151
|
Ling J, Khan A, Denkewitz M, Maccarana M, Lundkvist Å, Li JP, Li J. Dual roles of exostosin glycosyltransferase 1 in Zika virus infection. Virulence 2025; 16:2458681. [PMID: 39927690 PMCID: PMC11812395 DOI: 10.1080/21505594.2025.2458681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Many factors involved in heparan sulfate (HS) biosynthesis and metabolism have been reported to play roles in viral infection. However, the detailed mechanisms are still not fully understood. In this study, we report that exostosin glycosyltransferase 1 (EXT1), the HS polymerase, is a critical regulatory factor for Zika virus (ZIKV) infection. Knocking out EXT1 dramatically restricts ZIKV infection, which is not due to the inhibition of virus entry resulting from HS deficiency, but mediated by the downregulation of autophagy. Induction of autophagy promotes ZIKV infection, and attenuated autophagy is found in distinct EXT1 knockout (EXT1-KO) cell lines. Induction of autophagy by rapamycin can relieve the ZIKV production defect in EXT1-KO cells. While over-expressing EXT1 results in the reduction of ZIKV production by targeting the viral envelope (E) protein and non-structural protein NS3 in a proteasome-dependent degradation manner. The different roles of EXT1 in ZIKV infection are further confirmed by the data that knocking down EXT1 at the early stage of ZIKV infection represses viral infection, whereas the increase of ZIKV infection is observed when knocking down EXT1 at the late stage of viral infection. This study discovers previously unrecognized intricate roles of EXT1 in ZIKV infection.
Collapse
Affiliation(s)
- Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Asifa Khan
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Matthias Denkewitz
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University,Germany
| | - Marco Maccarana
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
152
|
Lei C, Sun W, Wang K, Weng R, Kan X, Li R. Artificial intelligence-assisted diagnosis of early gastric cancer: present practice and future prospects. Ann Med 2025; 57:2461679. [PMID: 39928093 PMCID: PMC11812113 DOI: 10.1080/07853890.2025.2461679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Gastric cancer (GC) occupies the first few places in the world among tumors in terms of incidence and mortality, causing serious harm to human health, and at the same time, its treatment greatly consumes the health care resources of all countries in the world. The diagnosis of GC is usually based on histopathologic examination, and it is very important to be able to detect and identify cancerous lesions at an early stage, but some endoscopists' lack of diagnostic experience and fatigue at work lead to a certain rate of under diagnosis. The rapid and striking development of Artificial intelligence (AI) has helped to enhance the ability to extract abnormal information from endoscopic images to some extent, and more and more researchers are applying AI technology to the diagnosis of GC. This initiative has not only improved the detection rate of early gastric cancer (EGC), but also significantly improved the survival rate of patients after treatment. This article reviews the results of various AI-assisted diagnoses of EGC in recent years, including the identification of EGC, the determination of differentiation type and invasion depth, and the identification of borders. Although AI has a better application prospect in the early diagnosis of ECG, there are still major challenges, and the prospects and limitations of AI application need to be further discussed.
Collapse
Affiliation(s)
- Changda Lei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Wenqiang Sun
- Suzhou Medical College, Soochow University, Suzhou, China
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruixia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiuji Kan
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
153
|
Trave I, Salvi I, Battaglia G, Vischi A, Parodi A, Cozzani E. Frequency and clinical features of disease flares in patients with atopic dermatitis treated with dupilumab. J DERMATOL TREAT 2025; 36:2495831. [PMID: 40298144 DOI: 10.1080/09546634.2025.2495831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Dupilumab, an interleukin 4 (IL-4) receptor α-antagonist approved for the treatment of atopic dermatitis, is considered effective in preventing disease recurrences. However, the incidence and characteristics od atopic dermatitis flares during treatment with dupilumab in a real-life setting have not been described in the literature. OBJECTIVE This study aims to evaluate the prevalence of disease flares in patients in treatment with dupilumab and to describe the features of flares in our study population. METHODS We conducted a retrospective observational study in which we collected demographic and clinical data on adult patients with a diagnosis of severe atopic dermatitis in treatment with dupilumab for a minimum of six months, who reached EASI75 within six months of treatment initiation. RESULTS Ninety-nine patients were enrolled. Recurrences were recorded for 38.4% of patients and 7.1% developed a second recurrence. The EASI at recurrence was always lower than the EASI before treatment initiation. The localization of disease at head and neck before treatment was associated to the same localization of disease at the first recurrence (p = 0.011). The risk of recurrence was associated to the baseline EASI score (p = 0.005). The presence of dupilumab-related conjunctivitis was significantly associated to recurrences (p = 0.02). CONCLUSIONS Treatment with dupilumab does not exclude the risk of a relapse, which can be estimated around 50% within a timespan of three years. In the most cases, flares should not be regarded as treatment failures, and can be easily managed with additional treatment.
Collapse
Affiliation(s)
- Ilaria Trave
- Section of Dermatology, Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Ilaria Salvi
- Section of Dermatology, Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Alice Vischi
- Section of Dermatology, Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology, Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Cozzani
- Section of Dermatology, Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
154
|
Roesel R, Strati F, Basso C, Epistolio S, Spina P, Djordjevic J, Sorrenti E, Villa M, Cianfarani A, Mongelli F, Galafassi J, Popeskou SG, Facciotti F, Caprera C, Melle F, Majno-Hurst PE, Franzetti-Pellanda A, De Dosso S, Bonfiglio F, Frattini M, Christoforidis D, Iezzi G. Combined tumor-associated microbiome and immune gene expression profiling predict response to neoadjuvant chemo-radiotherapy in locally advanced rectal cancer. Oncoimmunology 2025; 14:2465015. [PMID: 39992705 PMCID: PMC11853554 DOI: 10.1080/2162402x.2025.2465015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Locally advanced rectal cancer (LARC) is treated with neoadjuvant chemo-radiotherapy (nCRT) followed by surgery. A minority of patients show complete response (CR) to nCRT and may avoid surgery and its functional consequences. Instead, most patients show non-complete response (non-CR) and may benefit from additional treatments to increase CR rates. Reliable predictive markers are lacking. Aim of this study was to identify novel signatures predicting nCRT responsiveness. We performed a combined analysis of tumor-associated microbiome and immune gene expression profiling of diagnostic biopsies from 70 patients undergoing nCRT followed by rectal resection, including 16 with CR and 54 with non-CR. Findings were validated by an independent cohort of 49 patients, including 7 with CR and 42 with non-CR. Intratumoral microbiota significantly differed between CR and non-CR groups at genus and species level. Colonization by bacterial species of Ruminococcus genera was consistently associated with CR, whereas abundance of Fusobacterium, Porhpyromonas, and Oscillibacter species predicted non-CR. Immune gene profiling revealed a panel of 59 differentially expressed genes and significant upregulation of IFN-gamma and -alpha response in patients with CR. Integrated microbiome and immune gene profiling analysis unraveled clustering of microbial taxa with each other and with immune cell-related genes and allowed the identification of a combined signature correctly identifying non-CRS in both cohorts. Thus, combined intratumoral microbiome-immune profiling improves the prediction of response to nCRT. Correct identification of unresponsive patients and of bacteria promoting responsiveness might lead to innovative therapeutic approaches based on gut microbiota pre-conditioning to increase nCRT effectiveness in LARC.
Collapse
Affiliation(s)
- Raffaello Roesel
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Camilla Basso
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Samantha Epistolio
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Paolo Spina
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Julija Djordjevic
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Elisa Sorrenti
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Martina Villa
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Agnese Cianfarani
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Francesco Mongelli
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jacopo Galafassi
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Sotirios G. Popeskou
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cecilia Caprera
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Melle
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Pietro Edoardo Majno-Hurst
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | | | - Sara De Dosso
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Naples, Italy
- CEINGE Advanced Biotechnology Franco Salvatore, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Milo Frattini
- Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland
| | - Dimitrios Christoforidis
- Department of Surgery, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Visceral Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Giandomenica Iezzi
- Laboratory for Translational Surgical Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
155
|
Hwang YH, Min DH, Beom Park W. Limitations of neutralizing antibody titers in COVID-19 vaccine efficacy trials and a call for additional correlates of protection. Hum Vaccin Immunother 2025; 21:2473795. [PMID: 40051347 PMCID: PMC11901426 DOI: 10.1080/21645515.2025.2473795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The coronavirus disease (COVID-19) pandemic accelerated development of various vaccine platforms. Among them, mRNA vaccines played a crucial role in controlling the pandemic due to their swift development and efficacy against virus variants. Despite the success of these vaccines, recent studies highlight challenges in evaluating vaccine efficacy, especially in individuals with prior COVID-19 infection. Weakened neutralizing antibody responses after additional doses are observed in these populations, raising concerns about using neutralizing antibody titers as the sole immune correlate of protection. While neutralizing antibodies remain the primary endpoint in immunogenicity trials, they may not fully capture the immune response in populations with widespread prior infection or vaccination. This review explores reduced neutralizing antibody responses in previously infected individuals, and their impact on vaccine efficacy evaluation. It also offers recommendations for improving efficacy assessment, stressing incorporation of additional immune markers such as cell-mediated immunity to enable more comprehensive understanding of vaccine-induced immunity.
Collapse
Affiliation(s)
- Young Hoon Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
156
|
Valentin C, Brito Rodrigues P, Verce M, Delbauve S, La Palombara L, Demaret F, Allard J, Salmon I, Cani PD, Köhler A, Everard A, Flamand V. Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection. Gut Microbes 2025; 17:2442526. [PMID: 39710590 DOI: 10.1080/19490976.2024.2442526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to Lacticaseibacillus rhamnosus (L.rh) or Bifidobacterium animalis subsp. lactis (B.lac) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to L.rh supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal L.rh or B.lac supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.
Collapse
Affiliation(s)
- Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Patricia Brito Rodrigues
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Léa La Palombara
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Florine Demaret
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), Gosselies, Belgium
| |
Collapse
|
157
|
Yang BF, Jin J, He XR, Yang ZH, Qian X, Tong YQ, Ke CX, Li ZH, Li ZX, Zhong LF, Gan ZH, Zhang XF, Zeng Y. Immunogenicity and safety of SARS-CoV-2 recombinant protein vaccine (CHO cell) LYB001 as a heterologous booster following two- or three-dose inactivated COVID-19 vaccine in adults aged ≥18 years: interim results of a randomized, active-controlled, double-blinded, phase 3 trial. Expert Rev Vaccines 2025; 24:81-90. [PMID: 39720838 DOI: 10.1080/14760584.2024.2446288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/13/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND LYB001 is a recombinant protein COVID-19 vaccine displaying a receptor-binding domain (RBD) in a highly immunogenic array on virus-like particles (VLPs). This study assessed the immunogenicity and safety of LYB001 as a booster. RESEARCH DESIGN AND METHODS In this randomized, active-controlled, double-blinded, phase 3 trial, participants aged ≥ 18 years received a booster with LYB001 or ZF2001 (Recombinant COVID-19 Vaccine). The primary endpoint was to compare the geometric mean titer (GMT) of neutralizing antibodies against Omicron BA.4/5 at 14 days after the booster. RESULTS Overall, 1,200 participants aged ≥ 18 years were enrolled, 599 received LYB001, and 601 received ZF2001. Based on similar baseline level, the 14-day GMT ratio (LYB001/ZF2001) against Omicron BA.4/5 was 1.39 (95% CI: 1.25, 1.56), demonstrating superiority (95% CI lower limit > 1) of LYB001. The spike protein-binding IgG concentrations induced by LYB001 were significantly higher than those induced by ZF2001 on day 14 and day 28 after the booster (p-value <0.0001). LYB001 recipients reported more adverse reactions than ZF2001 recipients (21.4% vs. 15.0%); however, all adverse reactions in the LYB001 group were mild-to-moderate. CONCLUSIONS LYB001 is highly immunogenic and retains a well-characterized safety profile in adults aged ≥ 18 years. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, identifier is NCT05664932.
