeo N, Baek D. Big data and deep learning for RNA biology. Exp Mol Med 2024; 56:1293-1321. [PMID: 38871816 PMCID: PMC11263376 DOI: 10.1038/s12276-024-01243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 06/15/2024] Open
Abstract
The exponential growth of big data in RNA biology (RB) has led to the development of deep learning (DL) models that have driven crucial discoveries. As constantly evidenced by DL studies in other fields, the successful implementation of DL in RB depends heavily on the effective utilization of large-scale datasets from public databases. In achieving this goal, data encoding methods, learning algorithms, and techniques that align well with biological domain knowledge have played pivotal roles. In this review, we provide guiding principles for applying these DL concepts to various problems in RB by demonstrating successful examples and associated methodologies. We also discuss the remaining challenges in developing DL models for RB and suggest strategies to overcome these challenges. Overall, this review aims to illuminate the compelling potential of DL for RB and ways to apply this powerful technology to investigate the intriguing biology of RNA more effectively.
Collapse
Affiliation(s)
- Hyeonseo Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonseong Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Genome4me Inc., Seoul, Republic of Korea
| | - Nagyeong Yeo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Genome4me Inc., Seoul, Republic of Korea.
| |
Collapse
|
179
|
Tenekeci S, Tekir S. Identifying promoter and enhancer sequences by graph convolutional networks. Comput Biol Chem 2024; 110:108040. [PMID: 38430611 DOI: 10.1016/j.compbiolchem.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Identification of promoters, enhancers, and their interactions helps understand genetic regulation. This study proposes a graph-based semi-supervised learning model (GCN4EPI) for the enhancer-promoter classification problem. We adopt a graph convolutional network (GCN) architecture to integrate interaction information with sequence features. Nodes of the constructed graph hold word embeddings of DNA sequences while edges hold the Enhancer-Promoter Interaction (EPI) information. By means of semi-supervised learning, much less data (16%) and time are needed in model training. Comparisons on a benchmark dataset of six human cell lines show that the proposed approach outperforms the state-of-the-art methods by a large margin (10% higher F1 score) and has the fastest training time (up to 3 times). Moreover, GCN4EPI's performance on cross-cell line data is also better than the baselines (3% higher F1 score). Our qualitative analyses with graph explainability models prove that GCN4EPI learns from both text and graph structure. The results suggest that integrating interaction information with sequence features improves predictive performance and compensates for the number of training instances.
Collapse
Affiliation(s)
- Samet Tenekeci
- Department of Computer Engineering, Izmir Institute of Technology, Izmir, 35430, Turkiye
| | - Selma Tekir
- Department of Computer Engineering, Izmir Institute of Technology, Izmir, 35430, Turkiye.
| |
Collapse
|
180
|
Xie GB, Yu Y, Lin ZY, Chen RB, Xie JH, Liu ZG. 4 mC site recognition algorithm based on pruned pre-trained DNABert-Pruning model and fused artificial feature encoding. Anal Biochem 2024; 689:115492. [PMID: 38458307 DOI: 10.1016/j.ab.2024.115492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
DNA 4 mC plays a crucial role in the genetic expression process of organisms. However, existing deep learning algorithms have shortcomings in the ability to represent DNA sequence features. In this paper, we propose a 4 mC site identification algorithm, DNABert-4mC, based on a fusion of the pruned pre-training DNABert-Pruning model and artificial feature encoding to identify 4 mC sites. The algorithm prunes and compresses the DNABert model, resulting in the pruned pre-training model DNABert-Pruning. This model reduces the number of parameters and removes redundancy from output features, yielding more precise feature representations while upholding accuracy.Simultaneously, the algorithm constructs an artificial feature encoding module to assist the DNABert-Pruning model in feature representation, effectively supplementing the information that is missing from the pre-trained features. The algorithm also introduces the AFF-4mC fusion strategy, which combines artificial feature encoding with the DNABert-Pruning model, to improve the feature representation capability of DNA sequences in multi-semantic spaces and better extract 4 mC sites and the distribution of nucleotide importance within the sequence. In experiments on six independent test sets, the DNABert-4mC algorithm achieved an average AUC value of 93.81%, outperforming seven other advanced algorithms with improvements of 2.05%, 5.02%, 11.32%, 5.90%, 12.02%, 2.42% and 2.34%, respectively.
