151
|
Liu CD, Peng Q, Wang SY, Deng Y, Li ZY, Xu ZH, Wu L, Zhang YD, Duan R. Circ_0008146 Exacerbates Ferroptosis via Regulating the miR-342-5p/ACSL4 Axis After Cerebral Ischemic/Reperfusion. J Inflamm Res 2024; 17:4957-4973. [PMID: 39077373 PMCID: PMC11284150 DOI: 10.2147/jir.s464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose Acute ischemic stroke (AIS) has seriously threatened people's health worldwide and there is an urge need for early diagnosis and effective treatment of AIS. This research intended to clarify the regulatory role of circ_0008146/miR-342-5p/ACSL4 axis in AIS. Methods High-throughput small RNA sequencing analysis was adapted to identify differentially expressed miRNAs between the AIS and control group. The circ_0008146, miR-342-5p, and ACSL4 levels were detected by qRT-PCR. Middle cerebral artery occlusion/reperfusion (MCAO/R) models were constructed in C57BL/6J mice. Assay kits were used to determine Fe2+ levels and a battery of oxidative stress and lipid peroxidation indicators, including ROS, MDA, LPO, SOD and GSH/GSSG ratio. The protein levels of ACSL4 were measured by Western blot. The behavioral function was assessed using neurobehavioral tests. TTC staining was employed to visualize infarction size. Nissl staining was adapted to detect histopathological changes. Receiver operating characteristic curve and correlation analysis were applied to investigate the clinical value and association of miR-342-5p and ACSL4. Results A total of 44 AIS patients and 49 healthy controls were enrolled in our study. The small RNA sequencing unveiled a significant decrease in miR-342-5p levels in AIS patients. MiR-342-5p inhibited oxidative stress and RSL3-induced ferroptosis after cerebral ischemic/reperfusion injury in vivo by targeting ferroptosis-related gene ACSL4. Circ_0008146 acted as a sponge of miR-342-5p, and overexpression of circ_0008146 increased neurological deficits and brain injury in mice. Circ_0008146 contributed to ferroptosis in cerebral infarction via sponging miR-342-5p to regulate ACSL4. Plasma miR-342-5p and ACSL4 demonstrated significant correlation and good diagnostic value for AIS patients. Conclusion This study provides the first in vivo evidence to show that circ_0008146 exacerbates neuronal ferroptosis after AIS via the miR-342-5p/ACSL4 axis. Furthermore, miR-342-5p/ACSL4 axis holds promise as a viable therapeutic target and practical biomarkers for AIS patients.
Collapse
Affiliation(s)
- Cai-Dong Liu
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yang Deng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Zhong-Yuan Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Zhao-Han Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Ying-Dong Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| |
Collapse
|
152
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
153
|
Chekol Tassew W, Ferede YA, Zeleke AM. Cognitive impairment and associated factors among patients with diabetes mellitus in Africa: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1386600. [PMID: 39086905 PMCID: PMC11288936 DOI: 10.3389/fendo.2024.1386600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Background Inappropriate management of blood sugar in patients with diabetes mellitus leads to micro-vascular and macro-vascular complications, subsequently leading to high morbidity and mortality rates. In addition, diabetes independently increases the occurrence of cognitive impairment complicated by dementia. Scientific evidence on the magnitude of cognitive impairment will provide a sound basis for the determination of healthcare needs and the planning of effective healthcare services. Despite this, there are no comprehensive data on the prevalence and associated factors of cognitive impairment among patients with diabetes in Africa. Methods To identify relevant articles for this review, we searched PubMed, Cochrane Library, Science Direct, African Journals Online, and Google Scholar. After extraction, the data were imported into Stata software version 11 (Stata Corp., TX, USA) for further analysis. The random-effects model, specifically the DerSimonian and Laird (D+L) pooled estimation method, was used due to the high heterogeneity between the included articles. Begg's and Egger's regression tests were used to determine the evidence of publication bias. Sub-group analyses and sensitivity analyses were also conducted to handle heterogeneity. Results The pooled prevalence of cognitive impairment among patients with diabetes in Africa is found to be 43.99% (95% CI: 30.15-57.83, p < 0.001). According to our analysis, primary level of education [pooled odds ratio (POR) = 6.08, 95% CI: 3.57-10.36, I 2 = 40.7%], poorly controlled diabetes mellitus (POR = 5.85, 95% CI: 1.64-20.92, I 2 = 87.8%), age above 60 years old (POR = 3.83, 95% 95% CI: 1.36-10.79, I 2 = 63.7%), and diabetes duration greater than 10 years (POR = 1.13; 95% CI: 1.07-1.19, I 2 = 0.0%) were factors associated with cognitive impairment among patients with diabetes. Conclusion Based on our systematic review, individuals with diabetes mellitus exhibit a substantial prevalence rate (43.99%) of cognitive impairment. Cognitive impairment was found to be associated with factors such as primary level of education, poorly controlled diabetes mellitus, age above 60 years, and diabetes duration greater than 10 years. Developing suitable risk assessment tools is crucial to address uncontrolled hyperglycemia effectively. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42024561484.
Collapse
Affiliation(s)
- Worku Chekol Tassew
- Department of Medical Nursing, Teda Health Science College, Gondar, Ethiopia
| | - Yeshiwas Ayal Ferede
- Department of Reproductive Health, Teda Health Science College, Gondar, Ethiopia
| | | |
Collapse
|
154
|
Keller N, Zádori J, Lippai B, Szöllősi D, Márton V, Wellinger K, Lada S, Szűcs M, Menyhárt A, Kempler P, Baczkó I, Várkonyi T, Lengyel C, Vágvölgyi A. Cardiovascular autonomic and peripheral sensory neuropathy in women with obesity. Front Endocrinol (Lausanne) 2024; 15:1386147. [PMID: 39081789 PMCID: PMC11286427 DOI: 10.3389/fendo.2024.1386147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction A higher incidence of neural dysfunction in people with obesity has been described. We determined the prevalence of neuropathic lesions in obese women and evaluated their potential association with anthropometric and laboratory parameters. Patients and methods In our cross-sectional study, we enrolled female patients with obesity and without diabetes before obesity treatment. Voluntary female subjects were controls with a normal body mass index (BMI). Autonomic function was assessed by Ewing's cardiovascular reflex tests, while comprehensive peripheral neuropathic assessments were conducted utilizing the Neurometer®, Tiptherm®, Monofilament®, and Rydel-Seiffer tuning fork tests. Sudomotor function was assessed by the Neuropad®-test. Body composition was examined using the InBody 770. Results 71 patients (mean ± SD; age: 36.1 ± 8.3 years; BMI: 40.2 ± 8.5 kg/m2) and 36 controls (age: 36.4 ± 13.3 years; BMI: 21.6 ± 2.1 kg/m2) were enrolled. Patients had significantly higher systolic (patients vs. controls; 137.5 ± 16.9 vs. 114.6 ± 14.8 mmHg, p<0.001) and diastolic (83.0 ± 11.7 vs.69.8 ± 11.2 mmHg, p<0.001) blood pressure compared to controls. Among autonomic tests, only the heart rate response to Valsalva maneuver (Valsalva-ratio) revealed significant impairment in patients (1.4 ± 0.2 vs. 1.7 ± 0.4, p<0.001). Neurometer® at the median nerve revealed increased current perception threshold (CPT) values at all stimulating frequencies in patients (CPT at 2000 Hz: 204.6 ± 70.9 vs. 168.1 ± 66.9, p=0.013; 250 Hz: 84.4 ± 38.9 vs. 56.5 ± 34.8, p<0.001; CPT at 5 Hz: 58.5 ± 31.2 vs 36.9 ± 29.1, p<0.001). The Rydel-Seiffer tuning fork test has revealed a significant impairment of vibrational sensing on the lower limb in patients (right hallux: 6.8 ± 0.9 vs. 7.4 ± 0.8, p=0.030; left hallux: 6.9 ± 0.8 vs. 7.3 ± 0.9, p=0.029). The Neuropad® testing showed a significant impairment of sudomotor function in women with obesity. A negative correlation was found in patients between BMI and the 25-hydroxy-D3/D2-vitamin levels (r=-0.41, p=0.00126) and a positive correlation between the BMI and resting systolic blood pressure (r=0.26, p=0.0325). Conclusion Peripheral sensory neuronal and sudomotor function impairments were detected in female patients with obesity compared to the controls with normal BMI. Cardiovascular autonomic dysfunction was also revealed by the Valsalva-ratio in these patients, suggesting the presence of parasympathetic dysfunction. The negative correlation between BMI and the 25-hydroxy-D3/D2-vitamin highlights the potential deficiency of vitamin D in the population affected by obesity.