Collapse
Affiliation(s)
- Bei-Fang Yang
- Center for Clinical Trial of Vaccines, Hubei Institute for Infectious Disease, Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jing Jin
- Center for Clinical Trial of Vaccines, Hubei Institute for Infectious Disease, Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- Guangzhou Patronus Biotech Co., Ltd., Guangzhou, China
| | - Xi-Ran He
- Center for Clinical Trial of Vaccines, Hubei Institute for Infectious Disease, Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- Guangzhou Patronus Biotech Co., Ltd., Guangzhou, China
| | - Zhong-Hua Yang
- Center for Clinical Trial of Vaccines, Hubei Institute for Infectious Disease, Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- Guangzhou Patronus Biotech Co., Ltd., Guangzhou, China
| | - Xiao'ai Qian
- Yantai Patronus Biotech Co., Ltd., Yantai, China
| | - Ye-Qing Tong
- Hubei Institute for Infectious Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Chang-Xian Ke
- Immunization Prevention Department Shiyan City Yunyang District Center for Disease Control and Prevention, Shiyan, China
| | - Zhao-Hong Li
- Immunization Prevention Department Shiyan City Yunyang District Center for Disease Control and Prevention, Shiyan, China
| | - Zhao-Xia Li
- Immunization Prevention Department, Gucheng Center for Disease Control and Prevention, Xiangyang, China
| | - Lin-Feng Zhong
- Immunization Prevention Department, Wuxue City Center for Disease Control and Prevention, Wuxue, China
| | - Ze-Hong Gan
- Immunization Prevention Department, Wuxue City Center for Disease Control and Prevention, Wuxue, China
| | - Xian-Feng Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Ying Zeng
- Center for Clinical Trial of Vaccines, Hubei Institute for Infectious Disease, Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- Guangzhou Patronus Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|
158
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
159
|
Li W, Wang F, Li Z, Feng W, Huang H, Kwan MP, Tse LA. Lipid profile and non-alcoholic fatty liver disease detected by ultrasonography: is systemic inflammation a necessary mediator? Ann Med 2025; 57:2480250. [PMID: 40098359 PMCID: PMC11921154 DOI: 10.1080/07853890.2025.2480250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
AIMS To examine the relationship between lipid profile and non-alcoholic fatty liver (NAFL), compare the predictive strengths of different lipid indicators to NAFL, and explore the possible mechanisms. METHODS Male workers from a baseline survey of a cohort of workers in southern China were included. Basic information was collected through face-to-face interviews. Plasma concentrations of fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were determined using a blood biochemical analyzer. Liver sonography was used to identify NAFL cases. Regression models were used to calculate ORs, and examine the association between C-reactive protein (CRP) levels and lipid profiles. Restricted cubic spline regression with four knots was used to examine the dose-response relationship, and mediation analysis was employed to examine the mediation effect. RESULTS h Among the 4016 male workers, 829 (20.64%) were diagnosed with NAFL. Compared with normal lipid profile, individuals with abnormal lipid profile had higher prevalence of NAFL (OR=2.27, 95%CI: 1.85-2.79 for TG; OR=1.45, 95%CI: 1.03-2.04 for TC; OR=1.56, 95%CI: 1.21-2.02 for HDL; OR=1.65, 95%CI: 1.25-2.18 for LDL; OR=2.28, 95%CI: 1.87-2.77 for dyslipidaemia) after adjusting for potential confounders. Dose-response relationships were observed among TG, HDL, and NAFL. In addition, no significant mediation effect of C-reactive protein (CRP) was found in the association between lipid profiles and NAFL. CONCLUSIONS Abnormal TG, TC, HDL, and LDL levels were all positively associated with NAFL, while CRP has no mediating effect, and TG tended to be a better predictor of NAFL.
Collapse
Affiliation(s)
- Wenzhen Li
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Centre for Public Health and Primary Care (Shenzhen), Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | - Feng Wang
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhimin Li
- Institute of Occupational Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Wenting Feng
- Institute of Occupational Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hongying Huang
- Institute of Occupational Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Mei-Po Kwan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong SAS, China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Centre for Public Health and Primary Care (Shenzhen), Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
160
|
Tong L, Kremer V, Neo SY, Seitz C, Tobin NP, Seliger B, Harmenberg U, Colón E, Scherman Plogell AH, Liu LL, Lundqvist A. Cellular and secretome profiling uncover immunological biomarkers in the prognosis of renal cell carcinoma patients. Oncoimmunology 2025; 14:2481109. [PMID: 40126183 PMCID: PMC11934188 DOI: 10.1080/2162402x.2025.2481109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Renal cell carcinoma (RCC) is recognized as an immunogenic tumor, yet tumor-infiltrating lymphocytes often exhibit diminished effector function. However, the mechanisms underlying reduced T and NK cell activity in RCC remain unclear. Here, we examined the immune contexture in RCC patients undergoing nephrectomy to identify immune-related biomarkers associated with disease progression. Immune cell phenotypes and secretion profiles were assessed using flow cytometry and Luminex multiplex analysis. Supervised multivariate analysis revealed several changes of which frequencies of T and NK cells expressing CCR5, CXCR3, and PD-1 were elevated within tumors compared with peripheral blood. In addition, higher levels of regulatory T cells, PD-1+, and CXCR3+ T and NK cells were observed in patients with relapse following nephrectomy. With regards to soluble factors, tumor-derived CXCL8 was associated with higher Fuhrman grade and increased frequency of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). These biomarkers demonstrate potential relevance in the progression of RCC and merit further investigation in prospective studies.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Veronika Kremer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P. Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Ulrika Harmenberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eugenia Colón
- Department of Women’s and Children’s Health, Karolinska Institutet and S:t Göran’s Hospital-Unilabs, Stockholm, Sweden
| | | | - Lisa L. Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
161
|
Rudolph AE, Al Akoury N, Bogdanenko N, Markus K, Whittle I, Wright O, Haridy H, Spinardi JR, McLaughlin JM, Kyaw MH. Factors affecting the impact of COVID-19 vaccination on post COVID-19 conditions among adults: A systematic literature review. Hum Vaccin Immunother 2025; 21:2474772. [PMID: 40079963 PMCID: PMC11913386 DOI: 10.1080/21645515.2025.2474772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
This systematic literature review summarizes the evidence across 56 publications and pre-prints (January 2020-July 2023) with low-risk of bias based on JBI critical appraisal, that report adjusted estimates for the relationship between COVID-19 vaccination and Post-COVID-19 Condition (PCC) by timing of vaccination relative to infection or PCC-onset. Comparisons of adjusted vaccine effectiveness (aVE) against ≥1 PCC (vs. unvaccinated) across study characteristics known to impact PCC burden or VE against other COVID-19 endpoints were possible for 31 studies where vaccination preceded infection. Seventy-seven percent of pre-infection aVE estimates were statistically significant (range: 7%-95%). Statistically significant pre-infection aVE estimates were slightly higher for mRNA (range: 14%-84%) than non-mRNA vaccines (range: 16%-38%) and aVE ranges before and during Omicron overlapped. Our findings suggest that COVID-19 vaccination before SARS-CoV-2 infection reduces the risk of PCC regardless of vaccine type, number of doses received, PCC definition, predominant variant, and severity of acute infections included.
Collapse
|
162
|
Dong Y, Meng F, Wang J, Wei J, Zhang K, Qin S, Li M, Wang F, Wang B, Liu T, Zhong W, Cao H. Desulfovibrio vulgaris flagellin exacerbates colorectal cancer through activating LRRC19/TRAF6/TAK1 pathway. Gut Microbes 2025; 17:2446376. [PMID: 39718561 DOI: 10.1080/19490976.2024.2446376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024] Open
Abstract
The initiation and progression of colorectal cancer (CRC) are intimately associated with genetic, environmental and biological factors. Desulfovibrio vulgaris (DSV), a sulfate-reducing bacterium, has been found excessive growth in CRC patients, suggesting a potential role in carcinogenesis. However, the precise mechanisms underlying this association remain incompletely understood. We have found Desulfovibrio was abundant in high-fat diet-induced Apcmin/+ mice, and DSV, a member of Desulfovibrio, triggered colonocyte proliferation of germ-free mice. Furthermore, the level of DSV progressively rose from healthy individuals to CRC patients. Flagella are important accessory structures of bacteria, which can help them colonize and enhance their invasive ability. We found that D. vulgaris flagellin (DVF) drove the proliferation, migration, and invasion of CRC cells and fostered the growth of CRC xenografts. DVF enriched the epithelial-mesenchymal transition (EMT)-associated genes and characterized the facilitation of DVF on EMT. Mechanistically, DVF induced EMT through a functional transmembrane receptor called leucine-rich repeat containing 19 (LRRC19). DVF interacted with LRRC19 to modulate the ubiquitination of tumor necrosis factor receptor-associated factor (TRAF)6, rather than TRAF2. This interaction drove the ubiquitination of pivotal molecule TAK1, further enhancing its autophosphorylation and ultimately contributing to EMT. Collectively, DVF interacts with LRRC19 to activate the TRAF6/TAK1 signaling pathway, thereby promoting the EMT of CRC. These data shed new light on the role of gut microbiota in CRC and establish a potential clinical therapeutic target.
Collapse
Affiliation(s)
- Yue Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fucheng Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
163
|
Lin Y, Liao Y, Huang M, Shen J. Elevated circulating IL-8 correlates with poor prognosis in urological cancers: a meta-analysis and bioinformatic validation. Ann Med 2025; 57:2486592. [PMID: 40181579 PMCID: PMC11980208 DOI: 10.1080/07853890.2025.2486592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Interleukin-8 (IL-8) is a key cytokine that has been implicated in multiple aspects of cancer progression and therapeutic resistance. Elevated levels of circulating IL-8 (cIL-8) have been implicated in adverse clinical outcomes among patients with urological cancers. However, definitive evidence consolidating these observations remains lacking. The present study aims to synthesize the existing research findings to provide a comprehensive, evidence-based reference for clinical practice. METHODS A systematic literature search was conducted to identify relevant studies that reported on the prognostic impact of cIL-8 levels in urological cancer patients. Hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) were extracted and pooled to estimate the overall effect. Furthermore, Kaplan-Meier's survival analyses were conducted using RNA-seq data from The Cancer Genome Atlas (TCGA) through the Gene Expression Profiling Interactive Analysis 2 (GEPIA 2) online tool to validate the observed associations. RESULTS A total of 19 cohorts encompassing 2740 patients from 12 studies were included in the meta-analysis. The findings revealed that elevated cIL-8 levels were significantly associated with inferior OS (HR: 1.86; 95% confidence intervals (CI): 1.72-2.02) and PFS (HR: 1.59; 95%CI: 1.25-2.03) in patients with urological cancers. The consistency and validity of these results were further supported by survival analyses performed using the GEPIA 2 tool. CONCLUSIONS This study, which is the first meta-analysis to systematically examine the prognostic significance of cIL-8 in urological cancers, supported by bioinformatics validation, confirms that elevated cIL-8 levels serve as a potential biomarker for predicting adverse outcomes. Our findings underscore the importance of targeting IL-8 as a therapeutic strategy to overcome treatment resistance and improve outcomes for urological cancer patients. Further research into IL-8-targeted therapies and their integration into clinical practice is urgently needed to enhance the treatment landscape for urological cancers.
