151
|
Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 2016; 44:10406-10422. [PMID: 27407104 PMCID: PMC5137417 DOI: 10.1093/nar/gkw632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022] Open
Abstract
Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these ‘core sRNAs’ of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σS and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Katharina Haneke
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| |
Collapse
|
152
|
Fröhlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 2016; 101:701-13. [DOI: 10.1111/mmi.13428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin S. Fröhlich
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| |
Collapse
|
153
|
Wang M, Fleming J, Li Z, Li C, Zhang H, Xue Y, Chen M, Zhang Z, Zhang XE, Bi L. An automated approach for global identification of sRNA-encoding regions in RNA-Seq data from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:544-53. [PMID: 27174874 DOI: 10.1093/abbs/gmw037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/31/2016] [Indexed: 11/14/2022] Open
Abstract
Deep-sequencing of bacterial transcriptomes using RNA-Seq technology has made it possible to identify small non-coding RNAs, RNA molecules which regulate gene expression in response to changing environments, on a genome-wide scale in an ever-increasing range of prokaryotes. However, a simple and reliable automated method for identifying sRNA candidates in these large datasets is lacking. Here, after generating a transcriptome from an exponential phase culture of Mycobacterium tuberculosis H37Rv, we developed and validated an automated method for the genome-wide identification of sRNA candidate-containing regions within RNA-Seq datasets based on the analysis of the characteristics of reads coverage maps. We identified 192 novel candidate sRNA-encoding regions in intergenic regions and 664 RNA transcripts transcribed from regions antisense (as) to open reading frames (ORF), which bear the characteristics of asRNAs, and validated 28 of these novel sRNA-encoding regions by northern blotting. Our work has not only provided a simple automated method for genome-wide identification of candidate sRNA-encoding regions in RNA-Seq data, but has also uncovered many novel candidate sRNA-encoding regions in M. tuberculosis, reinforcing the view that the control of gene expression in bacteria is more complex than previously anticipated.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joy Fleming
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihui Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongtai Zhang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxin Xue
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Zongde Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Xian-En Zhang
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of Non-Coding RNA & State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan 528000, China
| |
Collapse
|
154
|
Vakulskas CA, Leng Y, Abe H, Amaki T, Okayama A, Babitzke P, Suzuki K, Romeo T. Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins. Nucleic Acids Res 2016; 44:7896-910. [PMID: 27235416 PMCID: PMC5027483 DOI: 10.1093/nar/gkw484] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
The widely conserved protein CsrA (carbon storage regulator A) globally regulates bacterial gene expression at the post-transcriptional level. In many species, CsrA activity is governed by untranslated sRNAs, CsrB and CsrC in Escherichia coli, which bind to multiple CsrA dimers, sequestering them from lower affinity mRNA targets. Both the synthesis and turnover of CsrB/C are regulated. Their turnover requires the housekeeping endonuclease RNase E and is activated by the presence of a preferred carbon source via the binding of EIIAGlc of the glucose transport system to the GGDEF-EAL domain protein CsrD. We demonstrate that the CsrB 3′ segment contains the features necessary for CsrD-mediated decay. RNase E cleavage in an unstructured segment located immediately upstream from the intrinsic terminator is necessary for subsequent degradation to occur. CsrA stabilizes CsrB against RNase E cleavage by binding to two canonical sites adjacent to the necessary cleavage site, while CsrD acts by overcoming CsrA-mediated protection. Our genetic, biochemical and structural studies establish a molecular framework for sRNA turnover by the CsrD-RNase E pathway. We propose that CsrD evolution was driven by the selective advantage of decoupling Csr sRNA decay from CsrA binding, connecting it instead to the availability of a preferred carbon source.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Yuanyuan Leng
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Hazuki Abe