Collapse
Affiliation(s)
- Nóra Keller
- Central Pharmacy, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Balázs Lippai
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dalma Szöllősi
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Virág Márton
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Károly Wellinger
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Szilvia Lada
- Directorate of Nursing Management and Professional Education, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Adrienn Menyhárt
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Péter Kempler
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Centre of Excellence for Interdisciplinary Research, Development and Innovation, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Várkonyi
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csaba Lengyel
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Vágvölgyi
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
155
|
He S, Yu Y, Chen PQ, Sun HM, Gao XR, Sun HZ, Ge JF. Insufficient Plasma Melatonin and Its Association With Neuropsychiatric Impairments in Patients With T2DM. J Diabetes Res 2024; 2024:5661751. [PMID: 38988702 PMCID: PMC11236469 DOI: 10.1155/2024/5661751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.
Collapse
Affiliation(s)
- Shuai He
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Yue Yu
- Department of Pharmacy North District of The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng-Quan Chen
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Hui-Min Sun
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Huai-Zhi Sun
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy Anhui Medical University, 81 Mei-Shan Road, Hefei 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine Ministry of Education Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
156
|
Yu S, Xu C, Tang X, Wang L, Hu L, Li L, Zhou X, Li Q. Exendin-4 blockade of T1R2/T1R3 activation improves Pseudomonas aeruginosa-related pneumonia in an animal model of chemically induced diabetes. Inflamm Res 2024; 73:1185-1201. [PMID: 38748233 PMCID: PMC11214611 DOI: 10.1007/s00011-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1β and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1β and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Collapse
Affiliation(s)
- Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, 579199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| |
Collapse
|
157
|
Zou J, Mitra K, Anees P, Oettinger D, Ramirez JR, Veetil AT, Gupta PD, Rao R, Smith JJ, Kratsios P, Krishnan Y. A DNA nanodevice for mapping sodium at single-organelle resolution. Nat Biotechnol 2024; 42:1075-1083. [PMID: 37735265 PMCID: PMC11004682 DOI: 10.1038/s41587-023-01950-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cellular sodium ion (Na+) homeostasis is integral to organism physiology. Our current understanding of Na+ homeostasis is largely limited to Na+ transport at the plasma membrane. Organelles may also contribute to Na+ homeostasis; however, the direction of Na+ flow across organelle membranes is unknown because organellar Na+ cannot be imaged. Here we report a pH-independent, organelle-targetable, ratiometric probe that reports lumenal Na+. It is a DNA nanodevice containing a Na+-sensitive fluorophore, a reference dye and an organelle-targeting domain. By measuring Na+ at single endosome resolution in mammalian cells and Caenorhabditis elegans, we discovered that lumenal Na+ levels in each stage of the endolysosomal pathway exceed cytosolic levels and decrease as endosomes mature. Further, we find that lysosomal Na+ levels in nematodes are modulated by the Na+/H+ exchanger NHX-5 in response to salt stress. The ability to image subcellular Na+ will unveil mechanisms of Na+ homeostasis at an increased level of cellular detail.
Collapse
Affiliation(s)
- Junyi Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Koushambi Mitra
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Daphne Oettinger
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Joseph R Ramirez
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Priyanka Dutta Gupta
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayson J Smith
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
158
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
159
|
Matsumoto K, Ohsugi Y, Tayama C, Hayashi M, Kato Y, Ohashi M, Chiba M. Serum miR‑29 is increased in mice with early liver fibrosis. Exp Ther Med 2024; 28:285. [PMID: 38800048 PMCID: PMC11117116 DOI: 10.3892/etm.2024.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a fatty liver disease that is not caused by alcohol consumption and is characterized by fatty degeneration, inflammation and hepatocellular damage. Therefore, predicting future fibrosis is critical in the early stages of NASH to prevent disease progression. The present study examined histological changes in the liver as well as microRNA (miR/miRNA) expression changes in the liver and serum of NASH mice model to identify potential biomarker candidates that could predict early fibrosis. This study used 6-week-old C57BL/6NJcl male mice and fed the control with a standard solid diet (CE-2) for breeding and propagation and NASH groups with a high-fat diet [choline-deficient high-fat and 0.1% (w/v) methionine supplemented diet], respectively. Agilent Technologies miRNA microarray was used to investigate microRNA expression in the liver and serum. Hematoxylin and eosin staining of the livers of the NASH group mice during the second week of feeding revealed fatty degeneration, balloon-like degeneration and inflammatory cell infiltration, confirming that the mice were in a state of NASH. The livers of the NASH group mice at 6 weeks of feeding showed fibrosis. Microarray analysis revealed that miRNAs were upregulated and 47 miRNAs were downregulated in the liver of the NASH group. Pathway analysis using OmicsNet predicted miR-29 to target collagen genes. Furthermore, miR-29 was downregulated in the livers of NASH-induced mice but upregulated in serum. These findings suggested that lower miR-29 expression in NASH-induced liver would increase collagen expression and fibrosis. Early liver fibrosis suggests that miR-29 leaks from the liver into the bloodstream, and elevated serum miR-29 levels may be a predictive biomarker for early liver fibrosis.