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Pharmacy, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, PR China
| | - Yonghe Liao
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, PR China
| | - Mengfan Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, PR China
| | - Jinhai Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
164
|
Palrasu M, Kakar K, Marudamuthu A, Hamida H, Thada S, Zhong Y, Staley S, Busbee PB, Li J, Garcia-Buitrago M, Nagarkatti M, Nagarkatti P. AhR Activation Transcriptionally Induces Anti-Microbial Peptide Alpha-Defensin 1 Leading to Reversal of Gut Microbiota Dysbiosis and Colitis. Gut Microbes 2025; 17:2460538. [PMID: 39894796 PMCID: PMC11792800 DOI: 10.1080/19490976.2025.2460538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025] Open
Abstract
Alpha-defensin 1 is a small antimicrobial peptide that acts as the first line of defense against pathogens. It is induced following microbial cues and inflammatory signals in neutrophils and Paneth cells in the small intestine, which suggests that it plays a role in microbial homeostasis in the gut. The gut microbial products also serve as ligands for the aryl hydrocarbon receptor (AhR), an environmental sensor. In the current study, we investigated if there is any crosstalk between AhR and alpha-defensin 1. Interestingly, we found a positive correlation between AhR and alpha-defensin 1 protein levels in ileal tissues from active Crohn's' (CD) patients and epithelial cells (IECs) from multiple models of murine colitis. In vitro downregulation of AhR led to inhibition of α-defensin 1, while activation of AhR induced α-defensin 1 in IECs. AhR directly targeted the dioxin response element 3 (DRE3) region on the α-defensin 1 promoter in IECs. AhR-mediated induction of α-defensin 1 in colitis mice reversed the gut microbial dysbiosis and alleviated colitis. Our data identify a novel signaling pathway in which AhR acts as a transcription factor for α-defensin 1, leading to regulation of homeostasis between gut microbiota, intestinal mucosa, and mucosal immunity.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Khadija Kakar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Amarnath Marudamuthu
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Hamida Hamida
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shruthi Thada
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Yin Zhong
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Shanieka Staley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Monica Garcia-Buitrago
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
165
|
Wang Q, Sun N, Zhang C, Kunzke T, Zens P, Feuchtinger A, Berezowska S, Walch A. Metabolic heterogeneity in tumor cells impacts immunology in lung squamous cell carcinoma. Oncoimmunology 2025; 14:2457797. [PMID: 39924768 PMCID: PMC11812363 DOI: 10.1080/2162402x.2025.2457797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic processes are crucial in immune regulation, yet the impact of metabolic heterogeneity on immunological functions remains unclear. Integrating metabolomics into immunology allows the exploration of the interactions of multilayered features in the biological system and the molecular regulatory mechanism of these features. To elucidate such insight in lung squamous cell carcinoma (LUSC), we analyzed 106 LUSC tumor tissues. We performed high-resolution matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to obtain spatial metabolic profiles, and immunohistochemistry to detect tumor-infiltrating T lymphocytes (TILs). Unsupervised k-means clustering and Simpson's diversity index were employed to assess metabolic heterogeneity, identifying five distinct metabolic tumor subpopulations. Our findings revealed that TILs are specifically associated with metabolite distributions, not randomly distributed. Integrating a validation cohort, we found that heterogeneity-correlated metabolites interact with CD8+ TIL-associated genes, affecting survival. High metabolic heterogeneity was linked to worse survival and lower TIL levels. Pathway enrichment analyses highlighted distinct metabolic pathways in each subpopulation and their potential responses to chemotherapy. This study uncovers the significant impact of metabolic heterogeneity on immune functions in LUSC, providing a foundation for tailoring therapeutic strategies.
Collapse
Affiliation(s)
- Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Philipp Zens
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabina Berezowska
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
166
|
Hinterberger A, Stelmach A. Organoids at the forefront of global health: accelerated research and ethical implications in the cases of Zika and COVID-19. Glob Public Health 2025; 20:2496679. [PMID: 40329450 DOI: 10.1080/17441692.2025.2496679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
Bioengineering technologies are increasingly important in global health research, yet their applications beyond vaccines and diagnostics remain underexplored. Our paper examines the role of organoids - advanced stem cell technologies used to model human organs, such as lungs and brains - in the context of infectious disease research. Organoids became crucial during the Zika and COVID-19 outbreaks. These new model systems enabled rapid insights into pathogen behaviour. We analyse how the urgency of Zika and Covid-19 accelerated organoid research, tracing its rise and subsequent slowdown. Our investigation reveals that while organoid technologies experienced a burst of activity during these emergencies, their momentum has waned, with ongoing research predominantly focusing on diseases prevalent in the Global North. We argue that the uneven acceleration and subsequent deceleration of organoid research underscores a critical need for equitable integration of bioengineering in global health priorities, particularly in the context of pandemic preparedness. Our findings advocate for a balanced and inclusive strategy to enhance pandemic preparedness and address global health disparities effectively.
Collapse
Affiliation(s)
- Amy Hinterberger
- Department of Bioethics and Humanities, University of Washington, Seattle, WA, USA
| | - Aleksandra Stelmach
- Department of Global Health and Social Medicine, King's College London, London, UK
| |
Collapse
|
167
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
168
|
Lo Presti E, Cupaioli F, Scimeca D, Unti E, Di Martino V, Daidone R, Amata M, Scibetta N, Soucie E, Meraviglia S, Iovanna J, Dusetti N, De Gaetano A, Merelli I, Di Mitri R. The pancreatic tumor microenvironment of treatment-naïve patients causes a functional shift in γδ T cells, impairing their anti-tumoral defense. Oncoimmunology 2025; 14:2466301. [PMID: 39945298 PMCID: PMC11834455 DOI: 10.1080/2162402x.2025.2466301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a unique challenge for researchers due to its late diagnosis caused by vague symptoms and lack of early detection markers. Additionally, PDAC is characterized by an immunosuppressive microenvironment (TME), making it a difficult tumor to treat. While γδ T cells have shown potential for anti-tumor activity, conflicting studies exist regarding their effectiveness in pancreatic cancer. This study aims to explore the hypothesis that the PDAC TME hinders the anti-tumor capabilities of γδ T cells through blockade of cytotoxic functions. For this reason, we chose to enroll PDAC treatment-naive patients to avoid the possibility of therapy modifying the TME. By flow cytometry, our research findings indicate that the presence of γδ T cells among CD45+ cells in tumor tissue is lower compared to CD66+ cells, but higher than in blood. Circulating Vδ1 T cells exhibit a terminal effector memory phenotype (TEMRA) more than Vδ2 T cells. Interestingly, Vδ1 and Vδ2 T cells appear to be more prevalent at different stages of tumor development. In our in vitro culture using conditioned medium derived from Patient-derived organoids ;(PDOs), we observed a shift in expression markers in γδ T cells of healthy individuals toward an activation and exhaustion phenotype, as confirmed by scRNA-seq analysis extracted from a public database. A deeper understanding of γδ T cells in PDAC could be valuable for developing novel therapies aimed at mitigating the impact of the pancreatic tumor microenvironment on this cell population.
Collapse
Affiliation(s)
- Elena Lo Presti
- National Research Council of Italy (CNR), Institute for Biomedical Research and Innovation (IRIB), Palermo, Italy
| | - Francesca Cupaioli
- National Research Council of Italy, Bioinformatics Research Unit, Institute for Biomedical Technologies Segrate, Milan, Italy
| | - Daniela Scimeca
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Elettra Unti
- ‘Anatomic-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Vincenzo Di Martino
- Immunohaematology and Transfusion Medicine Unit, Imperia Hospital ASL1 Imperiese, Imperia, Italy
| | - Rossella Daidone
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Michele Amata
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Nunzia Scibetta
- ‘Anatomic-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Erinn Soucie
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy
| | - Juan Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Andrea De Gaetano
- National Research Council of Italy (CNR), Institute for Biomedical Research and Innovation (IRIB), Palermo, Italy
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti, ” BioMatLab (Biomathematics Laboratory), Rome, Italy
- Department of Mathematics, Mahidol University, Bangkok, Thailand
| | - Ivan Merelli
- National Research Council of Italy, Bioinformatics Research Unit, Institute for Biomedical Technologies Segrate, Milan, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| |
Collapse
|
169
|
Gao Y, Liu Y, Hao H. A 10-year knowledge mapping of T cells in rheumatoid arthritis: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2450855. [PMID: 39962980 PMCID: PMC11845019 DOI: 10.1080/21645515.2025.2450855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 02/23/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease of autoimmune origin. T cells play crucial roles in the initiation and progression of RA. Although bibliometric methods have been widely used to synthesize knowledge trajectories across different biomedical fields, it has hardly been used to underscore the knowledge trends in relation to T cell and RA. This study used bibliometric methods to delineate the evolution of research on T cells and RA. Data were sourced from the Web of Science™ Core Collection and were scientometrically analyzed using CiteSpace and VOSviewer. From 2014 to 2023, 7037 papers on T cells and RA were retrieved. The number of annual publications is stable between 600 and 800, and the citation frequency continues to rise. The United States, China, the United Kingdom and Japan were the most productive countries. Karolinska Institute, and Harvard Medical School were the institutions that published the most research papers. Wei W, Cho ML, and Park SH were the most prolific authors. Mclnnes IB and Smolen JS were the most frequently cited authors. The journals with the most articles are Frontiers in Immunology, Arthritis Research & Therapy, and Arthritis & Rheumatology. Current research hotspots include pathogenic factors and targeted biological therapy, immune mechanisms, inflammatory mechanisms, and bone destruction mechanisms. The current research frontiers in this field are gut microbiota, identification, fibroblast-like synoviocytes, biologic therapy, mesenchymal stem cells, and risk. This work provides new insights into the scientific research and clinical application of T cells to develop therapeutic targets for RA.
Collapse
Affiliation(s)
- Yanfang Gao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
170
|
Figueroa AL, Ali K, Berman G, Xu W, Deng W, Girard B, Yeakey A, Slobod K, Miller J, Das R, Priddy F. Safety and immunogenicity of an mRNA-1273 vaccine booster in adolescents. Hum Vaccin Immunother 2025; 21:2436714. [PMID: 39836458 DOI: 10.1080/21645515.2024.2436714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/11/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025] Open
Abstract
Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427). Binding antibody (bAb) responses against SARS-CoV-2 variants of interest and COVID-19 incidence after vaccination were also evaluated. Median boosting interval was 315 days. The mRNA-1273 booster was well-tolerated, with an acceptable safety profile. Relative to pre-booster, nAb geometric mean levels increased after the booster by 17.8-fold and 4.7-fold among pre-booster SARS-CoV-2-negative and -positive participants, respectively. Effectiveness was successfully inferred based on noninferiority of nAb levels from mRNA-1273 booster dose (Day 29) compared with nAb levels after mRNA-1273 primary series (Day 57) among young adults in COVE. Further, the booster increased bAb levels relative to pre-booster baseline against SARS-CoV-2 variants (alpha [B.1.1.7], beta [B.1.351], gamma [P.1], and delta [B.1.617.2]), regardless of pre-booster SARS-CoV-2 status. COVID-19 incidence (cases per 1000 person-months) was lower among boosted (0 cases) than non-boosted (95.766 cases) participants in January 2022, a peak period during the early omicron transmission. In summary, the mRNA-1273 50-μg booster induced robust nAb responses in previously vaccinated adolescents, regardless of SARS-CoV-2 serostatus. Effectiveness was successfully inferred and the booster was well-tolerated, with no new safety concerns identified.