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takumi Amaki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihiro Okayama
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Paul Babitzke
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| |
Collapse
|
155
|
Abstract
In the last few decades, small regulatory RNA (sRNA) molecules emerged as key regulators in every kingdom of life. Resolving the full targetome of sRNAs has however remained a challenge. To address this, we used an in vivo tagging MS2-affinity purification protocol coupled with RNA sequencing technology, namely MAPS, to assemble full bacterial small RNAs targetomes. The impressive potential of MAPS has been supported by a number of reports. Here, we concisely overview RNA-tagging history that preceded the development of the MAPS assay and expose the range of possible uses of this technology.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- a Department of Biochemistry , RNA Group, Université de Sherbrooke , Sherbrooke, Québec , Canada
| | - David Lalaouna
- a Department of Biochemistry , RNA Group, Université de Sherbrooke , Sherbrooke, Québec , Canada
| | - Eric Massé
- a Department of Biochemistry , RNA Group, Université de Sherbrooke , Sherbrooke, Québec , Canada
| |
Collapse
|
156
|
Huerta JM, Aguilar I, López-Pliego L, Fuentes-Ramírez LE, Castañeda M. The Role of the ncRNA RgsA in the Oxidative Stress Response and Biofilm Formation in Azotobacter vinelandii. Curr Microbiol 2016; 72:671-9. [PMID: 26858204 DOI: 10.1007/s00284-016-1003-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/27/2015] [Indexed: 12/23/2022]
Abstract
Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts, and the exopolysaccharide alginate is essential for this process. A. vinelandii also produces alginate under vegetative growth conditions, and this production has biotechnological significance. Poly-β-hydroxybutyrate (PHB) is another polymer synthetized by A. vinelandii that is of biotechnological interest. The GacS/A two-component signal transduction system plays an important role in regulating alginate production, PHB synthesis, and encystment. GacS/A in turn controls other important regulators such as RpoS and the ncRNAs that belong to the Rsm family. In A. vinelandii, RpoS is necessary for resisting oxidative stress as a result of its control over the expression of the catalase Kat1. In this work, we characterized a new ncRNA in A. vinelandii that is homologous to the P16/RsgA reported in Pseudomonas. We found that the expression of rgsA is regulated by GacA and RpoS and that it was essential for oxidative stress resistance. However, the activity of the catalase Kat1 is unaffected in rgsA mutants. Unlike those reported in Pseudomonas, RgsA in A. vinelandii regulates biofilm formation but not polymer synthesis or the encystment process.
Collapse
Affiliation(s)
- Jesús Manuel Huerta
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Israel Aguilar
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Liliana López-Pliego
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel Castañeda
- CICM-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| |
Collapse
|
157
|
Balbontín R, Villagra N, Pardos de la Gándara M, Mora G, Figueroa-Bossi N, Bossi L. Expression of IroN, the salmochelin siderophore receptor, requires mRNA activation by RyhB small RNA homologues. Mol Microbiol 2016; 100:139-55. [PMID: 26710935 DOI: 10.1111/mmi.13307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
The iroN gene of Salmonella enterica and uropathogenic Escherichia coli encodes the outer membrane receptor of Fe(3+) -bound salmochelin, a siderophore tailored to evade capture by the host's immune system. The iroN gene is under negative control of the Fur repressor and transcribed under iron limiting conditions. We show here that transcriptional de-repression is not sufficient to allow iroN expression, as this also requires activation by either of two partially homologous small RNAs (sRNAs), RyhB1 and RyhB2. The two sRNAs target the same sequence segment approximately in the middle of the 94-nucleotide 5' untranslated region (UTR) of iroN mRNA. Several lines of evidence suggest that base pair interaction stimulates iroN mRNA translation. Activation does not result from the disruption of a secondary structure masking the ribosome binding site; rather it involves sequences at the 5' end of iroN 5' UTR. In vitro 'toeprint' assays revealed that this upstream site binds the 30S ribosomal subunit provided that RyhB1 is paired with the mRNA. Altogether, our data suggest that RyhB1, and to lesser extent RyhB2, activate iroN mRNA translation by promoting entry of the ribosome at an upstream 'standby' site. These findings add yet an additional nuance to the polychromatic landscape of sRNA-mediated regulation.