Collapse
Affiliation(s)
- Kana Matsumoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yuhei Ohsugi
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Chisa Tayama
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Momone Hayashi
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yumiko Kato
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mizuho Ohashi
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
160
|
Korakas E, Kountouri A, Pavlidis G, Oikonomou E, Vrentzos E, Michalopoulou E, Tsigkou V, Katogiannis K, Pliouta L, Balampanis K, Pililis S, Malandris K, Tsapas A, Siasos G, Ikonomidis I, Lambadiari V. Semaglutide Concurrently Improves Vascular and Liver Indices in Patients With Type 2 Diabetes and Fatty Liver Disease. J Endocr Soc 2024; 8:bvae122. [PMID: 38979402 PMCID: PMC11228545 DOI: 10.1210/jendso/bvae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 07/10/2024] Open
Abstract
Context The cardiovascular benefits of semaglutide are established; however, its effects on surrogate vascular markers and liver function are not known. Objective To investigate the effects of semaglutide on vascular, endothelial, and liver function in patients with type 2 diabetes (T2DM) and nonalcoholic fatty liver disease (NAFLD). Methods Overall, 75 consecutive subjects with T2DM and NAFLD were enrolled: 50 patients received semaglutide 1 mg (treatment group) and 25 patients received dipeptidyl peptidase 4 inhibitors (control group). All patients underwent a clinical, vascular, and hepatic examination with Fibroscan elastography at 4 and 12 months after inclusion in the study. Results Treatment with semaglutide resulted in a reduction of Controlled Attenuation Parameter (CAP) score, E fibrosis score, NAFLD fibrosis score, Fibrosis-4 (FIB-4) score and perfused boundary region (PBR) at 4 and at 12 months (P < .05), contrary to controls. Patients treated with semaglutide showed a greater decrease of central systolic blood pressure (SBP) (-6% vs -4%, P = .048 and -11% vs -9%, P = .039), augmentation index (AIx) (-59% vs -52%, P = .041 and -70% vs -57%, P = .022), and pulse wave velocity (PWV) (-6% vs -3.5%, P = .019 and -12% vs -10%, P = .036) at 4 and at 12 months, respectively. In all patients, ΔPWV and ΔPBR were correlated with a corresponding reduction of CAP, E fibrosis, NAFLD fibrosis, and FIB-4 scores. Conclusion Twelve-month treatment with semaglutide simultaneously improves arterial stiffness, endothelial function, and liver steatosis and fibrosis in patients with T2DM and NAFLD.
Collapse
Affiliation(s)
- Emmanouil Korakas
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Aikaterini Kountouri
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Pavlidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Emmanouil Vrentzos
- Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 12462 Athens, Greece
| | - Eleni Michalopoulou
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasiliki Tsigkou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Loukia Pliouta
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Balampanis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sotirios Pililis
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Malandris
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology Laboratory of Preventive Cardiology and Echocardiography Department Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vaia Lambadiari
- 2nd Department of Internal Medicine Research Unit and Diabetes Centre Attikon Hospital, Medical School National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
161
|
Horska K, Kucera J, Drazanova E, Kuzminova G, Amchova P, Hrickova M, Ruda-Kucerova J, Skrede S. Potent synergistic effects of dulaglutide and food restriction in prevention of olanzapine-induced metabolic adverse effects in a rodent model. Biomed Pharmacother 2024; 176:116763. [PMID: 38805968 DOI: 10.1016/j.biopha.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Antipsychotics are indispensable in the treatment of severe mental illneses, however adverse metabolic effects including diabetes, weight gain, dyslipidemia, and related cardiovascular morbidity are common, and current pharmacological strategies for their management are unsatisfactory. Glucagon-like 1 peptide receptor agonists (GLP-1 RAs) are approved for the treatment of type 2 diabetes and obesity hold promise for the management of antipsychotic-associated adverse metabolic effects. METHODS To characterize the molecular effects and identify biomarkers for GLP-1 RA preventive treatment, Sprague-Dawley female rats were treated with long-acting formulations of the antipsychotic olanzapine and the GLP-1 RA dulaglutide for 8 days. A pair-feeding protocol evaluated the combined effects of dulaglutide and food restriction on an olanzapine-induced metabolic phenotype. Body weight and food consumption were recorded. Biochemical analysis included a lipid profile, a spectrum of gastrointestinal and adipose tissue-derived hormones, and fibroblast growth factor 21 serum levels. RESULTS Olanzapine induced hyperphagia, weight gain, increased serum triglycerides and HDL cholesterol. Food restriction affected the OLA-induced phenotype but not serum markers. Dulaglutide led to a modest decrease in food intake, with no effect on weight gain, and did not reverse the OLA-induced changes in serum lipid parameters. Concomitant dulaglutide and food restriction resulted in weight loss, decreased feed efficiency, and lower total and HDL cholesterol. CONCLUSIONS A combined strategy of dulaglutide and food restriction manifested a massive synergistic benefit. GLP-1RAs represent a promising strategy and deserve thorough future research. Our findings underline the potential importance of lifestyle intervention in addition to GLP-1 RA treatment.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Jan Kucera
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Physical Activities and Health, Faculty of Sports Studies, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriela Kuzminova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway/Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
162
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
163
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
164
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
165
|
Xie K, Feng X, Zhu S, Liang J, Mo Y, Feng X, Ye S, Zhou Y, Shu G, Wang S, Gao P, Zhu C, Fan Y, Jiang Q, Wang L. Effects of Tryptophan Supplementation in Diets with Different Protein Levels on the Production Performance of Broilers. Animals (Basel) 2024; 14:1838. [PMID: 38997950 PMCID: PMC11240754 DOI: 10.3390/ani14131838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Tryptophan plays an important role in the pig industry but has the potential to improve performance in the poultry industry. The purpose of this study was to examine the effects of tryptophan supplementation in diets with different protein levels on the feed intake, average daily gain (ADG), and feed conversion ratio (F/G) of broilers. A total of 180 twenty-one-day-old broilers (half male and half female) were weighed and randomly allocated to twelve groups, with six male and six female groups. Each group consisted of 15 broilers. The broilers were fed low- (17.2%), medium- (19.2%), or high- (21.2%) protein diets with or without extra tryptophan (up to 0.25%) during the 28-day experiment. Food intake and body weight were measured weekly during the trial period. Male broilers fed a medium-protein diet containing more tryptophan showed a lower F/G. In the low-protein diet groups, additional tryptophan caused a significant reduction in the feed intake of female broilers during the first two weeks. Moreover, the serum GLP-1, cholesterol, and bile acid levels, as well as the expression of FXR mRNA in the ileum, were significantly increased. Additionally, the FXR mRNA in the hypothalamus and the GCG and GLP-1R mRNAs in the ileum tended to increase in these broilers. In summary, the tryptophan concentration in the diet can influence the feed intake and metabolism of broilers. Under a standard diet, an appropriate amount of tryptophan is beneficial to the F/G of male broilers, while under a low-protein diet, tryptophan supplementation may cause a short-term reduction in the feed intake of female broilers by increasing serum GLP-1 and bile acid signals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (K.X.); (X.F.); (S.Z.); (J.L.); (Y.M.); (X.F.); (S.Y.); (Y.Z.); (G.S.); (S.W.); (P.G.); (C.Z.); (Y.F.); (Q.J.)
| |
Collapse
|
166
|
Karlin H, Sooda M, Larson M, Rong J, Huan T, Mens MMJ, van Rooij FJA, Ikram MA, Courchesne P, Freedman JE, Joehanes R, Mueller GP, Kavousi M, Ghanbari M, Levy D. Plasma Extracellular MicroRNAs Associated With Cardiovascular Disease Risk Factors in Middle-Aged and Older Adults. J Am Heart Assoc 2024; 13:e033674. [PMID: 38860398 PMCID: PMC11255734 DOI: 10.1161/jaha.123.033674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Extracellular microRNAs (miRNAs) are a class of noncoding RNAs that remain stable in the extracellular milieu, where they contribute to various physiological and pathological processes by facilitating intercellular signaling. Previous studies have reported associations between miRNAs and cardiovascular diseases (CVDs); however, the plasma miRNA signatures of CVD and its risk factors have not been fully elucidated at the population level. METHODS AND RESULTS Plasma miRNA levels were measured in 4440 FHS (Framingham Heart Study) participants. Linear regression analyses were conducted to test the cross-sectional associations of each miRNA with 8 CVD risk factors. Prospective analyses of the associations of miRNAs with new-onset obesity, hypertension, type 2 diabetes, CVD, and all-cause mortality were conducted using proportional hazards regression. Replication was carried out in 1999 RS (Rotterdam Study) participants. Pathway enrichment analyses were conducted and target genes were predicted for miRNAs associated with ≥5 risk factors in the FHS. In the FHS, 6 miRNAs (miR-193b-3p, miR-122-5p, miR-365a-3p, miR-194-5p, miR-192-5p, and miR-193a-5p) were associated with ≥5 risk factors. This miRNA signature was enriched for pathways associated with CVD and several genes annotated to these pathways were predicted targets of the identified miRNAs. Furthermore, miR-193b-3p, miR-194-5p, and miR-193a-5p were each associated with ≥2 risk factors in the RS. Prospective analysis revealed 8 miRNAs associated with all-cause mortality in the FHS. CONCLUSIONS These findings highlight associations between miRNAs and CVD risk factors that may provide valuable insights into the underlying pathogenesis of CVD.