Collapse
Affiliation(s)
- Guo-Bo Xie
- Guangdong University of Technology, Guangzhou, 510000, China
| | - Yi Yu
- Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhi-Yi Lin
- Guangdong University of Technology, Guangzhou, 510000, China.
| | - Rui-Bin Chen
- Guangdong University of Technology, Guangzhou, 510000, China
| | - Jian-Hui Xie
- Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
181
|
Telenti A, Auli M, Hie BL, Maher C, Saria S, Ioannidis JPA. Large language models for science and medicine. Eur J Clin Invest 2024; 54:e14183. [PMID: 38381530 DOI: 10.1111/eci.14183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Large language models (LLMs) are a type of machine learning model that learn statistical patterns over text, such as predicting the next words in a sequence of text. Both general purpose and task-specific LLMs have demonstrated potential across diverse applications. Science and medicine have many data types that are highly suitable for LLMs, such as scientific texts (publications, patents and textbooks), electronic medical records, large databases of DNA and protein sequences and chemical compounds. Carefully validated systems that can understand and reason across all these modalities may maximize benefits. Despite the inevitable limitations and caveats of any new technology and some uncertainties specific to LLMs, LLMs have the potential to be transformative in science and medicine.
Collapse
Affiliation(s)
- Amalio Telenti
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, California, USA
- Vir Biotechnology, Inc., San Francisco, California, USA
| | | | - Brian L Hie
- FAIR, Meta, Menlo Park, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Cyrus Maher
- Vir Biotechnology, Inc., San Francisco, California, USA
| | - Suchi Saria
- Malone Center for Engineering and Healthcare, Johns Hopkins University, Baltimore, Maryland, USA
| | - John P A Ioannidis
- Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Statistics, Stanford University, Stanford, California, USA
- Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| |
Collapse
|
182
|
Schmidt B, Hildebrandt A. From GPUs to AI and quantum: three waves of acceleration in bioinformatics. Drug Discov Today 2024; 29:103990. [PMID: 38663581 DOI: 10.1016/j.drudis.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The enormous growth in the amount of data generated by the life sciences is continuously shifting the field from model-driven science towards data-driven science. The need for efficient processing has led to the adoption of massively parallel accelerators such as graphics processing units (GPUs). Consequently, the development of bioinformatics methods nowadays often heavily depends on the effective use of these powerful technologies. Furthermore, progress in computational techniques and architectures continues to be highly dynamic, involving novel deep neural network models and artificial intelligence (AI) accelerators, and potentially quantum processing units in the future. These are expected to be disruptive for the life sciences as a whole and for drug discovery in particular. Here, we identify three waves of acceleration and their applications in a bioinformatics context: (i) GPU computing, (ii) AI and (iii) next-generation quantum computers.
Collapse
Affiliation(s)
- Bertil Schmidt
- Institut für Informatik, Johannes Gutenberg University, Mainz, Germany.
| | | |
Collapse
|
183
|
Batalis S, Schuerger C, Gronvall GK, Walsh ME. Safeguarding Mail-Order DNA Synthesis in the Age of Artificial Intelligence. APPLIED BIOSAFETY 2024; 29:79-84. [PMID: 39131179 PMCID: PMC11313546 DOI: 10.1089/apb.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Introduction Artificial intelligence (AI) tools continue to be developed and used within the life sciences. The impact of these tools on the biosecurity landscape surrounding mail-order DNA synthesis and how to address the impacts have not been critically examined in the literature. Methods The impacts of AI-driven chatbots and biological design tools on the biosecurity landscape surrounding mail-order DNA synthesis were analyzed and described. The findings are informed by the authors' experience in the field. Results Generally, chatbots lower barriers to access of information that could be misused while biological design tools may provide new abilities to users with the intent of misuse. Six recommendations to the United States Government that attempt to maximize the benefits of these new technologies while mitigating risks are provided. Conclusion Mandating mail-order DNA synthesis providers to screen DNA synthesis orders is a critical safeguarding step that should be taken as soon as possible. Over time, biological design tools will reduce the effectiveness of such a regulation and actions should be taken now to limit the negative impacts in the future.