Collapse
Affiliation(s)
- Amparo L Figueroa
- Clinical Development, Infectious Diseases, Moderna, Inc., Cambridge, MA, USA
| | - Kashif Ali
- Kool Kids Pediatrics, DM Clinical Research, Houston, TX, USA
| | - Gary Berman
- Clinical Research Institute, Allergy and Immunology, Minneapolis, MN, USA
| | - Wenqin Xu
- Biostatistics, Moderna, Inc., Cambridge, MA, USA
| | - Weiping Deng
- Biostatistics, Moderna, Inc., Cambridge, MA, USA
| | | | | | - Karen Slobod
- Cambridge ID & Immunology Consulting, LLC, Somerville, MA, USA
| | - Jacqueline Miller
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| | - Rituparna Das
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| | - Frances Priddy
- Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA
| |
Collapse
|
171
|
Ming Y, Xu W, Yang Z, Wang Z, Wang N. Exploring the impact of nano platinum-hydrogen saline on oxygen-induced retinopathy in neonatal rats. J Matern Fetal Neonatal Med 2025; 38:2454374. [PMID: 39848630 DOI: 10.1080/14767058.2025.2454374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
OBJECTIVE The objective of this study is to assess the impact of nano platinum-hydrogen saline (Pt NPs + H2) on oxygen-induced retinopathy (OIR) in neonatal rats, with the goal to contribute new insights into the therapeutic strategies for retinopathy of prematurity. METHODS Pt NPs + H2 formulation was synthesized to address OIR in a rat model. Subsequent examination included the assessment of retinal blood vessel distribution and morphology through hematoxylin and eosin (HE) and isolectin B4 (IB4) staining techniques. The levels of reactive oxygen species (ROS), malondialdehyde(MDA), and superoxide dismutase (SOD) were measured to reflect the oxidative stress in rats. Additionally, the protein expression of vascular endothelial growth factor (VEGF) in each experimental group was assessed using western blot analysis, while the gene expression of VEGF in retinal neovascularization tissues was assessed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the extent of retinal cell apoptosis was measured using a TdT-mediated dUTP Nick-End Labeling (TUNEL) apoptosis kit. RESULTS HE staining and IB4 staining revealed positive retinal neovascularization in the OIR group, whereas neovascularization in the Pt NPs + H2 group exhibited reduced severity. Significantly fewer capillary globules and capillary tubules were observed in the Pt NPs + H2 group compared to the OIR group (p < 0.05). Also, the Pt NPs + H2 group demonstrated significant reductions in ROS and MDA levels within retinal tissues (p < 0.05, p < 0.001), along with a significant increase in SOD level (p < 0.05). Notably, the MDA level in the Pt NPs + H2 group was notably lower than that in the OIR group (p < 0.01, p < 0.05), and even lower than that in the H2 group. Pt NPs + H2 intervention was associated with decreased protein and mRNA expression of VEGF, with statistical significance (p < 0.05). While the H2 group exhibited a decreasing trend in apoptotic cell count in the retinal ganglion cell layer (p < 0.05), the Pt NPs + H2 group demonstrated a more pronounced reduction, with a significant difference (p < 0.01). No significant discrepancy in apoptosis within the inner nuclear layer was observed (p > 0.05). CONCLUSIONS The synergistic effect of hydrogen saline and nano platinum manifests as enhanced antioxidant, anti-apoptotic, and anti-neovascular properties. Nano platinum-hydrogen saline demonstrates inhibitory effects on OIR in rats.
Collapse
Affiliation(s)
- Yangcan Ming
- Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Wanyi Xu
- Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Zhe Yang
- Department of Ophthalmology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| | - Zi Wang
- Department of Dermatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Na Wang
- Department of Pediatrics, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
172
|
Jia S, Shao C, Cheng X, Pan H, Wang Z, Xia Y, Xu J, Huai X, Leng D, Wang J, Zhao G, Wang B, Li J, Zhu F. Immunogenicity and safety of a COVID-19 DNA vaccine in healthy adults and elderly: A randomized, observer-blind, placebo-controlled phase 2 trial. Hum Vaccin Immunother 2025; 21:2448405. [PMID: 39865693 PMCID: PMC11776483 DOI: 10.1080/21645515.2024.2448405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
INO-4800 represents a DNA-based vaccine encoding the spike protein of SARS-CoV-2. This phase 2 trial evaluated the immunogenicity and safety of INO-4800 as a primary vaccination series in adults. We conducted a randomized, observer-blind, placebo-controlled phase 2 trial of intradermal injection of INO-4800 in both healthy adults and elderly individuals. Eligible participants from each age group were enrolled and randomly assigned in a 3:3:2 ratio to receive two doses of INO-4800 (1.0 mg or 2.0 mg) or placebo, followed by electroporation on day 0 and day 28. The primary immunogenicity endpoints focused on determining the geometric mean titers (GMTs) of spike-binding antibodies and live SARS-CoV-2 neutralizing antibody at day 30 after the second dose. The primary endpoint for safety was the occurrence of adverse events within 30 days after vaccination. A total of 781 volunteers were recruited and screened for eligibility, with 320 eligible young adults (≥18 to <60 years old) and 320 elderly (≥60 to ≤85 years old) were randomly assigned to receive the low-dose (1.0 mg, n = 120) or high-dose (2.0 mg, n = 120) INO-4800, or placebo (n = 80). Notably, both dose groups exhibited significant increases in spike-binding antibodies at day 30 after the second dose, with GMTs of 1609.3 (95% CI: 1385.5-1869.3) for the low-dose group and 3016.7 (95% CI: 2577.4-3530.8) for the high-dose group. Additionally, both dose groups induced neutralizing antibodies against live SARS-CoV-2, with GMTs of 4.7 (95% CI: 4.2-5.3) and 6.6 (95% CI: 5.9-7.4) at day 30 after the second dose. The incidence of adverse events within 30 days after vaccination was slightly higher in the high-dose group (115 [47.9%]) than that in the low-dose group (105 [43.8%]) (p = .0060). All adverse reactions were grade 1 or 2, primarily occurring within 14 days after vaccination. No vaccine-related serious adverse events were reported. The COVID-19 DNA vaccine INO-4800 at two doses (1.0 mg or 2.0 mg) showed an acceptable safety profile and modest immunogenicity, with the high-dose slightly more immunogenic than the low-dose.Clinical Trials Registration: www.chictr.org.cn, identifier is ChiCTR2000040146.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Male
- Adult
- Female
- Middle Aged
- Aged
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- Young Adult
- Immunogenicity, Vaccine
- Spike Glycoprotein, Coronavirus/immunology
- Adolescent
- Aged, 80 and over
- Healthy Volunteers
- Vaccination
Collapse
Affiliation(s)
- Siyue Jia
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
| | - Chengwei Shao
- School of Public Health, Southeast University, Nanjing, China
| | - Xin Cheng
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Hongxing Pan
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
| | - Zhijian Wang
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Yu Xia
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Jianfang Xu
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Xuefen Huai
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Danjing Leng
- Department of Acute Infectious Diseases and Immunization Program Management, Danyang Center for Disease Control and Prevention, Zhenjiang, China
| | - Jiarong Wang
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Gan Zhao
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Bin Wang
- R&D Business Unit, Advaccine Biopharmaceuticals Suzhou Co., Ltd, Suzhou, China
| | - Jingxin Li
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| | - Fengcai Zhu
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, China
| |
Collapse
|
173
|
Chen R, Chai X, Zhang Y, Zhou T, Xia Y, Jiang X, Lv B, Zhang J, Zhou L, Tian X, Wang R, Mao L, Zhao F, Zhang H, Hu J, Qiu J, Zou Z, Chen C. Novel role of FTO in regulation of gut-brain communication via Desulfovibrio fairfieldensis-produced hydrogen sulfide under arsenic exposure. Gut Microbes 2025; 17:2438471. [PMID: 39852343 PMCID: PMC11776478 DOI: 10.1080/19490976.2024.2438471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025] Open
Abstract
Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms. We previously revealed that exposure to arsenic increased the level of m6A via down-regulation of FTO, which might serve as a potential target for intervention against arsenic-related disorders. In this study, our results demonstrated that chronic exposure to arsenic significantly disrupted the intestinal barrier and microenvironment. Also, this administration resulted in the enhancement of m6A modification and the reduction of FTO expression in the intestine. By using both CRISPR/Cas9-based FTO knock-in strategy and adeno-associated virus (AAV)-mediated overexpression of FTO in the intestine, we established for the first time that up-regulation of FTO remarkably ameliorated arsenic-induced disruption of intestinal barriers and altered microenvironment of mice. We also firstly identified a dominant gut microbial species, Desulfovibrio fairfieldensis, which was sharply reduced in arsenic-exposed mice, was able to proceed arsenic-induced neurobehavioral impairments by declining the levels of its major metabolite hydrogen sulfide. Administration of Desulfovibrio fairfieldensis could significantly alleviate the neurotoxicity of arsenic. Intriguingly, the beneficial effects of FTO against arsenic neurotoxicity possibly occurred through a novel gut-brain communication via Desulfovibrio fairfieldensis and its produced hydrogen sulfide. Collectively, these findings will provide new ideas for understanding the mechanisms of arsenic-induced toxic effects from a gut-brain communication perspective, and will assist the development of explicit intervention strategy via regulation of a new potential target FTO for prevention and treatment against arsenic-related both intestinal and neurological disorders.
Collapse
Affiliation(s)
- Ruonan Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqin Chai
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yunxiao Zhang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tianxiu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruonan Wang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongyang Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
174
|
Dufour D, Zhao X, Chaleil F, Nothnagel PMC, Bjørås M, Lefrançois-Martinez AM, Martinez A, Chymkowitch P. Pharmacological inhibition of SUMOylation with TAK-981 mimics genetic HypoSUMOylation in murine perigonadal white adipose tissue. Adipocyte 2025; 14:2474107. [PMID: 40047287 PMCID: PMC11901380 DOI: 10.1080/21623945.2025.2474107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Post-translational modification by the small ubiquitin-like modifier (SUMO) is essential for cellular differentiation and homeostasis. Here, we investigate the role of SUMOylation in adipose tissue development using TAK-981, a pharmacological inhibitor of SUMOylation. Administration of TAK-981 to mice resulted in significant defect in weight gain and adipocyte atrophy in perigonadal white adipose tissue (gWAT) depots. Gene expression analyses revealed a marked downregulation of adipogenic genes, including Pparg, Cebpa, and Fasn. Our data thus indicate that TAK-981 treatment impaired adipogenesis in gWAT, consistent with prior findings that SUMOylation supports transcriptional regulation of adipogenesis and lipid metabolism. We also found significant infiltration of immune cells and efferocytosis in gWAT. Our results thus indicate that SUMOylation inhibition using a small molecule phenocopies genetic hypoSUMOylation models, highlighting its critical role in maintaining adipocyte functionality and immune environment. These findings provide evidence that SUMOylation is essential for fat accumulation in vivo. Furthermore, given that TAK-981 is currently under clinical evaluation for the treatment of solid tumors, our results underscore the importance of considering the potential unintended effects of SUMOylation inhibition on adipose tissue in patients.
Collapse
Affiliation(s)
- Damien Dufour
- Institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xu Zhao
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Florian Chaleil
- Institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre of Healthy Embryology (CRESCO), Oslo, Norway
| | - Anne-Marie Lefrançois-Martinez
- Institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Antoine Martinez
- Institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Chymkowitch
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
175
|
Li E, Yang Q, Xie W, Gong Q, Guo X, Zhou J, Zhang J, Chuai X, Wang Y, Chiu S. An mpox quadrivalent mRNA vaccine elicits sustained and protective immunity in mice against lethal vaccinia virus challenge. Emerg Microbes Infect 2025; 14:2447619. [PMID: 39745170 PMCID: PMC11758793 DOI: 10.1080/22221751.2024.2447619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Assessing the long-term efficacy of MPXV vaccine candidates is crucial for the global response to the ongoing mpox epidemic. Built upon our previous study of the mpox quadrivalent mRNA vaccine, herein we reported that MPXV-1103 could elicit sustained humoral and cellular immunity in mice, including the induction of MPXV A35/B6/A29/M1-specific IgG antibodies, VACV neutralizing antibodies and activated cytotoxic CD8+T cells, which provides 100% protection against lethal VACV challenge even at 280 days after the first vaccination. Our results provide critical insights for orthopoxvirus vaccine development.