Collapse
Affiliation(s)
- Hannah Karlin
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Meera Sooda
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Martin Larson
- Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jian Rong
- Framingham Heart StudyFraminghamMAUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMAUSA
| | - Tianxiao Huan
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Ophthalmology and Visual SciencesUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Michelle M. J. Mens
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
- Department of Social and Behavioral SciencesHarvard T.H Chan School of Public HealthBostonMAUSA
| | - Frank J. A. van Rooij
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paul Courchesne
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Jane E. Freedman
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Roby Joehanes
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Maryam Kavousi
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mohsen Ghanbari
- Department of EpidemiologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Daniel Levy
- Framingham Heart StudyFraminghamMAUSA
- Population Sciences BranchNational Heart, Lung, and Blood InstituteBethesdaMDUSA
- Boston University School of MedicineBostonMAUSA
| |
Collapse
|
167
|
Qadri S, Sohail MU, Akhtar N, Pir GJ, Yousif G, Pananchikkal SV, Al-Noubi M, Choi S, Shuaib A, Haik Y, Parray A, Schmidt F. Mass spectrometry-based proteomic profiling of extracellular vesicle proteins in diabetic and non-diabetic ischemic stroke patients: a case-control study. Front Mol Biosci 2024; 11:1387859. [PMID: 38948080 PMCID: PMC11211575 DOI: 10.3389/fmolb.2024.1387859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Acute ischemic stroke is the most common cause of neurologic dysfunction caused by focal brain ischemia and tissue injury. Diabetes is a major risk factor of stroke, exacerbating disease management and prognosis. Therefore, discovering new diagnostic markers and therapeutic targets is critical for stroke prevention and treatment. Extracellular vesicles (EVs), with their distinctive properties, have emerged as promising candidates for biomarker discovery and therapeutic application. This case-control study utilized mass spectrometry-based proteomics to compare EVs from non-diabetic stroke (nDS = 14), diabetic stroke (DS = 13), and healthy control (HC = 12) subjects. Among 1288 identified proteins, 387 were statistically compared. Statistical comparisons using a general linear model (log2 foldchange ≥0.58 and FDR-p≤0.05) were performed for nDS vs HC, DS vs HC, and DS vs nDS. DS vs HC and DS vs nDS comparisons produced 123 and 149 differentially expressed proteins, respectively. Fibrinogen gamma chain (FIBG), Fibrinogen beta chain (FIBB), Tetratricopeptide repeat protein 16 (TTC16), Proline rich 14-like (PR14L), Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKE), Biorientation of chromosomes in cell division protein 1-like 1 (BD1L1), and protein PR14L exhibited significant differences in the DS group. The pathway analysis revealed that the complement system pathways were activated, and blood coagulation and neuroprotection were inhibited in the DS group (z-score ≥2; p ≤ 0.05). These findings underscore the potential of EVs proteomics in identifying biomarkers for stroke management and prevention, warranting further clinical investigation.
Collapse
Affiliation(s)
- Shahnaz Qadri
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, United States
- Sustainability Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ghulam Jeelani Pir
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ghada Yousif
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Muna Al-Noubi
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| | - Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| | - Ashfaq Shuaib
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yousef Haik
- Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
168
|
Gowans FA, Forte N, Hatcher J, Huang OW, Wang Y, Altamirano Poblano BE, Wertz IE, Nomura DK. Covalent Degrader of the Oncogenic Transcription Factor β-Catenin. J Am Chem Soc 2024. [PMID: 38848252 DOI: 10.1021/jacs.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
β-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drive the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging. Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify the monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 three cysteines C466, C520, and C619, leading to destabilization and degradation of CTNNB1. Through structural optimization, we generate a highly potent and relatively selective destabilizing degrader that acts through the targeting of only C619 on CTNNB1. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through destabilization-mediated degradation.
Collapse
Affiliation(s)
- Flor A Gowans
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Nafsika Forte
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Justin Hatcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Oscar W Huang
- Bristol Myers Squibb, San Francisco, California 94158, United States
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Belen E Altamirano Poblano
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Ingrid E Wertz
- Bristol Myers Squibb, San Francisco, California 94158, United States
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
169
|
Li X, Wang Z, Chen N. Perspective and Therapeutic Potential of the Noncoding RNA-Connexin Axis. Int J Mol Sci 2024; 25:6146. [PMID: 38892334 PMCID: PMC11173347 DOI: 10.3390/ijms25116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
170
|
Sallahi N, Zainel AA, Bensmail HN, Syed MA, Arredouani A. Real-world clinical validation of the Qatar pre-diabetes risk score: a cross-sectional study. BMJ PUBLIC HEALTH 2024; 2:e000957. [PMID: 40018134 PMCID: PMC11812911 DOI: 10.1136/bmjph-2024-000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 03/01/2025]
Abstract
Introduction Pre-diabetes stands as a prominent, independent risk factor for the onset of type 2 diabetes (T2D), with 5%-10% of individuals with pre-diabetes progressing to T2D annually. The effectiveness of rigorous lifestyle interventions in averting the transition from pre-diabetes to T2D has been substantiated across multiple investigations and populations. Consequently, the clinical imperative of early pre-diabetes detection becomes unequivocal. This study assessed the validity of the recently developed pre-diabetes risk score in Qatar (PRISQ) in a real-world clinical setting. Research design and methods We recruited 1021 walk-in participants from 3 different health centres of Qatar's Primary Health Care Corporation. Only adult people without known pre-diabetes or diabetes were included in the study. Along with blood collected for the haemoglobin A1c (HbA1c) test to confirm pre-diabetes, we recorded the age, gender, weight, waist circumference, systolic and diastolic blood pressure, nationality, smoking state and family history of diabetes. Negative predictive value, positive predictive value, sensitivity and specificity of PRISQ were computed. Results Of the 1021 participants, 797 agreed to provide blood. HbA1c test revealed that 21.9% of the 797 subjects had pre-diabetes (HbA1c between 5.7% and 6.5%) while 3.3% had undiagnosed diabetes (HbA1c≥ 6.5%). Using a PRISQ cut-off of 16, PRISQ sensitivity exceeded 90% in all subgroups of individuals aged 40 years and above, regardless of ethnicity. We did not see any significant improvement in PRISQ sensitivity when we considered the family history of diabetes. Conclusions We confirmed a good PRISQ diagnostic rate for pre-diabetes from a representative sample of the Qatar population recruited in a real-world clinical setting. PRISQ can potentially play a significant role in curbing the T2D epidemic sweeping Qatar and beyond.