Collapse
Affiliation(s)
- Stephanie Batalis
- Center for Security and Emerging Technology, Georgetown University, Washington, DC, USA
| | - Caroline Schuerger
- Center for Security and Emerging Technology, Georgetown University, Washington, DC, USA
| | - Gigi Kwik Gronvall
- Johns Hopkins Department of Environmental Health and Engineering, Johns Hopkins Center for Health Security, Baltimore, Maryland, USA
| | - Matthew E. Walsh
- Johns Hopkins Department of Environmental Health and Engineering, Johns Hopkins Center for Health Security, Baltimore, Maryland, USA
| |
Collapse
|
184
|
Cheng H, Zhu J, Wang S, Yan K, Wang H. Firefighting Water Jet Trajectory Detection from Unmanned Aerial Vehicle Imagery Using Learnable Prompt Vectors. SENSORS (BASEL, SWITZERLAND) 2024; 24:3553. [PMID: 38894344 PMCID: PMC11175223 DOI: 10.3390/s24113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
This research presents an innovative methodology aimed at monitoring jet trajectory during the jetting process using imagery captured by unmanned aerial vehicles (UAVs). This approach seamlessly integrates UAV imagery with an offline learnable prompt vector module (OPVM) to enhance trajectory monitoring accuracy and stability. By leveraging a high-resolution camera mounted on a UAV, image enhancement is proposed to solve the problem of geometric and photometric distortion in jet trajectory images, and the Faster R-CNN network is deployed to detect objects within the images and precisely identify the jet trajectory within the video stream. Subsequently, the offline learnable prompt vector module is incorporated to further refine trajectory predictions, thereby improving monitoring accuracy and stability. In particular, the offline learnable prompt vector module not only learns the visual characteristics of jet trajectory but also incorporates their textual features, thus adopting a bimodal approach to trajectory analysis. Additionally, OPVM is trained offline, thereby minimizing additional memory and computational resource requirements. Experimental findings underscore the method's remarkable precision of 95.4% and efficiency in monitoring jet trajectory, thereby laying a solid foundation for advancements in trajectory detection and tracking. This methodology holds significant potential for application in firefighting systems and industrial processes, offering a robust framework to address dynamic trajectory monitoring challenges and augment computer vision capabilities in practical scenarios.
Collapse
Affiliation(s)
- Hengyu Cheng
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China; (H.C.); (S.W.); (K.Y.); (H.W.)
| | - Jinsong Zhu
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China; (H.C.); (S.W.); (K.Y.); (H.W.)
- China Academy of Safety Science and Technology, Beijing 100012, China
- Shenzhen Research Institute of China University of Mining and Technology, Shenzhen 518057, China
| | - Sining Wang
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China; (H.C.); (S.W.); (K.Y.); (H.W.)
| | - Ke Yan
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China; (H.C.); (S.W.); (K.Y.); (H.W.)
| | - Haojie Wang
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China; (H.C.); (S.W.); (K.Y.); (H.W.)
| |
Collapse
|
185
|
Li Y, Wei X, Yang Q, Xiong A, Li X, Zou Q, Cui F, Zhang Z. msBERT-Promoter: a multi-scale ensemble predictor based on BERT pre-trained model for the two-stage prediction of DNA promoters and their strengths. BMC Biol 2024; 22:126. [PMID: 38816885 PMCID: PMC11555825 DOI: 10.1186/s12915-024-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND A promoter is a specific sequence in DNA that has transcriptional regulatory functions, playing a role in initiating gene expression. Identifying promoters and their strengths can provide valuable information related to human diseases. In recent years, computational methods have gained prominence as an effective means for identifying promoter, offering a more efficient alternative to labor-intensive biological approaches. RESULTS In this study, a two-stage integrated predictor called "msBERT-Promoter" is proposed for identifying promoters and predicting their strengths. The model incorporates multi-scale sequence information through a tokenization strategy and fine-tunes the DNABERT model. Soft voting is then used to fuse the multi-scale information, effectively addressing the issue of insufficient DNA sequence information extraction in traditional models. To the best of our knowledge, this is the first time an integrated approach has been used in the DNABERT model for promoter identification and strength prediction. Our model achieves accuracy rates of 96.2% for promoter identification and 79.8% for promoter strength prediction, significantly outperforming existing methods. Furthermore, through attention mechanism analysis, we demonstrate that our model can effectively combine local and global sequence information, enhancing its interpretability. CONCLUSIONS msBERT-Promoter provides an effective tool that successfully captures sequence-related attributes of DNA promoters and can accurately identify promoters and predict their strengths. This work paves a new path for the application of artificial intelligence in traditional biology.