Collapse
Affiliation(s)
- Roberto Balbontín
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Nicolás Villagra
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Maria Pardos de la Gándara
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Guido Mora
- Laboratorio de Patogénesis Molecular y Antimicrobianos, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, Chile
| | - Nara Figueroa-Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Lionello Bossi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
158
|
Abstract
Y. pestis exhibits dramatically different traits of pathogenicity and transmission, albeit their close genetic relationship with its ancestor-Y. pseudotuberculosis, a self-limiting gastroenteric pathogen. Y. pestis is evolved into a deadly pathogen and transmitted to mammals and/or human beings by infected flea biting or directly contacting with the infected animals. Various kinds of environmental changes are implicated into its complex life cycle and pathogenesis. Dynamic regulation of gene expression is critical for environmental adaptation or survival, primarily reflected by genetic regulation mediated by transcriptional factors and small regulatory RNAs at the transcriptional and posttranscriptional level, respectively. The effects of genetic regulation have been shown to profoundly influence Y. pestis physiology and pathogenesis such as stress resistance, biofilm formation, intracellular survival, and replication. In this chapter, we mainly summarize the progresses on popular methods of genetic regulation and on regulatory patterns and consequences of many key transcriptional and posttranscriptional regulators, with a particular emphasis on how genetic regulation influences the biofilm and virulence of Y. pestis.
Collapse
|
159
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
160
|
Meißner C, Jahn N, Brantl S. In Vitro Characterization of the Type I Toxin-Antitoxin System bsrE/SR5 from Bacillus subtilis. J Biol Chem 2015; 291:560-71. [PMID: 26565032 DOI: 10.1074/jbc.m115.697524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/06/2022] Open
Abstract
BsrE/SR5 is a new type I toxin/antitoxin system located on the prophage-like region P6 of the Bacillus subtilis chromosome. The bsrE gene encoding a 30-amino acid hydrophobic toxin and the antitoxin gene sr5 overlap at their 3' ends by 112 bp. Overexpression of bsrE causes cell lysis on agar plates. Here, we present a detailed in vitro analysis of bsrE/SR5. The secondary structures of SR5, bsrE mRNA, and the SR5/bsrE RNA complex were determined. Apparent binding rate constants (kapp) of wild-type and mutated SR5 species with wild-type bsrE mRNA were calculated, and SR5 regions required for efficient inhibition of bsrE mRNA narrowed down. In vivo studies confirmed the in vitro data but indicated that a so far unknown RNA binding protein might exist in B. subtilis that can promote antitoxin/toxin RNA interaction. Using time course experiments, the binding pathway of SR5 and bsrE RNA was elucidated. A comparison with the previously well characterized type I TA system from the B. subtilis chromosome, bsrG/SR4, reveals similarities but also significant differences.
Collapse
Affiliation(s)
- Christin Meißner
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Natalie Jahn
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Sabine Brantl
- From the AG Bakteriengenetik, Lehrstuhl für Genetik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| |
Collapse
|
161
|
Transcriptome-Wide Identification of Hfq-Associated RNAs in Brucella suis by Deep Sequencing. J Bacteriol 2015; 198:427-35. [PMID: 26553849 DOI: 10.1128/jb.00711-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent breakthroughs in next-generation sequencing technologies have led to the identification of small noncoding RNAs (sRNAs) as a new important class of regulatory molecules. In prokaryotes, sRNAs are often bound to the chaperone protein Hfq, which allows them to interact with their partner mRNA(s). We screened the genome of the zoonotic and human pathogen Brucella suis 1330 for the presence of this class of RNAs. We designed a coimmunoprecipitation strategy that relies on the use of Hfq as a bait to enrich the sample with sRNAs and eventually their target mRNAs. By deep sequencing analysis of the Hfq-bound transcripts, we identified a number of mRNAs and 33 sRNA candidates associated with Hfq. The expression of 10 sRNAs in the early stationary growth phase was experimentally confirmed by Northern blotting and/or reverse transcriptase PCR. IMPORTANCE Brucella organisms are facultative intracellular pathogens that use stealth strategies to avoid host defenses. Adaptation to the host environment requires tight control of gene expression. Recently, small noncoding RNAs (sRNAs) and the sRNA chaperone Hfq have been shown to play a role in the fine-tuning of gene expression. Here we have used RNA sequencing to identify RNAs associated with the B. suis Hfq protein. We have identified a novel list of 33 sRNAs and 62 Hfq-associated mRNAs for future studies aiming to understand the intracellular lifestyle of this pathogen.