Collapse
Affiliation(s)
| | | | - Halima None Bensmail
- Data Analytics, Qatar Computing Research Institute, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| | | | - Abdelilah Arredouani
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
171
|
Li JH, Ma XY, Yi Y, Li LR, Xu ZY, Chang Y. Association between Serum Ferritin Levels and Metabolic-associated Fatty Liver Disease in Adults: a Cross-sectional Study Based on the NHANES. Curr Med Sci 2024; 44:494-502. [PMID: 38748368 DOI: 10.1007/s11596-024-2868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Ferritin, initially acting as an iron-storage protein, was found to be associated with metabolic diseases. Our study was designed to investigate the association between serum ferritin and metabolic-associated fatty liver disease (MAFLD) using data from the National Health and Nutrition Examination Survey (NHANES) of the United State of America. METHODS A cross-sectional study was conducted, enrolling a total of 2145 participants from the NHANES in the 2017-2018 cycles. Hepatic steatosis and liver fibrosis were assessed by ultrasound images and several non-invasive indexes. Multiple regression analysis was conducted to determine the associations between serum ferritin concentration and MAFLD and liver fibrosis. RESULTS The analysis revealed that participants with higher serum ferritin levels (Q3 and Q4 groups) had a higher prevalence of MAFLD than those with the lowest serum ferritin levels [Q3 vs. Q1: OR=2.17 (1.33, 3.53), P<0.05 in fatty liver index (FLI); Q4 vs. Q1: OR=3.13 (1.91, 5.13), P<0.05 in FLI]. Additionally, participants with the highest serum ferritin levels (Q4 group) displayed a higher prevalence of liver fibrosis [Q4 vs. Q1: OR=2.59 (1.19, 5.62), P<0.05 in liver stiffness measurement; OR=5.06 (1.12, 22.94), P<0.05 in fibrosis-4 index], with significantly increased risk observed in participants with concomitant diabetes [OR=7.45 (1.55, 35.72), P=0.012]. CONCLUSION Our study revealed that elevated serum ferritin levels are associated with a higher prevalence of MAFLD and advanced liver fibrosis in patients. Elevated serum ferritin levels combined with diabetes are important risk factors for liver fibrosis.
Collapse
Affiliation(s)
- Jiang-Hui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xue-Yao Ma
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lu-Rao Li
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Zhi-Yong Xu
- Endoscopy Center, The People's Hospital of Yingshan, Huanggang, 438799, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
172
|
Yang Y, Liu X, Liu X, Xie C, Shi J. The role of the kynurenine pathway in cardiovascular disease. Front Cardiovasc Med 2024; 11:1406856. [PMID: 38883986 PMCID: PMC11176437 DOI: 10.3389/fcvm.2024.1406856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The kynurenine pathway (KP) serves as the primary route for tryptophan metabolism in most mammalian organisms, with its downstream metabolites actively involved in various physiological and pathological processes. Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) serve as the initial and pivotal enzymes of the KP, with IDO playing important and intricate roles in cardiovascular diseases. Multiple metabolites of KP have been observed to exhibit elevated concentrations in plasma across various cardiovascular diseases, such as atherosclerosis, hypertension, and acute myocardial infarction. Multiple studies have indicated that kynurenine (KYN) may serve as a potential biomarker for several adverse cardiovascular events. Furthermore, Kynurenine and its downstream metabolites have complex roles in inflammation, exhibiting both inhibitory and stimulatory effects on inflammatory responses under different conditions. In atherosclerosis, upregulation of IDO stimulates KYN production, mediating aromatic hydrocarbon receptor (AhR)-induced exacerbation of vascular inflammation and promotion of foam cell formation. Conversely, in arterial calcification, this mediation alleviates osteogenic differentiation of vascular smooth muscle cells. Additionally, in cardiac remodeling, KYN-mediated AhR activation exacerbates pathological left ventricular hypertrophy and fibrosis. Interventions targeting components of the KP, such as IDO inhibitors, 3-hydroxyanthranilic acid, and anthranilic acid, demonstrate cardiovascular protective effects. This review outlines the mechanistic roles of KP in coronary atherosclerosis, arterial calcification, and myocardial diseases, highlighting the potential diagnostic, prognostic, and therapeutic value of KP in cardiovascular diseases, thus providing novel insights for the development and application of related drugs in future research.
Collapse
Affiliation(s)
- Yuehang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chiyang Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
173
|
Alsadi B, Musleh S, Al-Absi HRH, Refaee M, Qureshi R, El Hajj N, Alam T. An ensemble-based machine learning model for predicting type 2 diabetes and its effect on bone health. BMC Med Inform Decis Mak 2024; 24:144. [PMID: 38811939 PMCID: PMC11134939 DOI: 10.1186/s12911-024-02540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Diabetes is a chronic condition that can result in many long-term physiological, metabolic, and neurological complications. Therefore, early detection of diabetes would help to determine a proper diagnosis and treatment plan. METHODS In this study, we employed machine learning (ML) based case-control study on a diabetic cohort size of 1000 participants form Qatar Biobank to predict diabetes using clinical and bone health indicators from Dual Energy X-ray Absorptiometry (DXA) machines. ML models were utilized to distinguish diabetes groups from non-diabetes controls. Recursive feature elimination (RFE) was leveraged to identify a subset of features to improve the performance of model. SHAP based analysis was used for the importance of features and support the explainability of the proposed model. RESULTS Ensemble based models XGboost and RF achieved over 84% accuracy for detecting diabetes. After applying RFE, we selected only 20 features which improved the model accuracy to 87.2%. From a clinical standpoint, higher HDL-Cholesterol and Neutrophil levels were observed in the diabetic group, along with lower vitamin B12 and testosterone levels. Lower sodium levels were found in diabetics, potentially stemming from clinical factors including specific medications, hormonal imbalances, unmanaged diabetes. We believe Dapagliflozin prescriptions in Qatar were associated with decreased Gamma Glutamyltransferase and Aspartate Aminotransferase enzyme levels, confirming prior research. We observed that bone area, bone mineral content, and bone mineral density were slightly lower in the Diabetes group across almost all body parts, but the difference against the control group was not statistically significant except in T12, troch and trunk area. No significant negative impact of diabetes progression on bone health was observed over a period of 5-15 yrs in the cohort. CONCLUSION This study recommends the inclusion of ML model which combines both DXA and clinical data for the early diagnosis of diabetes.
Collapse
Affiliation(s)
- Belqes Alsadi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Saleh Musleh
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Hamada R H Al-Absi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Rizwan Qureshi
- Department of Imaging Physics, MD Anderson Cancer Center, The University of Texas, Houston, USA
| | - Nady El Hajj
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
174
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
175
|
Dey N. Rephrasing the 'David-Goliath' story in the field of diabetes. Mol Biol Rep 2024; 51:672. [PMID: 38787502 DOI: 10.1007/s11033-024-09618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Diabetes Mellitus has become a serious threat to public health. This non-communicable disease is spreading like wildfire to shape in the form of a global pandemic. It affects several organs during silent progression in the human body. The pathophysiological fallouts associate dysregulation of numerous cellular pathways. MicroRNAs have emerged as potent gene expression regulators by post-transcriptional mechanisms in the last two decades or so. Many microRNAs display differential expression patterns under hyperglycemia affecting coupled cellular signaling cascades. The present article attempts to unfold the involvement of microRNAs as biomarkers in diabetic conditions in current scenarios identifying their therapeutic significance.