Collapse
Affiliation(s)
- Yazi Li
- School of Mathematics and Statistics, Hainan University, Haikou, 570228, China
| | - Xiaoman Wei
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Qinglin Yang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - An Xiong
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Xingfeng Li
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
186
|
Gupta S, Kesarwani V, Bhati U, Jyoti, Shankar R. PTFSpot: deep co-learning on transcription factors and their binding regions attains impeccable universality in plants. Brief Bioinform 2024; 25:bbae324. [PMID: 39013383 PMCID: PMC11250369 DOI: 10.1093/bib/bbae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models.
Collapse
Affiliation(s)
- Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Veerbhan Kesarwani
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Umesh Bhati
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
187
|
Quddusi DM, Hiremath SA, Bajcinca N. Mutation prediction in the SARS-CoV-2 genome using attention-based neural machine translation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5996-6018. [PMID: 38872567 DOI: 10.3934/mbe.2024264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has been evolving rapidly after causing havoc worldwide in 2020. Since then, it has been very hard to contain the virus owing to its frequently mutating nature. Changes in its genome lead to viral evolution, rendering it more resistant to existing vaccines and drugs. Predicting viral mutations beforehand will help in gearing up against more infectious and virulent versions of the virus in turn decreasing the damage caused by them. In this paper, we have proposed different NMT (neural machine translation) architectures based on RNNs (recurrent neural networks) to predict mutations in the SARS-CoV-2-selected non-structural proteins (NSP), i.e., NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15. First, we created and pre-processed the pairs of sequences from two languages using k-means clustering and nearest neighbors for training a neural translation machine. We also provided insights for training NMTs on long biological sequences. In addition, we evaluated and benchmarked our models to demonstrate their efficiency and reliability.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Sandesh Athni Hiremath
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| |
Collapse
|
188
|
Reddy AJ, Herschl MH, Geng X, Kolli S, Lu AX, Kumar A, Hsu PD, Levine S, Ioannidis NM. Strategies for effectively modelling promoter-driven gene expression using transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529941. [PMID: 36909524 PMCID: PMC10002662 DOI: 10.1101/2023.02.24.529941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The ability to deliver genetic cargo to human cells is enabling rapid progress in molecular medicine, but designing this cargo for precise expression in specific cell types is a major challenge. Expression is driven by regulatory DNA sequences within short synthetic promoters, but relatively few of these promoters are cell-type-specific. The ability to design cell-type-specific promoters using model-based optimization would be impactful for research and therapeutic applications. However, models of expression from short synthetic promoters (promoter-driven expression) are lacking for most cell types due to insufficient training data in those cell types. Although there are many large datasets of both endogenous expression and promoter-driven expression in other cell types, which provide information that could be used for transfer learning, transfer strategies remain largely unexplored for predicting promoter-driven expression. Here, we propose a variety of pretraining tasks, transfer strategies, and model architectures for modelling promoter-driven expression. To thoroughly evaluate various methods, we propose two benchmarks that reflect data-constrained and large dataset settings. In the data-constrained setting, we find that pretraining followed by transfer learning is highly effective, improving performance by 24-27%. In the large dataset setting, transfer learning leads to more modest gains, improving performance by up to 2%. We also propose the best architecture to model promoter-driven expression when training from scratch. The methods we identify are broadly applicable for modelling promoter-driven expression in understudied cell types, and our findings will guide the choice of models that are best suited to designing promoters for gene delivery applications using model-based optimization. Our code and data are available at https://github.com/anikethjr/promoter_models.