Collapse
|
162
|
|
163
|
Stazic D, Voß B. The complexity of bacterial transcriptomes. J Biotechnol 2015; 232:69-78. [PMID: 26450562 DOI: 10.1016/j.jbiotec.2015.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/07/2015] [Accepted: 09/29/2015] [Indexed: 01/09/2023]
Abstract
For eukaryotes there seems to be no doubt that differences on the trancriptomic level substantially contribute to the process of species diversification, whereas for bacteria this is thought to be less important. Recent years saw a significant increase in full transcriptome studies for bacteria, which provided deep insight into the architecture of bacterial transcriptomes. Most notably, it became evident that, in contrast to previous scientific consensus, bacterial transcriptomes are quite complex. There exist a large number of cis-antisense RNAs, non-coding RNAs, overlapping transcripts and RNA elements that regulate transcription, such as riboswitches. Furthermore, processing and degradation of RNA has gained interest, because it has a significant impact on the composition of the transcriptome. In this review, we summarize recent findings and put them into a broader context with respect to the complexity of bacterial transcriptomes and its putative biological meanings.
Collapse
Affiliation(s)
- D Stazic
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - B Voß
- University of Freiburg, Faculty of Biology, Computational Transcriptomics, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
164
|
Martínez-Chavarría LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective. Front Microbiol 2015; 6:956. [PMID: 26441890 PMCID: PMC4585118 DOI: 10.3389/fmicb.2015.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens.
Collapse
Affiliation(s)
- Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Mexico
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA USA
| |
Collapse
|
165
|
Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci U S A 2015; 112:E4772-81. [PMID: 26307765 DOI: 10.1073/pnas.1507825112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
Collapse
|
166
|
Sagawa S, Shin JE, Hussein R, Lim HN. Paradoxical suppression of small RNA activity at high Hfq concentrations due to random-order binding. Nucleic Acids Res 2015; 43:8502-15. [PMID: 26261213 PMCID: PMC4787825 DOI: 10.1093/nar/gkv777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/20/2015] [Indexed: 11/15/2022] Open
Abstract
Small RNAs (sRNAs) are important regulators of gene expression during bacterial stress and pathogenesis. sRNAs act by forming duplexes with mRNAs to alter their translation and degradation. In some bacteria, duplex formation is mediated by the Hfq protein, which can bind the sRNA and mRNA in each pair in a random order. Here we investigate the consequences of this random-order binding and experimentally demonstrate that it can counterintuitively cause high Hfq concentrations to suppress rather than promote sRNA activity in Escherichia coli. As a result, maximum sRNA activity occurs when the Hfq concentration is neither too low nor too high relative to the sRNA and mRNA concentrations (‘Hfq set-point’). We further show with models and experiments that random-order binding combined with the formation of a dead-end mRNA–Hfq complex causes high concentrations of an mRNA to inhibit its own duplex formation by sequestering Hfq. In such cases, maximum sRNA activity requires an optimal mRNA concentration (‘mRNA set-point’) as well as an optimal Hfq concentration. The Hfq and mRNA set-points generate novel regulatory properties that can be harnessed by native and synthetic gene circuits to provide greater control over sRNA activity, generate non-monotonic responses and enhance the robustness of expression.
Collapse
Affiliation(s)
- Shiori Sagawa
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Jung-Eun Shin
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Razika Hussein
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Han N Lim
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
167
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|