Collapse
Affiliation(s)
- Entao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiyuan Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyu Xie
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qizan Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoping Guo
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinge Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Jiachen Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xia Chuai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, China
| | - Yucai Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sandra Chiu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
176
|
Gu Y, Bi X, Liu X, Qian Q, Wen Y, Hua S, Fu Q, Zheng Y, Sun S. Roles of ABCA1 in Chronic Obstructive Pulmonary Disease. COPD 2025; 22:2493701. [PMID: 40302380 DOI: 10.1080/15412555.2025.2493701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the common chronic respiratory diseases, which causes a heavy burden to patients and society. Increasing studies suggest that ABCA1 plays an important role in COPD. ABCA1 belongs to a large class of ATP-binding (ABC) transporters. It is not only involved in the reverse transport of cholesterol, but also in the regulation of apoptosis, pyroptosis, cellular inflammation and cellular immunity. Meanwhile, ABCA1 is involved in several signaling pathways, such as SREBP pathway, LXR pathway, MAPK pathway, p62/mTOR pathway, CTRP1 pathway and so on. In addition, the ABCA1 participates in the disorder of lipid metabolism in COPD by regulating the formation of RCT and HDL, regulates the inflammation of COPD by removing excess cholesterol in macrophages, and promotes the differentiation of COPD phenotype into emphysema type. Accordingly, the ABCA1 may be a therapeutic target for COPD.
Collapse
Affiliation(s)
- Ying Gu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaoqing Bi
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qingqing Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qiaoli Fu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuanyuan Zheng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
177
|
Wang R, Xu J, Cheng S, Ling Z, Sonam W, Yang J, Jin F, Wen J, Lu X, Ma L, Zhang Y, Sun X, Yi C, Sun B. TNFR2/CCR8 bispecific antibody enhances antitumor activity through depleting Ti-Tregs and boosting effector CD8 + T cell function. Oncoimmunology 2025; 14:2497171. [PMID: 40293187 PMCID: PMC12039408 DOI: 10.1080/2162402x.2025.2497171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Modulation or depletion of tumor-infiltrating Tregs (Ti-Tregs) is a promising strategy in the field of antitumor immunotherapy. However, this approach poses challenges due to the diversity within the Treg population and the lack of precision in targeting Ti-Tregs. To selectively and efficiently eliminate Ti-Tregs while sparing other immune cells, we developed a bispecific antibody, FT10-Fab, targeting TNFR2 and CCR8, which are highly expressed on Ti-Tregs. Our results showed that FT10-Fab outperformed the monotherapies in several tumor models by significantly reducing the proportion of Ti-Tregs while increasing the proportion of CD8+ T cells. FT10-Fab was able to target and eliminate Ti-Tregs expressing TNFR2 or CCR8 (TNFR2+or CCR8+ Tregs), particularly TNFR2+ CCR8+ Tregs, which are the most important proliferative and protumorigenic Tregs. In addition, FT10-Fab relies on CD8+ T cells for its antitumor function and induces robust immune memory. Furthermore, the combination of FT10-Fab with PD-1 blockade showed synergistic therapeutic efficacy against tumors by significantly suppressing Tregs and enhancing effector CD8+ T cell function. Taken together, our findings suggest that precision depletion of Ti-Tregs via the bispecific TNFR2/CCR8 antibody is a potential therapeutic for cancer immunotherapy, while combination with anti-PD1 amplifies the antitumor effect.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Mice
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, CCR8/immunology
- Receptors, CCR8/antagonists & inhibitors
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Female
- Cell Line, Tumor
- Immunotherapy/methods
- Mice, Inbred C57BL
- Neoplasms/immunology
- Neoplasms/drug therapy
Collapse
Affiliation(s)
- Ran Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiefang Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shipeng Cheng
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyang Ling
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hiwisdom Company Limited, Shanghai, China
| | - Wangmo Sonam
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Jichao Yang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fuquan Jin
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Wen
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao Lu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liyan Ma
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yaguang Zhang
- Med-X institute, Center for Immunological and Metabolic Diseases, the First Affiliated Hospital of Xi’an JiaoTong University, Xi’an JiaoTong University, Xi’an, Shaanxi, China
| | - Xiaoyu Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunyan Yi
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hiwisdom Company Limited, Shanghai, China
| | - Bing Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
178
|
Karadzov Orlic N, Joksić I. Preeclampsia pathogenesis and prediction - where are we now: the focus on the role of galectins and miRNAs. Hypertens Pregnancy 2025; 44:2470626. [PMID: 40012493 DOI: 10.1080/10641955.2025.2470626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Preeclampsia is a complex, progressive multisystem hypertensive disorder during pregnancy that significantly contributes to increased maternal and perinatal morbidity and mortality. Two screening algorithms are in clinical use for detecting preeclampsia: first-trimester screening, which has been developed and validated for predicting early-onset preeclampsia but is less effective for late-onset disease; and the sFlt-1:PlGF biomarker ratio (soluble tyrosine kinase and placental growth factor) used in suspected cases of preeclampsia. This ratio has a high negative predictive value, allowing for the reliable exclusion of the disease. Both of these screening tests have not met expectations. This review attempts to summarize the current knowledge on the pathogenesis and prediction of preeclampsia and to draw attention to novel biomarkers with a focus on microRNAs and galectins. Although these molecules belong to two distinct biological classes, they functionally converge in regulating placental and immune pathways. Ample evidence supports their involvement in the molecular mechanisms underlying preeclampsia. Based on current knowledge, galectin-13, C19MC members, and miRNA-210 are associated with the trophoblast/placenta and conditions of placental ischemia or hypoxia. Their levels differ significantly in pregnant women at risk of preeclampsia as early as the late first and early second trimester, making them potential markers for predicting preeclampsia.
Collapse
Affiliation(s)
- Natasa Karadzov Orlic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- High-Risk Pregnancy Unit, Obstetrics/Gynecology Clinic "Narodni Front", Belgrade, Serbia
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic "Narodni Front", Belgrade, Serbia
| |
Collapse
|
179
|
Cerdán L, Silva K, Rodríguez-Martín D, Pérez P, Noriega MA, Esteban Martín A, Gutiérrez-Adán A, Margolles Y, Corbera JA, Martín-Acebes MA, García-Arriaza J, Fernández-Recio J, Fernández LA, Casasnovas JM. Integrating immune library probing with structure-based computational design to develop potent neutralizing nanobodies against emerging SARS-CoV-2 variants. MAbs 2025; 17:2499595. [PMID: 40329514 PMCID: PMC12064060 DOI: 10.1080/19420862.2025.2499595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
To generate antibodies (Abs) against SARS-CoV-2 emerging variants, we integrated multiple tools and engineered molecules with excellent neutralizing breadth and potency. Initially, the screening of an immune library identified a nanobody (Nb), termed Nb4, specific to the receptor-binding domain (RBD) of the Omicron BA.1 variant. A Nb4-derived heavy chain antibody (hcAb4) recognized the spike (S) of the Wuhan, Beta, Delta, Omicron BA.1, and BA.5 SARS-CoV-2 variants. A high-resolution crystal structure of the Nb4 variable (VHH) domain in complex with the SARS-CoV-2 RBD (Wuhan) defined the Nb4 binding mode and interface. The Nb4 VHH domain grasped the RBD and covered most of its outer face, including the core and the receptor-binding motif (RBM), which was consistent with hcAb4 blocking RBD binding to the SARS-CoV-2 receptor. In mouse models, a humanized hcAb4 showed therapeutic potential and prevented the replication of SARS-CoV-2 BA.1 virus in the lungs of the animals. In vitro, hcAb4 neutralized Wuhan, Beta, Delta, Omicron BA.1, and BA.5 viral variants, as well as the BQ.1.1 subvariant, but showed poor neutralization against the Omicron XBB.1.5. Structure-based computation of the RBD-Nb4 interface identified three Nb4 residues with a reduced contribution to the interaction with the XBB.1.5 RBD. Site-saturation mutagenesis of these residues resulted in two hcAb4 mutants with enhanced XBB.1.5 S binding and virus neutralization, further improved by mutant Nb4 trimers. This research highlights an approach that combines library screening, Nb engineering, and structure-based computational predictions for the generation of SARS-CoV-2 Omicron-specific Abs and their adaptation to emerging variants.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Katixa Silva
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María A. Noriega
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Ana Esteban Martín
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | | | - Yago Margolles
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Juan A. Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de Arucas, Gran Canaria, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, Logroño, Spain
| | - Luis A. Fernández
- Department of Microbial Biotechnology, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
180
|
Singh S, Abu Y, Antoine D, Gomez D, Tao J, Truitt B, Roy S. Probiotic supplementation mitigates sex-dependent nociceptive changes and gut dysbiosis induced by prenatal opioid exposure. Gut Microbes 2025; 17:2464942. [PMID: 39950489 PMCID: PMC11834462 DOI: 10.1080/19490976.2025.2464942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The gut microbiome has emerged as a promising target for modulating adverse effects of opioid exposure due to its significant role in health and disease. Opioid use disorder (OUD) has become increasingly prevalent, specifically in women of reproductive age, contributing to an increased incidence of offspring exposed to opioids in utero. Recent studies have shown that prenatal opioid exposure (POE) is associated with notable changes to the maternal gut microbiome, with subsequent implications for the offspring's microbiome and other adverse outcomes. However, the role of the gut microbiome in mediating sex-based differences in pain sensitivity has not yet been investigated. In this study, both male and female C57BL/6 offspring were used to determine sex-based differences in nociception and gut microbial composition as a result of POE. Our data reveals significant sex-based differences in offspring prenatally exposed to opioids. The gut microbiome of opioid-exposed females showed an enrichment of commensal bacteria including Lactobacillus compared to opioid-exposed males. Additionally, POE females demonstrated decreased nociceptive sensitivity, while males demonstrated increased nociceptive sensitivity. RNA sequencing of the prefrontal cortex showed sex-based differences in several canonical pathways, including an increase in the opioid signaling pathway of opioid-exposed females, which was not observed in males. Microbiome modification via maternal probiotic supplementation attenuated sex-based differences throughout the early stages of life. Together, our study provides further insight on sex-based differences arising from POE and highlights the pivotal role of the gut microbiome as a modifiable target for mitigating its negative effects.
Collapse
Affiliation(s)
- Salma Singh
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
| | - Yaa Abu
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
| | - Danielle Antoine
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
- Department of Neuroscience, School of Medicine, University of Miami Miller, Miami, USA
| | - Daniel Gomez
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
| | - Junyi Tao
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
| | - Bridget Truitt
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
- Department of Neuroscience, School of Medicine, University of Miami Miller, Miami, USA
| | - Sabita Roy
- Department of Surgery, School of Medicine, University of Miami Miller, Miami, USA
| |
Collapse
|
181
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
182
|
Sun R, Lee KY, Mei Y, Nickles E, Le Lin J, Xia R, Liu H, Schwarz H. Induction of cell death in malignant cells and regulatory T cells in the tumor microenvironment by targeting CD137. Oncoimmunology 2025; 14:2443265. [PMID: 39716931 DOI: 10.1080/2162402x.2024.2443265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Regulatory T cells (Tregs) contribute significantly to the immunosuppressive nature of the tumor microenvironment which is a main barrier for immunotherapies of solid cancers. Reducing Treg numbers enhances anti-tumor immune responses but current depletion strategies also impair effector T cells (Teffs), potentially leading to reduced anti-tumor immunity and/or autoimmune diseases. CD137 has been identified as the most differentially expressed gene between peripheral Tregs and intratumoral Tregs in virtually all solid cancers. Further, CD137 is expressed by malignant cells of certain cancers, making it a potential target for tumor immunotherapy. Here, we report the development of a fully human anti-human CD137 antibody of the IgG1 isotype, clone P1A1, that induces antibody-dependent cell-mediated cytotoxicity (ADCC) in CD137+ Tregs and cancer cells. P1A1 cross-reacts with murine CD137 which allowed testing murine chimeric P1A1 in syngeneic murine tumor models where P1A1 significantly reduced the number of CD137+ Tregs and inhibited tumor growth in a murine hepatocellular carcinoma (HCC) and a melanoma lung metastasis model. P1A1 can also be internalized thus enabling it as a carrier for drugs to target CD137+ Tregs and cancer cells. These anti-cancer properties suggest a translation of P1A1 to human immunotherapy.