Collapse
|
189
|
Rennie S. Deep Learning for Elucidating Modifications to RNA-Status and Challenges Ahead. Genes (Basel) 2024; 15:629. [PMID: 38790258 PMCID: PMC11121098 DOI: 10.3390/genes15050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
RNA-binding proteins and chemical modifications to RNA play vital roles in the co- and post-transcriptional regulation of genes. In order to fully decipher their biological roles, it is an essential task to catalogue their precise target locations along with their preferred contexts and sequence-based determinants. Recently, deep learning approaches have significantly advanced in this field. These methods can predict the presence or absence of modification at specific genomic regions based on diverse features, particularly sequence and secondary structure, allowing us to decipher the highly non-linear sequence patterns and structures that underlie site preferences. This article provides an overview of how deep learning is being applied to this area, with a particular focus on the problem of mRNA-RBP binding, while also considering other types of chemical modification to RNA. It discusses how different types of model can handle sequence-based and/or secondary-structure-based inputs, the process of model training, including choice of negative regions and separating sets for testing and training, and offers recommendations for developing biologically relevant models. Finally, it highlights four key areas that are crucial for advancing the field.
Collapse
Affiliation(s)
- Sarah Rennie
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
190
|
Ghosh N, Santoni D, Saha I, Felici G. Predicting Transcription Factor Binding Sites with Deep Learning. Int J Mol Sci 2024; 25:4990. [PMID: 38732207 PMCID: PMC11084193 DOI: 10.3390/ijms25094990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with different approaches, Machine Learning being one of the most successful. Nevertheless, we note that many such approaches fail to propose a robust and meaningful method to embed the genetic data under analysis. We try to overcome this problem by proposing a bidirectional transformer-based encoder, empowered by bidirectional long-short term memory layers and with a capsule layer responsible for the final prediction. To evaluate the efficiency of the proposed approach, we use benchmark ChIP-seq datasets of five cell lines available in the ENCODE repository (A549, GM12878, Hep-G2, H1-hESC, and Hela). The results show that the proposed method can predict TFBS within the five different cell lines very well; moreover, cross-cell predictions provide satisfactory results as well. Experiments conducted across cell lines are reinforced by the analysis of five additional lines used only to test the model trained using the others. The results confirm that prediction across cell lines remains very high, allowing an extensive cross-transcription factor analysis to be performed from which several indications of interest for molecular biology may be drawn.
Collapse
Affiliation(s)
- Nimisha Ghosh
- Department of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha ’O’ Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Daniele Santoni
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy, 00185 Rome, Italy; (D.S.); (G.F.)
| | - Indrajit Saha
- Department of Computer Science and Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata 700106, India;
| | - Giovanni Felici
- Institute for System Analysis and Computer Science “Antonio Ruberti”, National Research Council of Italy, 00185 Rome, Italy; (D.S.); (G.F.)
| |
Collapse
|
191
|
Qiu X, Wang H, Tan X, Fang Z. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction. Comput Biol Med 2024; 173:108376. [PMID: 38552281 DOI: 10.1016/j.compbiomed.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Developing new drugs is costly, time-consuming, and risky. Drug-target affinity (DTA), indicating the binding capability between drugs and target proteins, is a crucial indicator for drug development. Accurately predicting interaction strength between new drug-target pairs by analyzing previous experiments aids in screening potential drug molecules, repurposing them, and developing safe and effective medicines. Existing computational models for DTA prediction rely on strings or single-graph neural networks, lacking consideration of protein structure and molecular semantic information, leading to limited accuracy. Our experiments demonstrate that string-based methods may overlook protein conformations, causing a high root mean square error (RMSE) of 3.584 in affinity due to a lack of spatial context. Single graph networks also underperform on topology features, with a 6% lower confidence interval (CI) for activity classification. Absent semantic information also limits generalization across diverse compounds, resulting in 18% increment in RMSE and 5% in misclassifications within quantifications study, restricting potential drug discovery. To address these limitations, we propose G-K BertDTA, a novel framework for accurate DTA prediction incorporating protein features, molecular semantic features, and molecular structural information. In this proposed model, we represent drugs as graphs, with a GIN employed to learn the molecular topological information. For the extraction of protein structural features, we utilize a DenseNet architecture. A knowledge-based BERT semantic model is incorporated to obtain rich pre-trained semantic embeddings, thereby enhancing the feature information. We extensively evaluated our proposed approach on the publicly available benchmark datasets (i.e., KIBA and Davis), and experimental results demonstrate the promising performance of our method, which consistently outperforms previous state-of-the-art approaches. Code is available at https://github.com/AmbitYuki/G-K-BertDTA.