Collapse
Affiliation(s)
- Nirmalya Dey
- Amity Institute of Biotechnology, Amity University, Room No. 504, Academic Building Plot No: 36, 37 & 38, Major Arterial Road, Action Area II Kadampukur Village, Rajarhat, Newtown Kolkata, West Bengal, 700135, India.
| |
Collapse
|
176
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
177
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
178
|
Chen YC, Viet-Nhi NK, Dang LH, Su CH, Hung SH. Efficacy of Office-Based Salivary Ductal Steroid Irrigation for Managing Post-Irradiation Xerostomia in Head and Neck Cancer Patients: A Retrospective Study. Biomedicines 2024; 12:1033. [PMID: 38790995 PMCID: PMC11117565 DOI: 10.3390/biomedicines12051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Post-irradiation xerostomia remains a significant quality of life concern for patients with head and neck cancers. Conventional therapies offer limited effectiveness. This study aims to investigate the therapeutic potential of office-based salivary ductal steroid irrigation in patients with post-irradiation xerostomia. This single-center observational study recruited 147 head and neck cancer patients suffering from post-irradiation xerostomia between November 2020 and October 2022. All included subjects received at least one round of successful salivary ductal cannulation and irrigation. The primary measure of efficacy was improvement in subjective xerostomia and objective salivary amylase levels. A logistic regression was employed to evaluate factors affecting treatment responsiveness. The response rate among nasopharyngeal cancer (NPC) patients was 74.8%, and that among non-NPC cancer was 65.6%, without significant intergroup differences. The statistical analysis revealed no significant influence of age, gender, or disease stage on treatment responsiveness. Post-treatment salivary amylase levels were significantly higher in responsive non-NPC patients. In conclusion, salivary ductal steroid irrigation emerged as a promising therapeutic modality for the management of post-irradiation xerostomia in head and neck cancer patients. While no explicit factors were predictive of responsiveness, the high rate of symptom improvement suggests that this therapy may be a viable alternative for patients that are refractory to standard treatments.
Collapse
Affiliation(s)
- Yen-Chun Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Nguyen-Kieu Viet-Nhi
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Chin-Hui Su
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 104217, Taiwan
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 116079, Taiwan
| |
Collapse
|
179
|
Jiang J, Li H, Tang M, Lei L, Li HY, Dong B, Li JR, Wang XK, Sun H, Li JY, Xu JC, Gong Y, Jiang JD, Peng ZG. Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1. Int J Mol Sci 2024; 25:5086. [PMID: 38791126 PMCID: PMC11120891 DOI: 10.3390/ijms25105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.
Collapse
Affiliation(s)
- Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jing-Chen Xu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Yue Gong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
180
|
Sundaram K, Teng Y, Mu J, Xu Q, Xu F, Sriwastva MK, Zhang L, Park JW, Zhang X, Yan J, Zhang SQ, Merchant ML, Chen SY, McClain CJ, Dryden GW, Zhang HG. Outer Membrane Vesicles Released from Garlic Exosome-like Nanoparticles (GaELNs) Train Gut Bacteria that Reverses Type 2 Diabetes via the Gut-Brain Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308680. [PMID: 38225709 PMCID: PMC11102339 DOI: 10.1002/smll.202308680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Yun Teng
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Qingbo Xu
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY40202, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | | | - Lifeng Zhang
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Shuang Qin Zhang
- Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637
| | - Michael L. Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Shao-yu Chen
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Gerald W Dryden
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY40202, USA
| |
Collapse
|
181
|
Valančienė J, Melaika K, Šliachtenko A, Šiaurytė-Jurgelėnė K, Ekkert A, Jatužis D. Stroke genetics and how it Informs novel drug discovery. Expert Opin Drug Discov 2024; 19:553-564. [PMID: 38494780 DOI: 10.1080/17460441.2024.2324916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Stroke is one of the main causes of death and disability worldwide. Nevertheless, despite the global burden of this disease, our understanding is limited and there is still a lack of highly efficient etiopathology-based treatment. It is partly due to the complexity and heterogenicity of the disease. It is estimated that around one-third of ischemic stroke is heritable, emphasizing the importance of genetic factors identification and targeting for therapeutic purposes. AREAS COVERED In this review, the authors provide an overview of the current knowledge of stroke genetics and its value in diagnostics, personalized treatment, and prognostication. EXPERT OPINION As the scale of genetic testing increases and the cost decreases, integration of genetic data into clinical practice is inevitable, enabling assessing individual risk, providing personalized prognostic models and identifying new therapeutic targets and biomarkers. Although expanding stroke genetics data provides different diagnostics and treatment perspectives, there are some limitations and challenges to face. One of them is the threat of health disparities as non-European populations are underrepresented in genetic datasets. Finally, a deeper understanding of underlying mechanisms of potential targets is still lacking, delaying the application of novel therapies into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | - Kamilė Šiaurytė-Jurgelėnė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Dalius Jatužis
- Center of Neurology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
182
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
183
|
Nahalka J. 1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit. Int J Mol Sci 2024; 25:4440. [PMID: 38674024 PMCID: PMC11049929 DOI: 10.3390/ijms25084440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic prompted rapid research on SARS-CoV-2 pathogenicity. Consequently, new data can be used to advance the molecular understanding of SARS-CoV-2 infection. The present bioinformatics study discusses the "spikeopathy" at the molecular level and focuses on the possible post-transcriptional regulation of the SARS-CoV-2 spike protein S1 subunit in the host cell/tissue. A theoretical protein-RNA recognition code was used to check the compatibility of the SARS-CoV-2 spike protein S1 subunit with mRNAs in the human transcriptome (1-L transcription). The principle for this method is elucidated on the defined RNA binding protein GEMIN5 (gem nuclear organelle-associated protein 5) and RNU2-1 (U2 spliceosomal RNA). Using the method described here, it was shown that 45% of the genes/proteins identified by 1-L transcription of the SARS-CoV-2 spike protein S1 subunit are directly linked to COVID-19, 39% are indirectly linked to COVID-19, and 16% cannot currently be associated with COVID-19. The identified genes/proteins are associated with stroke, diabetes, and cardiac injury.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
184
|
Pandey GK, Vadlamudi S, Currin KW, Moxley AH, Nicholas JC, McAfee JC, Broadaway KA, Mohlke KL. Liver regulatory mechanisms of noncoding variants at lipid and metabolic trait loci. HGG ADVANCES 2024; 5:100275. [PMID: 38297830 PMCID: PMC10881423 DOI: 10.1016/j.xhgg.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for liver disease and lipid-related metabolic traits, although identifying their target genes and molecular mechanisms remains challenging. We predicted target genes at GWAS signals by integrating them with molecular quantitative trait loci for liver gene expression (eQTL) and liver chromatin accessibility QTL (caQTL). We predicted specific regulatory caQTL variants at four GWAS signals located near EFHD1, LITAF, ZNF329, and GPR180. Using transcriptional reporter assays, we determined that caQTL variants rs13395911, rs11644920, rs34003091, and rs9556404 exhibit allelic differences in regulatory activity. We also performed a protein binding assay for rs13395911 and found that FOXA2 differentially interacts with the alleles of rs13395911. For variants rs13395911 and rs11644920 in putative enhancer regulatory elements, we used CRISPRi to demonstrate that repression of the enhancers altered the expression of the predicted target and/or nearby genes. Repression of the element at rs13395911 reduced the expression of EFHD1, and repression of the element at rs11644920 reduced the expression of LITAF, SNN, and TXNDC11. Finally, we showed that EFHD1 is a metabolically active gene in HepG2 cells. Together, these results provide key steps to connect genetic variants with cellular mechanisms and help elucidate the causes of liver disease.