Collapse
Affiliation(s)
- Rui Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emily Nickles
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Jia Le Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Runze Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| |
Collapse
|
183
|
Ando Y, Horiuchi Y, Hatazawa S, Mataki M, Nakamura A, Murakami T. Hyperdifferentiated murine melanoma cells promote adaptive anti-tumor immunity but activate the immune checkpoint system. Oncoimmunology 2025; 14:2437211. [PMID: 39648330 PMCID: PMC11633153 DOI: 10.1080/2162402x.2024.2437211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Accumulating evidence suggests that phenotype switching of cancer cells is essential for therapeutic resistance. However, the immunological characteristics of drug-induced phenotype-switching melanoma cells (PSMCs) are unknown. We investigated PSMC elimination by host immunity using hyperdifferentiated melanoma model cells derived from murine B16F10 melanoma cells. Exposure of B16F10 cells to staurosporine induced a hyperdifferentiated phenotype associated with transient drug tolerance. Staurosporine-induced hyperdifferentiated B16F10 (sB16F10) cells expressed calreticulin on their surface and were phagocytosed efficiently. Furthermore, the inoculation of mice with sB16F10 cells induced immune responses against tumor-derived antigens. Despite the immunogenicity of sB16F10 cells, they activated the PD-1/PD-L1 immune checkpoint system and strongly resisted T cell-mediated tumor destruction. However, in vivo treatment with immune checkpoint inhibitors successfully eliminated the tumor. Thus, hyperdifferentiated melanoma cells have conflicting immunological properties - enhanced immunogenicity and immune evasion. Inhibiting the ability of PSMCs to evade T cell-mediated elimination might lead to complete melanoma eradication.
Collapse
Affiliation(s)
- Yukie Ando
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Yutaka Horiuchi
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Sara Hatazawa
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Momo Mataki
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Akihiro Nakamura
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Moroyama-cho, Saitama,Japan
| |
Collapse
|
184
|
He Q, Liu X, Jiang L, Liu P, Xuan W, Wang Y, Meng R, Feng H, Lv S, Miao Q, Zheng D, Xu Y, Wang M. First-line treatments for KRAS-mutant non-small cell lung cancer: current state and future perspectives. Cancer Biol Ther 2025; 26:2441499. [PMID: 39681355 PMCID: PMC11651285 DOI: 10.1080/15384047.2024.2441499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
KRAS mutations are common in non-small cell lung cancer (NSCLC) and are associated with patient prognosis; however, targeting KRAS has faced various difficulties. Currently, immunotherapy, chemotherapy, and chemoimmunotherapy play pivotal roles in the first-line treatment of KRAS-mutated NSCLC. Here, we summarize the current evidence on first-line therapies and compare the treatment outcomes and biomarkers for different regimens. KRAS inhibitors and other emerging alternative treatments are also discussed, as combining these drugs with immunotherapy may serve as a promising first-line treatment for KRAS-mutated NSCLC in the future. We hope that this review will assist in first-line treatment choices and shed light on the development of novel agents for KRAS-mutated NSCLC.
Collapse
Affiliation(s)
- Qi He
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- Department of Respiratory Medicine, Changsha Hospital Affiliated to Xiangya Medical College, Central South University (The First Hospital of Changsha), Changsha, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijing Feng
- Department of Thoracic Oncology, Cancer Center, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Shuang Lv
- Department of Internal Medicine-Oncology, Inner Mongolia People’s Hospital, Huhehot, Inner Mongolia, P.R. China
| | - Qian Miao
- Department of Thoracic Oncology, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Di Zheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
185
|
Kandinov B, Soens M, Huang W, Llapur C, Ensz D, Essink B, Fierro C, Vakil J, Pucci A, Guo J, Rudden S, Hall K, Hicks B, Schaefers K, Zhou H, Ma C, Zheng L, Avanesov A, Park Y, Du E, Miller J, Ananworanich J, Nachbagauer R. An mRNA-based seasonal influenza vaccine in adults: Results of two phase 3 randomized clinical trials and correlate of protection analysis of hemagglutination inhibition titers. Hum Vaccin Immunother 2025; 21:2484088. [PMID: 40174609 PMCID: PMC11970786 DOI: 10.1080/21645515.2025.2484088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
The safety, immunogenicity, and efficacy of the original formulation of the investigational mRNA-1010 vaccine for seasonal influenza were investigated in two randomized, active-controlled, phase 3 trials in adults (NCT05415462 and NCT05566639), and the results were used to evaluate hemagglutination inhibition (HAI) titers as correlates of risk and protection against influenza-like illness. mRNA-1010 (50-µg) demonstrated an acceptable reactogenicity and safety profile among the >14,000 adult participants vaccinated in both trials. The efficacy profile of mRNA-1010 was generally reflective of immunogenicity findings, with higher immune responses against influenza A strains and lower responses against influenza B strains relative to an active comparator (licensed inactivated influenza vaccine). An analysis of HAI titers as a correlate of protection against influenza infection provided support for its use as a surrogate endpoint for mRNA-1010, similar to licensed influenza vaccines. These findings support further optimization and development of mRNA-1010 against seasonal influenza.
Collapse
Affiliation(s)
| | - Mieke Soens
- Development, Moderna Inc, Cambridge, MA, USA
| | | | | | - David Ensz
- Meridian Clinical Research, Sioux City, IA, USA
| | | | | | | | | | - Jia Guo
- Development, Moderna Inc, Cambridge, MA, USA
| | | | - Kristi Hall
- Development, Moderna Inc, Cambridge, MA, USA
| | - Bryony Hicks
- Development, Moderna Biopharma Canada Corporation, Toronto, ON, Canada
| | | | | | - Chong Ma
- Development, Moderna Inc, Cambridge, MA, USA
| | | | | | | | - Evelyn Du
- Development, Moderna Inc, Cambridge, MA, USA
| | | | | | | |
Collapse
|
186
|
Arciniegas JA, Reyes JM, Mendoza CF, Chirila I, Kyaw MH, Escobar O, La Rotta JE, Yarnoff B. Estimating the potential public health and economic impact of vaccination strategies with an adapted vaccine in Colombia using a combined Markov-decision tree model. Expert Rev Vaccines 2025; 24:242-251. [PMID: 40138189 DOI: 10.1080/14760584.2025.2485251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Using adapted COVID-19 vaccines targeting current variants in circulation is necessary for addressing the dynamic evolution of the SARS-CoV-2 virus and protecting against emerging variants. This study evaluated the impact of various vaccination strategies with an adapted vaccine in Colombia. RESEARCH DESIGN AND METHODS Using a previously published combined Markov-decision tree model adapted for the Colombia context, this study estimated the outcomes of different vaccination strategies targeting various age and risk groups. The model used age-specific epidemiology, clinical, cost, and quality of life inputs derived from the published literature and national surveillance data. Scenario and sensitivity analyses were conducted to assess uncertainty. RESULTS Compared to no vaccination, the vaccination strategy targeting older adults aged ≥65 years and the high-risk population was estimated to prevent 306,460 symptomatic cases, 5,200 hospitalizations, 3,381 deaths, and 39,454 lost QALYs, translating to total direct and societal cost savings of USD 70,840,305 and USD 128,918,995, respectively. These gains were further increased by expanding vaccination to additional age groups. Results were most sensitive to parameters for the attack rate and duration of protection. CONCLUSIONS Implementing vaccination strategies targeting a broader age range with an adapted vaccine would result in considerable health and economic benefits in Colombia.
Collapse
Affiliation(s)
| | | | | | | | - Moe Hein Kyaw
- Medical and Scientific Affairs, Pfizer Inc, New York, NY, USA
| | | | | | - Ben Yarnoff
- Modeling & Simulation, Evidera Inc, Wilmington, NC, USA
| |
Collapse
|
187
|
Crescioli S, Kaplon H, Wang L, Visweswaraiah J, Kapoor V, Reichert JM. Antibodies to watch in 2025. MAbs 2025; 17:2443538. [PMID: 39711140 DOI: 10.1080/19420862.2024.2443538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
The commercial development of antibody therapeutics is a global enterprise involving thousands of biopharmaceutical firms and supporting service organizations. To date, their combined efforts have resulted in over 200 marketed antibody therapeutics and a pipeline of nearly 1,400 investigational product candidates that are undergoing evaluation in clinical studies as treatments for a wide variety of diseases. Here, we discuss key events in antibody therapeutics development that occurred during 2024 and forecast key events related to the late-stage clinical pipeline that may occur in 2025. In particular, we report on 21 antibody therapeutics granted a first approval in at least one country or region during 2024, including bispecific antibodies tarlatamab (IMDELLTRA®), zanidatamab (Ziihera®), zenocutuzumab (BIZENGRI®), odronextamab (Ordspono®), ivonescimab (®), and antibody-drug conjugate (ADC) sacituzumab tirumotecan (®). We also discuss 30 investigational antibody therapeutics for which marketing applications were undergoing review by at least one regulatory agency, as of our last update on December 9, 2024, including ADCs datopotamab deruxtecan, telisotuzumab vedotin, patritumab deruxtecan, trastuzumab botidotin, becotatug vedotin, and trastuzumab rezetecan. Of 178 antibody therapeutics we include in the late-stage pipeline, we summarize key data for 18 for which marketing applications may be submitted by the end of 2025, such as bi- or multispecific antibodies denecimig, sonelokimab, erfonrilimab, and anbenitamab. Key trends in the development and approval of antibody formats such as bispecifics and ADCs, as well as clinical-phase transition and global approval success rates for these antibody formats, are reported.
Collapse
Affiliation(s)
- Silvia Crescioli
- Business Intelligence Research, The Antibody Society, Inc., Framingham, MA, USA
| | - Hélène Kaplon
- Translational Medicine Department, Institut de Recherches Internationales Servier, Gif-sur-Yvette, France
| | - Lin Wang
- Regeneron Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Janice M Reichert
- Business Intelligence Research, The Antibody Society, Inc., Framingham, MA, USA
| |
Collapse
|
188
|
Jin B, Lu Z, Cheng C, Pei Y, Chen L, Yue Z, Lin A, Yang S, Mo Y, Jiang X. Factors associated with chronic calcineurin inhibitor nephrotoxicity in children with minimal-change disease. Ren Fail 2025; 47:2474743. [PMID: 40091628 PMCID: PMC11915743 DOI: 10.1080/0886022x.2025.2474743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Calcineurin inhibitors (CNIs), such as cyclosporine (CsA) and tacrolimus (TAC), are commonly used to treat children with complicated minimal change nephrotic syndrome. However, chronic nephrotoxicity associated with CNIs poses a significant safety concern. This study aimed to identify the risk factors that contribute to chronic nephrotoxicity in these patients. MATERIAL AND METHODS Clinical and pathological data of MCD children treated with CsA or TAC in our center between 1 January 2003 and 31 December 2022, were retrospectively reviewed. Kidney biopsies were performed on 80 patients who received CNI treatment for more than 6 months. RESULTS Chronic CNI nephrotoxicity (striped interstitial fibrosis with tubular atrophy) was observed in 15% (12/80) of patients. Higher CNI culminating amounts were shown in patients who developed nephrotoxicity regardless of CsA or TAC treatment. Risk factors for chronic CNI nephrotoxicity included persistent nephrotic-range proteinuria for more than 30 days during CNI treatment, increased urinary NAG level, and CNI resistance. Multivariate analysis revealed that increased urinary NAG level and CNI resistance were the independent risk factors for chronic CNI nephrotoxicity in children with MCD. CONCLUSION MCD children who developed CNI resistance were susceptible to chronic CNI nephrotoxicity. Urinary NAG might be a valuable biomarker for CNI nephrotoxicity prediction in MCD children.