Collapse
Affiliation(s)
- Xihe Qiu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Haoyu Wang
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaoyu Tan
- INF Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Zhijun Fang
- School of Computer Science and Technology, Donghua University, Shanghai, China.
| |
Collapse
|
192
|
Lasantha D, Vidanagamachchi S, Nallaperuma S. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites. Comput Biol Med 2024; 174:108466. [PMID: 38615462 DOI: 10.1016/j.compbiomed.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Circular RNAs (circRNAs) have surfaced as important non-coding RNA molecules in biology. Understanding interactions between circRNAs and RNA-binding proteins (RBPs) is crucial in circRNA research. Existing prediction models suffer from limited availability and accuracy, necessitating advanced approaches. In this study, we propose CRIECNN (Circular RNA-RBP Interaction predictor using an Ensemble Convolutional Neural Network), a novel ensemble deep learning model that enhances circRNA-RBP binding site prediction accuracy. CRIECNN employs advanced feature extraction methods and evaluates four distinct sequence datasets and encoding techniques (BERT, Doc2Vec, KNF, EIIP). The model consists of an ensemble convolutional neural network, a BiLSTM, and a self-attention mechanism for feature refinement. Our results demonstrate that CRIECNN outperforms state-of-the-art methods in accuracy and performance, effectively predicting circRNA-RBP interactions from both full-length sequences and fragments. This novel strategy makes an enormous advancement in the prediction of circRNA-RBP interactions, improving our understanding of circRNAs and their regulatory roles.
Collapse
Affiliation(s)
- Dilan Lasantha
- Department of Computer Science, University of Ruhuna, Sri Lanka.
| | | | - Sam Nallaperuma
- Department of Engineering, University of Cambridge, United Kingdom.
| |
Collapse
|
193
|
Gündüz HA, Mreches R, Moosbauer J, Robertson G, To XY, Franzosa EA, Huttenhower C, Rezaei M, McHardy AC, Bischl B, Münch PC, Binder M. Optimized model architectures for deep learning on genomic data. Commun Biol 2024; 7:516. [PMID: 38693292 PMCID: PMC11063068 DOI: 10.1038/s42003-024-06161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
The success of deep learning in various applications depends on task-specific architecture design choices, including the types, hyperparameters, and number of layers. In computational biology, there is no consensus on the optimal architecture design, and decisions are often made using insights from more well-established fields such as computer vision. These may not consider the domain-specific characteristics of genome sequences, potentially limiting performance. Here, we present GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep learning models for genome sequence data. It optimizes the overall layout of the architecture, with a search space specifically designed for genomics. Additionally, it optimizes hyperparameters of individual layers and the model training procedure. On a viral classification task, GenomeNet-Architect reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared to the best-performing deep learning baselines.
Collapse
Affiliation(s)
- Hüseyin Anil Gündüz
- Department of Statistics, LMU Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - René Mreches
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julia Moosbauer
- Department of Statistics, LMU Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Gary Robertson
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Xiao-Yin To
- Department of Statistics, LMU Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Mina Rezaei
- Department of Statistics, LMU Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- German Centre for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany
| | - Bernd Bischl
- Department of Statistics, LMU Munich, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Philipp C Münch
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany.
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
- German Centre for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany.
| | - Martin Binder
- Department of Statistics, LMU Munich, Munich, Germany.