Collapse
Affiliation(s)
- Gautam K Pandey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jayna C Nicholas
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
185
|
Liu S, Wang L, Zhang Z, Leng Y, Yang Y, Fu X, Xie H, Gao H, Xie C. The potential of astragalus polysaccharide for treating diabetes and its action mechanism. Front Pharmacol 2024; 15:1339406. [PMID: 38659573 PMCID: PMC11039829 DOI: 10.3389/fphar.2024.1339406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.
Collapse
Affiliation(s)
- Shiyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luyao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zehua Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuLin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
186
|
Kim H, Lee K, Kim C, Lim J, Kim WY. DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening. J Chem Inf Model 2024; 64:2432-2444. [PMID: 37651152 DOI: 10.1021/acs.jcim.3c01134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Recently emerging generative AI models enable us to produce a vast number of compounds for potential applications. While they can provide novel molecular structures, the synthetic feasibility of the generated molecules is often questioned. To address this issue, a few recent studies have attempted to use deep learning models to estimate the synthetic accessibility of many molecules rapidly. However, retrosynthetic analysis tools used to train the models rely on reaction templates automatically extracted from a large reaction database that are not domain-specific and may exhibit low chemical correctness. To overcome this limitation, we introduce DFRscore (Drug-Focused Retrosynthetic score), a deep learning-based approach for a more practical assessment of synthetic accessibility in drug discovery. The DFRscore model is trained exclusively on drug-focused reactions, providing a predicted number of minimally required synthetic steps for each compound. This approach enables practitioners to filter out compounds that do not meet their desired level of synthetic accessibility at an early stage of high-throughput virtual screening for accelerated drug discovery. The proposed strategy can be easily adapted to other domains by adjusting the synthesis planning setup of the reaction templates and starting materials.
Collapse
Affiliation(s)
- Hyeongwoo Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyunghoon Lee
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chansu Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaechang Lim
- HITS Incorporation, 124 Teheran-ro, Gangnam-gu, Seoul 06234, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- HITS Incorporation, 124 Teheran-ro, Gangnam-gu, Seoul 06234, Republic of Korea
- AI Institute, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
187
|
Jiang J, Zheng P, Li L. Identification of Prognostic and Immune Characteristics of Two Lung Adenocarcinoma Subtypes Based on TRPV Channel Family Genes. J Membr Biol 2024; 257:115-129. [PMID: 38150051 DOI: 10.1007/s00232-023-00300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the deadliest malignant tumors worldwide. Transient receptor potential vanilloid (TRPV) channels take pivotal parts in many cancers, but their impact on LUAD remains unexplored. In this study, LUAD samples were classified into two subtypes according to the expression characteristics of TRPV1-6 genes, with LUAD subtype cluster2 exhibiting significantly higher survival rates than cluster1. Subsequently, analysis of differentially expressed genes (DEGs) was performed between cluster1 and cluster2, revealing enrichment of DEGs in channel activity and Ca2+ signaling pathways. We established a protein-protein interaction network based on DEGs and constructed a LUAD prognostic model by using Cox regression analysis based on genes corresponding to 170 protein nodes. The prognostic model demonstrated good predictive ability for patient prognosis, with higher survival rates observed in the low-risk (LR) group. The risk score was validated as an independent prognostic indicator, according to Cox regression analysis. A clinically applicable nomogram was plotted. Immunological analysis indicated that the LR and high-risk (HR) groups had varied proportions of immune cell infiltration. The immunotherapy prediction indicated that LUAD patients in LR group had a greater likelihood to benefit from immune checkpoint blockade therapy. Furthermore, we hypothesized that the expression patterns of feature genes in the LUAD model were related to the sensitivity to lung cancer therapeutic drugs TAS-6417 and Erlotinib. To sum up, our LUAD prognostic model possessed clinical applicability for prognosis and immunotherapy response prediction.
Collapse
Affiliation(s)
- Jianhua Jiang
- Department of Cardiothoracic Surgery, Jingmen People's Hospital, No.39 Xiangshan Avenue, Jingmen City, 448000, Hubei Province, China
| | - Pengchao Zheng
- Department of Cardiothoracic Surgery, Jingmen People's Hospital, No.39 Xiangshan Avenue, Jingmen City, 448000, Hubei Province, China.
| | - Lei Li
- Department of Cardiothoracic Surgery, Jingmen People's Hospital, No.39 Xiangshan Avenue, Jingmen City, 448000, Hubei Province, China.
| |
Collapse
|
188
|
Steenackers N, Eksteen G, Wauters L, Augustijns P, Van der Schueren B, Vanuytsel T, Matthys C. Understanding the gastrointestinal tract in obesity: From gut motility patterns to enzyme secretion. Neurogastroenterol Motil 2024; 36:e14758. [PMID: 38342973 DOI: 10.1111/nmo.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND AND PURPOSE The pathophysiology of obesity has been the product of extensive research, revealing multiple interconnected mechanisms contributing to body weight regulation. The regulation of energy balance involves an intricate network, including the gut-neuroendocrine interplay. As a consequence, research on the gut-brain-microbiota axis in obesity has grown extensively. The physiology of the gastrointestinal tract, far from being underexplored, has significant implications for the development of specific complications in people living with obesity across the fields of gastroenterology, nutrition, and pharmacology. Clinical research indicates higher fasting bile acids serum levels, and blunted postprandial increases in bilious secretions in people living with obesity. Findings are less straightforward for the impact of obesity on gastric emptying with various studies reporting accelerated, normal, or delayed gastric emptying rates. Conversely, the effect of obesity on gastrointestinal pH, gastrointestinal transit, and gastric and pancreatic enzyme secretion is largely unknown. In this review, we explore the current evidence on the gastrointestinal physiology of obesity.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Gabriel Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
189
|
Naß J, Terglane J, Zeuschner D, Gerke V. Evoked Weibel-Palade Body Exocytosis Modifies the Endothelial Cell Surface by Releasing a Substrate-Selective Phosphodiesterase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306624. [PMID: 38359017 PMCID: PMC11040351 DOI: 10.1002/advs.202306624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route. GDPD5 cleaves GPI-anchored, plasma membrane-resident proteins within their GPI-motif, thereby regulating their local activity. The authors identify a novel target of GDPD5 , the complement regulator CD59, and show that it is released from the endothelial surface by GDPD5 following WPB exocytosis. This results in increased deposition of complement components and can enhance local inflammatory and thrombogenic responses. Thus, stimulus-induced WPB exocytosis can modify the endothelial cell surface by GDPD5-mediated selective release of a subset of GPI-anchored proteins.