Collapse
Affiliation(s)
- Bei Jin
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziji Lu
- Department of Pathology, Zhongshan people's hospital, Guangdong, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuxin Pei
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihui Yue
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aihua Lin
- Office of the School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Shicong Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Mo
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
189
|
Ma L, Lin X, Xu M, Ke X, Liu D, Chen Q. Exploring the biological mechanisms of severe COVID-19 in the elderly: Insights from an aged mouse model. Virulence 2025; 16:2487671. [PMID: 40228062 PMCID: PMC12005417 DOI: 10.1080/21505594.2025.2487671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
The elderly population, who have increased susceptibility to severe outcomes, have been particularly impacted by the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to a global health crisis. However, definitive parameters or mechanisms underlying the severity of COVID-19 in elderly people remain unclear. Thus, this study seeks to elucidate the mechanism behind the increased vulnerability of elderly individuals to severe COVID-19. We employed an aged mouse model with a mouse-adapted SARS-CoV-2 strain to mimic the severe symptoms observed in elderly patients with COVID-19. Comprehensive analyses of the whole lung were performed using transcriptome and proteome sequencing, comparing data from aged and young mice. For transcriptome analysis, bulk RNA sequencing was conducted using an Illumina sequencing platform. Proteomic analysis was performed using mass spectrometry following protein extraction, digestion, and peptide labelling. We analysed the transcriptome and proteome profiles of young and aged mice and discovered that aged mice exhibited elevated baseline levels of inflammation and tissue damage repair. After SARS-CoV-2 infection, aged mice showed increased antiviral and inflammatory responses; however, these responses were weaker than those in young mice, with significant complement and coagulation cascade responses. In summary, our study demonstrates that the increased vulnerability of the elderly to severe COVID-19 may be attributed to an attenuated antiviral response and the overactivation of complement and coagulation cascades. Future research on antiviral and inflammatory responses is likely to yield treatments that reduce the severity of viral respiratory diseases in the elderly.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xian Lin
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Meng Xu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xianliang Ke
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Quanjiao Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
190
|
Brewer SK, Stefanos R, Murthy NC, Asif AF, Stokley S, Markowitz LE. Human papillomavirus vaccination at age 9 or 10 years to increase coverage - a narrative review of the literature, United States 2014-2024. Hum Vaccin Immunother 2025; 21:2480870. [PMID: 40228197 PMCID: PMC12005419 DOI: 10.1080/21645515.2025.2480870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
The Advisory Committee on Immunization Practices recommends routine human papillomavirus (HPV) vaccination at 11-12 years; the series can begin at age 9. U.S. HPV vaccination coverage is lower than other adolescent vaccinations. One proposed strategy to increase coverage is initiation at 9-10 years. We systematically reviewed studies addressing vaccination at age 9 to identify and evaluate evidence regarding potential programmatic advantages. Among 30 publications from 2014 to 2024 there were retrospective cohort studies (N = 11), intervention studies with a component focused on vaccination at 9-10 (N = 12), and studies of feasibility or acceptability by providers or caregivers (N = 7). While retrospective analyses found earlier initiation associated with completion, limitations in methodology preclude a cause-and-effect interpretation. Impact of age 9 vaccination is difficult to isolate in intervention studies that had multiple components. While initiating vaccination at age 9 is feasible, questions remain regarding the benefit of this approach to increase coverage.
Collapse
Affiliation(s)
- Sarah K. Brewer
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- ASRT Inc., Smyrna, GA, USA
| | - Ruth Stefanos
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Neil C. Murthy
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Amimah F. Asif
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shannon Stokley
- Immunization Services Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lauri E. Markowitz
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
191
|
Zhou HY, Wang X, Li Y, Wang D, Zhou XZ, Xiao N, Li GX, Li G. Dynamic development of microglia and macrophages after spinal cord injury. Neural Regen Res 2025; 20:3606-3619. [PMID: 39101644 PMCID: PMC11974661 DOI: 10.4103/nrr.nrr-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00029/figure1/v/2025-01-31T122243Z/r/image-tiff Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response, with resident microglia and infiltrating macrophages playing pivotal roles. While previous studies have grouped these two cell types together based on similarities in structure and function, an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes. In this study, we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury. Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury, gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed. Regarding macrophages, our findings highlighted abundant communication with other cells, including fibroblasts and neurons. Both pro-inflammatory and neuroprotective effects of macrophages were also identified; the pro-inflammatory effect may be related to integrin β2 ( Itgb2 ) and the neuroprotective effect may be related to the oncostatin M pathway. These findings were validated by in vivo experiments. This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury, and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hu-Yao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xia Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Yi Li
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Duan Wang
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xuan-Zi Zhou
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Guo-Xing Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
192
|
Kong M, Li J, Tong N. The role of peripheral blood microRNAs in the pathogenesis and treatment response of age-related macular degeneration. Future Sci OA 2025; 11:2482499. [PMID: 40183456 PMCID: PMC11980467 DOI: 10.1080/20565623.2025.2482499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Age-related macular degeneration is a leading cause of vision loss in aging populations, driven by complex interactions between genetic, environmental, and molecular factors. MicroRNAs have emerged as crucial regulators of cellular processes such as oxidative stress, inflammation, and angiogenesis, all of which contribute to AMD pathogenesis. This narrative review aims to summarize the involvement of peripheral blood microRNAs in the pathogenesis of AMD, focusing on key pathways such as oxidative stress, inflammation, and angiogenesis. Additionally, it explores their potential as biomarkers for predicting treatment response, particularly to anti-VEGF therapies. The potential of miRNAs as noninvasive biomarkers for early diagnosis and personalized treatment strategies is also explored, highlighting future directions for research.
Collapse
Affiliation(s)
- Meng Kong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingwen Li
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Nianting Tong
- Department of Ophthalmology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
193
|
Haenssgen MJ, Elliott EM, Bode S, Souksavanh O, Xayyahong T, Okabayashi H, Kubota S. Community engagement to support public health: mixed-method evaluation evidence on COVID-19 attitudes and practices in Lao PDR. Glob Health Action 2025; 18:2485523. [PMID: 40277016 DOI: 10.1080/16549716.2025.2485523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Community engagement has been recognized as a key tool for supporting national health agendas, and experiences from the COVID-19 pandemic can offer important lessons for tackling future global health challenges such as antimicrobial resistance. This paper provides much-needed evaluation knowledge on relational community engagement initiatives and their impact on COVID-19-related attitudes and practices. METHODS A two-round mixed-method evaluative study to examine outcome indicators related to COVID-19-prevention and health-seeking behavior was implemented from October 2022 to December 2023 among 14 diverse case study communities in four Lao provinces. Data involved 50 semi-structured interviews with villagers, 50 key informant interviews, and two rounds of complete census surveys (3,161 survey observations incl. matched panel data from 618 individuals) to discern outcomes among villagers with different levels of activity participation in a difference-in-difference analysis. RESULTS Relative to non-participating villagers, villagers participating in the activities had higher COVID-19 vaccine uptake (+0.13 doses), higher public healthcare utilization for presentations consistent with COVID-19 (e.g. fever and neurological and/or respiratory symptoms; +69.4% points), and less antibiotic use per illness episode (-0.2 antibiotic use episodes). However, the activity raised worries to disclose a COVID-19-positive status and was often interpreted as a health education campaign. CONCLUSIONS Relational community engagement offers a respectful way of addressing persistent healthcare challenges and supporting vulnerable populations - and thus holds key for ongoing global health priorities such as emerging infectious disease responses and antimicrobial resistance. We recommend that community engagement initiatives become a standard component of national health policy portfolios beyond the scope of COVID-19.
Collapse
Affiliation(s)
- Marco J Haenssgen
- Department of Social Science and Development, Chiang Mai University, Chiang Mai, Thailand
| | - Elizabeth M Elliott
- Maternal Child Health and Quality Safety, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Sandra Bode
- World Health Organization Representative, Country Office for Lao People's Democratic Republic, Lao PDR
| | - Ounkham Souksavanh
- World Health Organization Representative, Country Office for Lao People's Democratic Republic, Lao PDR
| | - Thongkhoon Xayyahong
- World Health Organization Representative, Country Office for Lao People's Democratic Republic, Lao PDR
| | - Hironori Okabayashi
- World Health Organization Representative, Country Office for Lao People's Democratic Republic, Lao PDR
| | - Shogo Kubota
- Maternal Child Health and Quality Safety, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| |
Collapse
|
194
|
Kiani B, Mario Martin B, Cadavid Restrepo A, Mayfield HJ, Skinner E, Karina Maldonado Alcaíno A, Nilles EJ, Lau CL, Sartorius B. A study protocol for developing a spatial vulnerability index for infectious diseases of poverty in the Caribbean region. Glob Health Action 2025; 18:2461867. [PMID: 39930987 PMCID: PMC11816615 DOI: 10.1080/16549716.2025.2461867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
Infectious diseases of poverty (IDoP) affect disproportionately resource-limited and marginalized populations, resulting in spatial patterns of vulnerability across various geographical areas. Currently, no spatial indices exist to quantify vulnerability to IDoP at a fine geographical level within countries, such as municipalities or provinces. Without such an index, policymakers cannot effectively allocate resources or target interventions in the most vulnerable areas. This protocol aims to specify a methodological approach to measure spatial variation in vulnerability to IDoP. We will evaluate this methodological approach using surveillance and seroprevalence data from the Dominican Republic (DR) as part of a broader effort to develop a regional index for the Caribbean region. The study will consist of three main components. The first component involves identifying the relevant factors associated with IDoP in the Caribbean region through a scoping review, supplemented by expert-elicited opinion. The second component will apply a Fuzzy Analytic Hierarchy Process to weigh the aforementioned factors and develop a spatial composite index, using open data and available national surveys in the DR. In the final component, we will evaluate and validate the index by analysing the prevalence of at least three IDoPs at a fine-grained municipal level in the DR, using seroprevalence data from a 2021 national field study and other national surveillance programs. The spatial vulnerability index framework developed in this study will assess the degree of vulnerability to IDoP across different geographical scales, depending on data availability in each country.