- Munich Center for Machine Learning, Munich, Germany.
| |
Collapse
|
194
|
Goldner Kabeli R, Zevin S, Abargel A, Zilberberg A, Efroni S. Self-supervised learning of T cell receptor sequences exposes core properties for T cell membership. SCIENCE ADVANCES 2024; 10:eadk4670. [PMID: 38669334 PMCID: PMC11809652 DOI: 10.1126/sciadv.adk4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The T cell receptor (TCR) repertoire is an extraordinarily diverse collection of TCRs essential for maintaining the body's homeostasis and response to threats. In this study, we compiled an extensive dataset of more than 4200 bulk TCR repertoire samples, encompassing 221,176,713 sequences, alongside 6,159,652 single-cell TCR sequences from over 400 samples. From this dataset, we then selected a representative subset of 5 million bulk sequences and 4.2 million single-cell sequences to train two specialized Transformer-based language models for bulk (CVC) and single-cell (scCVC) TCR repertoires, respectively. We show that these models successfully capture TCR core qualities, such as sharing, gene composition, and single-cell properties. These qualities are emergent in the encoded TCR latent space and enable classification into TCR-based qualities such as public sequences. These models demonstrate the potential of Transformer-based language models in TCR downstream applications.
Collapse
Affiliation(s)
- Romi Goldner Kabeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Avital Abargel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
195
|
Lyu D, Wang X, Chen Y, Wang F. Language model and its interpretability in biomedicine: A scoping review. iScience 2024; 27:109334. [PMID: 38495823 PMCID: PMC10940999 DOI: 10.1016/j.isci.2024.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
With advancements in large language models, artificial intelligence (AI) is undergoing a paradigm shift where AI models can be repurposed with minimal effort across various downstream tasks. This provides great promise in learning generally useful representations from biomedical corpora, at scale, which would empower AI solutions in healthcare and biomedical research. Nonetheless, our understanding of how they work, when they fail, and what they are capable of remains underexplored due to their emergent properties. Consequently, there is a need to comprehensively examine the use of language models in biomedicine. This review aims to summarize existing studies of language models in biomedicine and identify topics ripe for future research, along with the technical and analytical challenges w.r.t. interpretability. We expect this review to help researchers and practitioners better understand the landscape of language models in biomedicine and what methods are available to enhance the interpretability of their models.
Collapse
Affiliation(s)
- Daoming Lyu
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Xingbo Wang
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fei Wang
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, New York, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
196
|
Akay A, Reddy HN, Galloway R, Kozyra J, Jackson AW. Predicting DNA toehold-mediated strand displacement rate constants using a DNA-BERT transformer deep learning model. Heliyon 2024; 10:e28443. [PMID: 38560216 PMCID: PMC10981123 DOI: 10.1016/j.heliyon.2024.e28443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Dynamic DNA nanotechnology is driving exciting developments in molecular computing, cargo delivery, sensing and detection. Combining this innovative area of research with the progress made in machine learning will aid in the design of sophisticated DNA machinery. Herein, we present a novel framework based on a transformer architecture and a deep learning model which can predict the rate constant of toehold-mediated strand displacement, the underlying process in dynamic DNA nanotechnology. Initially, a dataset of 4450 DNA sequences and corresponding rate constants were generated in-silico using KinDA. Subsequently, a 1D convolution neural network was trained using specific local features and DNA-BERT sequence embedding to produce predicted rate constants. As a result, the newly trained deep learning model predicted toehold-mediated strand displacement rate constants with a root mean square error of 0.76, during testing. These findings demonstrate that DNA-BERT can improve prediction accuracy, negating the need for extensive computational simulations or experimentation. Finally, the impact of various local features during model training is discussed, and a detailed comparison between the One-hot encoder and DNA-BERT sequences representation methods is presented.
Collapse
Affiliation(s)
- Ali Akay
- Nanovery Limited, United Kingdom
- Universita Degli Studi di Trento, Italy
| | | | | | | | | |
Collapse
|
197
|
Yang M, Zhang S, Zheng Z, Zhang P, Liang Y, Tang S. Employing bimodal representations to predict DNA bendability within a self-supervised pre-trained framework. Nucleic Acids Res 2024; 52:e33. [PMID: 38375921 PMCID: PMC11014357 DOI: 10.1093/nar/gkae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
The bendability of genomic DNA, which measures the DNA looping rate, is crucial for numerous biological processes of DNA. Recently, an advanced high-throughput technique known as 'loop-seq' has made it possible to measure the inherent cyclizability of DNA fragments. However, quantifying the bendability of large-scale DNA is costly, laborious, and time-consuming. To close the gap between rapidly evolving large language models and expanding genomic sequence information, and to elucidate the DNA bendability's impact on critical regulatory sequence motifs such as super-enhancers in the human genome, we introduce an innovative computational model, named MIXBend, to forecast the DNA bendability utilizing both nucleotide sequences and physicochemical properties. In MIXBend, a pre-trained language model DNABERT and convolutional neural network with attention mechanism are utilized to construct both sequence- and physicochemical-based extractors for the sophisticated refinement of DNA sequence representations. These bimodal DNA representations are then fed to a k-mer sequence-physicochemistry matching module to minimize the semantic gap between each modality. Lastly, a self-attention fusion layer is employed for the prediction of DNA bendability. In conclusion, the experimental results validate MIXBend's superior performance relative to other state-of-the-art methods. Additionally, MIXBend reveals both novel and known motifs from the yeast. Moreover, MIXBend discovers significant bendability fluctuations within super-enhancer regions and transcription factors binding sites in the human genome.
Collapse
Affiliation(s)
- Minghao Yang
- Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
| | - Shichen Zhang
- Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
| | - Zhihang Zheng
- Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
| | - Pengfei Zhang
- Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
| | - Yan Liang
- School of Artificial Intelligence, South China Normal University, Foshan 528225, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| |
Collapse
|
198
|
Hwang Y, Cornman AL, Kellogg EH, Ovchinnikov S, Girguis PR. Genomic language model predicts protein co-regulation and function. Nat Commun 2024; 15:2880. [PMID: 38570504 PMCID: PMC10991518 DOI: 10.1038/s41467-024-46947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM's unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | | | - Elizabeth H Kellogg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
199
|
Karollus A, Hingerl J, Gankin D, Grosshauser M, Klemon K, Gagneur J. Species-aware DNA language models capture regulatory elements and their evolution. Genome Biol 2024; 25:83. [PMID: 38566111 PMCID: PMC10985990 DOI: 10.1186/s13059-024-03221-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution. RESULTS Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery. CONCLUSIONS Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.
Collapse
Affiliation(s)
- Alexander Karollus
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Johannes Hingerl
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Dennis Gankin
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Martin Grosshauser
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Kristian Klemon
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Center for Machine Learning, Munich, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
200
|
Zhang ZY, Zhang Z, Ye X, Sakurai T, Lin H. A BERT-based model for the prediction of lncRNA subcellular localization in Homo sapiens. Int J Biol Macromol 2024; 265:130659. [PMID: 38462114 DOI: 10.1016/j.ijbiomac.2024.130659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Understanding the subcellular localization of lncRNAs is crucial for comprehending their regulation activities. The conventional detection of lncRNA subcellular location usually uses in situ detection techniques, which are resource intensive. Some machine learning-based algorithms have been proposed for lncRNA subcellular location prediction in mammals. However, due to the low level of conservation of lncRNA sequence, the performance of cross-species models remains unsatisfactory. In this study, we curated a novel dataset containing subcellular location information of lncRNAs in Homo sapiens. Subsequently, based on the BERT pre-trained language algorithm, we developed a model for lncRNA subcellular location prediction. Our model achieved a micro-average area under the receiver operating characteristic (AUROC) of 0.791 on the training set and an AUROC of 0.700 on the testing nucleus set. Additionally, we conducted cross-species validation and motif discovery to further investigate underlying patterns. In summary, our study provides valuable guidance and computational analysis tools for exploring the mechanisms of lncRNA subcellular localization and the dynamic spatial changes of RNA in abnormal physiological states.
Collapse
Affiliation(s)
- Zhao-Yue Zhang
- Tsukuba Life Science Innovation Program, University of Tsukuba, Tsukuba 3058577, Japan
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Hao Lin
- Center for Information Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|