Collapse
Affiliation(s)
- Behzad Kiani
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Beatris Mario Martin
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Angela Cadavid Restrepo
- School of Public Health, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Helen J. Mayfield
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Eloise Skinner
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Ana Karina Maldonado Alcaíno
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Eric J. Nilles
- Department of Emergency Medicine, Brigham and Women Hospital, Boston, MA, USA
- Infectious Diseases and Epidemics Program, Harvard Medical School, Boston, MA, USA
- Infectious Diseases and Epidemics Program, Harvard Humanitarian Initiative, Cambridge, MA, USA
| | - Colleen L. Lau
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Benn Sartorius
- UQ Centre for Clinical Research, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
195
|
Imani S, Jabbarzadeh Kaboli P, Babaeizad A, Maghsoudloo M. Neoantigen mRNA vaccines and A 2A receptor antagonism: A strategy to enhance T cell immunity. Hum Vaccin Immunother 2025; 21:2458936. [PMID: 39882781 PMCID: PMC11784654 DOI: 10.1080/21645515.2025.2458936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine A2A receptor (A2AR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with A2AR antagonists (A2ARi). By targeting A2AR, this approach reduces TME-induced immunosuppression, enhances DC activation, and improves neo-antigen presentation. The review also discusses lipid nanoparticles (LNPs) to co-deliver A2ARi and mRNA vaccines, optimizing their effectiveness. The integration of neo-antigen mRNA-LNPs with A2ARi modulation offers a promising strategy to overcome immunosuppression, stimulate DC activation, and achieve precise anti-tumor responses with minimal off-target effects. This synergy represents significant progress in cancer immunotherapy, advancing the potential for personalized neoantigen therapies.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | | | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
196
|
Peng B, Yan MY, Chen YR, Sun F, Xiang XD, Liu D. The methyl-CpG binding domain 2 regulates peptidylarginine deiminase 4 expression and promotes neutrophil extracellular trap formation via the Janus kinase 2 signaling pathway in experimental severe asthma. Ann Med 2025; 57:2458207. [PMID: 39865866 PMCID: PMC11774153 DOI: 10.1080/07853890.2025.2458207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
OBJECTIVE The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma. This study aims to detect if MBD2 can reduce NETs formation and the potential mechanism in severe asthma. METHODS A severe asthma model was established in C57BL/6 wild-type mice exposure to house dust mite (HDM), ovalbumin (OVA), and lipopolysaccharide (LPS). Enzyme-linked immunosorbent assay was used to measure the concentrations of IL-4, IL-17A, and IFN-γ in lung tissues. Flow cytometry was employed to determine the percentages of Th2, Th17, and Treg cells in lung tissues. Quantitative real-time polymerase chain reaction was utilized to assess the mRNA expression levels of MBD2, JAK2, and PAD4. Western blotting and immunofluorescence were conducted to detect the protein of MBD2, JAK2, PAD4, and CitH3. HL-60 cells were differentiated into neutrophil-like cells by culturing in a medium containing dimethyl sulfoxide and then stimulated with LPS. KCC-07, Ruxolitinib, and Cl-amidine were used to inhibit the expressions of MBD2, JAK2, and PAD4, respectively. RESULTS Severe asthma mice were characterized by pulmonary neutrophilic inflammation and increased formation of neutrophil extracellular traps (NETs). The expression of MBD2, JAK2, and PAD4 was elevated in severe asthma mice. Inhibiting the expression of MBD2, JAK2, and PAD4 reduced NETs formation and decreased airway inflammation scores, total cell counts and neutrophil counts in BALF, and percentage of Th2 and Th17 cell in lung tissues, whereas increasing Treg cell counts. In both severe asthma mice and HL-60-differentiated neutrophil-like cells in vitro, inhibiting MBD2 reduced the mRNA and protein expression of JAK2 and PAD4, and inhibiting JAK2 reduced the expression of PAD4 mRNA and protein. CONCLUSION MBD2 regulates PAD4 expression through the JAK2 signaling pathway to promote NETs formation in mice with severe asthma. Further bench-based and bedside-based studies targeting the MBD2, PAD4, and JAK2 signaling pathways will help open new avenues for drug development of severe asthma.
Collapse
Affiliation(s)
- Biao Peng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Mu-Yun Yan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Yun-Rong Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xu-Dong Xiang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Da Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| |
Collapse
|
197
|
Tian W, Ju J, Guan B, Wang T, Zhang J, Song L, Xu H. Role of hyperhomocysteinemia in atherosclerosis: from bench to bedside. Ann Med 2025; 57:2457527. [PMID: 39898976 PMCID: PMC11792134 DOI: 10.1080/07853890.2025.2457527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Atherosclerosis is a leading cause of global mortality, driven by complex interactions between genetic, metabolic, and environmental factors. Among these, hyperhomocysteinemia (HHcy) has emerged as a significant and modifiable risk factor, contributing to endothelial dysfunction, oxidative stress, and vascular inflammation. Despite increasing recognition of its role in atherogenesis, the precise mechanisms and clinical implications of HHcy remain incompletely understood, necessitating a comprehensive review to connect recent mechanistic insights with practical applications. METHODS We analyzed the various mechanisms whereby HHcy accelerates the progression of atherosclerosis, and conducted a comprehensive review of publications in the fields of HHcy and atherosclerosis. RESULTS HHcy promotes atherosclerosis through several mechanisms, including inflammation, oxidative stress, epigenetic modification, and lipoprotein metabolism alteration. Moreover, this discussion extends to current strategies for the prevention and clinical management of HHcy-induced atherosclerosis. CONCLUSION This review consolidates and elucidates the latest advancements and insights into the role of HHcy in atherosclerosis. The comprehensive narrative connects fundamental research with clinical applications. Contemporary studies highlight the complex interplay between HHcy and atherosclerosis, establishing HHcy as not only a contributing risk factor but also an accelerator of various atherogenic processes.
Collapse
Affiliation(s)
- Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing China
| | - Jiqian Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing China
| |
Collapse
|
198
|
Qin C, Ding Y, Liu M, Liu J. Attitudes towards vaccination against COVID-19 during pregnancy and its determinants among people of reproductive age. Hum Vaccin Immunother 2025; 21:2450131. [PMID: 39797690 PMCID: PMC11730418 DOI: 10.1080/21645515.2025.2450131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The attitudes of reproductive-age individuals toward COVID-19 vaccination during pregnancy are still not well understood. We aimed to explore the attitudes toward COVID-19 vaccines during pregnancy and the determinants among the Chinese reproductive-age population. An anonymous cross-sectional study was conducted in China from July 4 to August 11, 2023. Structured questionnaires on vaccine hesitancy during pregnancy, socio-demographic characteristics, behavior characteristics, health-related factors, and mental health status were sent online to reproductive-age individuals (both males and females). Among 2966 participants of reproductive age, 86.9% exhibited significant hesitancy toward receiving the COVID-19 vaccine during pregnancy. Participants of older age (30-34: aOR = 1.71, 95% CI: 1.62-2.52; 35-39: aOR = 1.72, 95% CI: 1.11-2.66), nonsmokers (aOR = 1.42, 95% CI: 1.07-1.89), with a longer duration since their last COVID-19 vaccination (aOR = 2.37, 95% CI: 1.20-4.70), and exhibiting marked pandemic fatigue (moderate: aOR = 1.98, 95% CI: 1.56-2.52; high: aOR = 3.49, 95% CI: 2.41-5.05) were prone to refuse COVID-19 vaccines during pregnancy. The presence of generalized anxiety disorder may push the vaccination (aOR = 0.75, 95% CI: 0.57-0.99). The top three reasons for hesitation were concerns about the adverse health effects of vaccines on pregnant women (77.72%), fetuses (72.13%), and newborns/infants (58.77%), respectively. Therefore, under the context of the existing circumstances and the WHO's encouragement, this study provides data support for possible future policy changes and emphasizes the importance of public health strategies.
Collapse
Affiliation(s)
- Chenyuan Qin
- School of Public Health, Peking University, Beijing, China
| | - Yansheng Ding
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Peking University, Beijing, China
| | - Min Liu
- School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- School of Public Health, Peking University, Beijing, China
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China
| |
Collapse
|
199
|
Taba N, Fischer K, Estonian Biobank Research Team, Org E, Aasmets O. A novel framework for assessing causal effect of microbiome on health: long-term antibiotic usage as an instrument. Gut Microbes 2025; 17:2453616. [PMID: 39849320 PMCID: PMC11776458 DOI: 10.1080/19490976.2025.2453616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Assessing causality is undoubtedly one of the key questions in microbiome studies for the upcoming years. Since randomized trials in human subjects are often unethical or difficult to pursue, analytical methods to derive causal effects from observational data deserve attention. As simple covariate adjustment is not likely to account for all potential confounders, the idea of instrumental variable (IV) analysis is worth exploiting. Here we propose a novel framework of antibiotic instrumental variable regression (AB-IVR) for estimating the causal relationships between microbiome and various diseases. We rely on the recent studies showing that antibiotic treatment has a cumulative long-term effect on the microbiome, resulting in individuals with higher antibiotic usage to have a more perturbed microbiome. We apply the AB-IVR method on the Estonian Biobank data and show that the microbiome has a causal role in numerous diseases including migraine, depression and irritable bowel syndrome. We show with a plethora of sensitivity analyses that the identified causal effects are robust and propose ways for further methodological developments.
Collapse
Affiliation(s)
- Nele Taba
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Elin Org
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Oliver Aasmets
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
200
|
Wang G, Zhao K, Zhao X, Cui Y, He P, Zhang T, Wang Y, Shi R, Li Y, Wang Q, Ren Y, Chen Z, Zhao X, Xie Z, Liang Y, Tian Q, Pan J, Zhang C, Han Y, Dai Y, Ni S, Zhang Y, Yang X, Fu Y, Liu D, Li J, Zhang M, Hu Z, Xie L. Sustained immunogenicity of bivalent protein COVID-19 vaccine SCTV01C against antigen matched and mismatched variants. Expert Rev Vaccines 2025; 24:128-137. [PMID: 39834144 DOI: 10.1080/14760584.2025.2456231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The development of bivalent or multivalent vaccines offers a promising strategy for combating SARS-CoV-2 mutations. RESEARCH DESIGN AND METHODS In this phase 2 trial, conducted from 1 December 2021, to 25 July 2023, 392 unvaccinated adults aged ≥18 years were randomized to receive a primary series of two doses and a booster dose of SCTV01C, a bivalent protein SARS-CoV-2 vaccine. RESULTS Geometric mean titers (GMTs) of neutralizing antibodies (nAb) against live Alpha, Beta, Delta, and Omicron showed 85.4-, 100.0-, 32.1-, and 9.8-fold increase from baseline on 28 days, and 49.4-, 55.3-, 5.7-fold increase against live Alpha, Beta, and Omicron on 90 days after primary series. At Day 28 and Day 90 following the booster dose, GMTs of nAb against Beta, BA.2 and BA.5 variants showed 12.1- and 8.8-, 13.8- and 7.1-, 18.7-, and 11.9-fold of increase from baseline, respectively. Reactogenicity was generally mild, with one adverse event of special interest (AESI) and 9 ≥Grade 3 treatment-related adverse events (TRAEs); all recovered within 3 days. CONCLUSIONS SCTV01C, when administered as both a primary series and a booster vaccination, exhibited encouraging sustained immunogenicity against both antigen-matched and antigen-mismatched variants, with no significant safety concerns. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov identifier is NCT05148091.
Collapse
Affiliation(s)
- Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
- Department of Infectious Disease, Peking University International Hospital, Beijing, China
| | - Kexin Zhao
- Hebei Petro China Central Hospital, Langfang, China
| | - Xiuli Zhao
- Beijing Tong Reng Hospital, Capital Medical University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Peng He
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Yanchao Wang
- Hebei Petro China Central Hospital, Langfang, China
| | - Rui Shi
- Hebei Petro China Central Hospital, Langfang, China
| | - Yanhua Li
- Hebei Petro China Central Hospital, Langfang, China
| | - Qian Wang
- Hebei Petro China Central Hospital, Langfang, China
| | - Yanping Ren
- Hebei Petro China Central Hospital, Langfang, China
| | - Zhisong Chen
- Hebei Petro China Central Hospital, Langfang, China
| | - Xuedan Zhao
- Hebei Petro China Central Hospital, Langfang, China
| | - Zekang Xie
- Hebei Petro China Central Hospital, Langfang, China
| | - Yufei Liang
- Hebei Petro China Central Hospital, Langfang, China
| | - Qingyun Tian
- Hebei Petro China Central Hospital, Langfang, China
| | - Jing Pan
- Hebei Petro China Central Hospital, Langfang, China
| | - Chao Zhang
- Hebei Petro China Central Hospital, Langfang, China
| | - Ying Han
- Beijing Tong Reng Hospital, Capital Medical University, Beijing, China
| | - Yuyang Dai
- Beijing Tong Reng Hospital, Capital Medical University, Beijing, China
| | - Siyang Ni
- Beijing Tong Reng Hospital, Capital Medical University, Beijing, China
| | - Yun Zhang
- Beijing Tong Reng Hospital, Capital Medical University, Beijing, China
| | - Xinjie Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Yongpan Fu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Dongfang Liu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Miaomiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| |
Collapse
|