Collapse
Affiliation(s)
- Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Julian Terglane
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| | - Dagmar Zeuschner
- Electron Microscopy FacilityMax Planck Institute for Molecular BiomedicineRoentgenstr. 2048149MuensterGermany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of InflammationUniversity of Muenstervon‐Esmarch‐Str. 5648149MuensterGermany
| |
Collapse
|
190
|
Adle-Biassette H, Ricci R, Martin A, Martini M, Ravegnini G, Kaci R, Gélébart P, Poirot B, Sándor Z, Lehman-Che J, Tóth E, Papp B. Sarco/endoplasmic reticulum calcium ATPase 3 (SERCA3) expression in gastrointestinal stromal tumours. Pathology 2024; 56:343-356. [PMID: 38184384 DOI: 10.1016/j.pathol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Accurate characterisation of gastrointestinal stromal tumours (GIST) is important for prognosis and the choice of targeted therapies. Histologically the diagnosis relies on positive immunostaining of tumours for KIT (CD117) and DOG1. Here we report that GISTs also abundantly express the type 3 Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA3). SERCA enzymes transport calcium ions from the cytosol into the endoplasmic reticulum and play an important role in regulating the intensity and the periodicity of calcium-induced cell activation. GISTs from various localisations, histological and molecular subtypes or risk categories were intensely immunopositive for SERCA3 with the exception of PDGFRA-mutated cases where expression was high or moderate. Strong SERCA3 expression was observed also in normal and hyperplastic interstitial cells of Cajal. Decreased SERCA3 expression in GIST was exceptionally observed in a zonal pattern, where CD117 staining was similarly decreased, reflecting clonal heterogeneity. In contrast to GIST, SERCA3 immunostaining of spindle cell tumours and other gastrointestinal tumours resembling GIST was negative or weak. In conclusion, SERCA3 immunohistochemistry may be useful for the diagnosis of GIST with high confidence, when used as a third marker in parallel with KIT and DOG1. Moreover, SERCA3 immunopositivity may be particularly helpful in cases with negative or weak KIT or DOG1 staining, a situation that may be encountered de novo, or during the spontaneous or therapy-induced clonal evolution of GIST.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; INSERM NeuroDiderot, DMU DREAM, France
| | - Riccardo Ricci
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Antoine Martin
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR U978, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Maurizio Martini
- Dipartimento di patologia umana dell'adulto e dell'età evolutiva 'Gaetano Barresi' Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rachid Kaci
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Pascal Gélébart
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brigitte Poirot
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zsuzsanna Sándor
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Jacqueline Lehman-Che
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Bela Papp
- INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France; CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
191
|
Yuan Y, Jaślan D, Rahman T, Bracher F, Grimm C, Patel S. Coordinating activation of endo-lysosomal two-pore channels and TRP mucolipins. J Physiol 2024; 602:1623-1636. [PMID: 38598430 DOI: 10.1113/jp283829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London, UK
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| |
Collapse
|
192
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
193
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
194
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
195
|
Alqahtani SAM, Alsaleem MA, Ghazy RM. Association between serum ferritin level and lipid profile among diabetic patients: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e37631. [PMID: 38552070 PMCID: PMC10977537 DOI: 10.1097/md.0000000000037631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
High serum ferritin (SF) levels have been linked to obesity, metabolic syndrome, atherosclerosis, diabetes, dyslipidemia, and cancer. This study aimed to investigate the association between SF and dyslipidemia in adults diagnosed with diabetes mellitus. This cross-sectional study retrospectively analyzed the electronic medical records of eligible patients from 3 primary locations in Saudi Arabia namely - Abha, Khamis Mushyt, and Jeddah - from 2010 to 2020. The study included adult patients aged 18 years or older who were diagnosed with diabetes mellitus and identified with an HbA1c level of ≥6.5. This study involved 3674 participants, with males accounting for 26.6% of the total. The mean age of the studied population was 48.0 ± 18.4 years. The median [interquartile range] of SF among males was higher than females, however, this difference was not statistically significant (60.0 [23.4-125.8] vs 55.4 [24.0-113.4], P = 0.204). On the other hand, age and region were significantly associated with SF (P = .032 and 0.035). SF had a significant positive correlation with cholesterol (r = 0.081, P < .001), low-density lipoprotein cholesterol (r = .087, P < .001), and triglycerides (r = 0.068, P < .001) and negative correlation with high-density lipoprotein cholesterol (r = -0.13, P < .001). Multivariate analysis revealed that age, sex, residence, and HbA1c were significantly affecting the lipid profile. Clinicians should consider including SF testing as part of the comprehensive evaluation of patients with diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | - Mohammed Abadi Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudia Arabia
| | - Ramy Mohamed Ghazy
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudia Arabia
- Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
196
|
Kong L, Zhao Q, Jiang X, Hu J, Jiang Q, Sheng L, Peng X, Wang S, Chen Y, Wan Y, Hou S, Liu X, Ma C, Li Y, Quan L, Chen L, Cui B, Li P. Trimethylamine N-oxide impairs β-cell function and glucose tolerance. Nat Commun 2024; 15:2526. [PMID: 38514666 PMCID: PMC10957989 DOI: 10.1038/s41467-024-46829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
β-Cell dysfunction and β-cell loss are hallmarks of type 2 diabetes (T2D). Here, we found that trimethylamine N-oxide (TMAO) at a similar concentration to that found in diabetes could directly decrease glucose-stimulated insulin secretion (GSIS) in MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels impairs GSIS, β-cell proportion, and glucose tolerance in male C57BL/6 J mice. TMAO inhibits calcium transients through NLRP3 inflammasome-related cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on β-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes β-cell ER stress, dedifferentiation, and apoptosis and inhibits β-cell transcriptional identity. Inhibition of TMAO production improves β-cell GSIS, β-cell proportion, and glucose tolerance in both male db/db and choline diet-fed mice. These observations identify a role for TMAO in β-cell dysfunction and maintenance, and inhibition of TMAO could be an approach for the treatment of T2D.
Collapse
Affiliation(s)
- Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Xiaojing Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Peng
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, 100871, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Shusen Wang
- Tianjin First Central Hospital, Tianjin, China
| | - Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Yanjun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Xingfeng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Quan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Liangyi Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Peking University, 100871, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, China.
| |
Collapse
|
197
|
Al Akl NS, Khalifa O, Habibullah M, Arredouani A. Salivary α-amylase activity is associated with cardiometabolic and inflammatory biomarkers in overweight/obese, non-diabetic Qatari women. Front Endocrinol (Lausanne) 2024; 15:1348853. [PMID: 38562410 PMCID: PMC10982335 DOI: 10.3389/fendo.2024.1348853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Obesity, prevalent in approximately 80% of Qatar's adult population, increases the risk of complications like type 2 diabetes and cardiovascular diseases. Predictive biomarkers are crucial for preventive strategies. Salivary α-amylase activity (sAAa) inversely correlates with obesity and insulin resistance in adults and children. However, the connection between sAAa and cardiometabolic risk factors or chronic low-grade inflammation markers remains unclear. This study explores the association between serum sAAa and adiposity markers related to cardiovascular diseases, as well as markers indicative of chronic low-grade inflammation. METHODS Serum samples and clinical data of 1500 adult, non-diabetic, Overweight/Obese participants were obtained from Qatar Biobank (QBB). We quantified sAAa and C reactive protein (CRP) levels with an autoanalyzer. Cytokines, adipokines, and adiponectin of a subset of 228 samples were quantified using a bead-based multiplex assay. The associations between the sAAa and the adiposity indices and low-grade inflammatory protein CRP and multiple cytokines were assessed using Pearson's correlation and adjusted linear regression. RESULTS The mean age of the participants was 36 ± 10 years for both sexes of which 76.6% are women. Our analysis revealed a significant linear association between sAAa and adiposity-associated biomarkers, including body mass index β -0.032 [95% CI -0.049 to -0.05], waist circumference β -0.05 [95% CI -0.09 to -0.02], hip circumference β -0.052 [95% CI -0.087 to -0.017], and HDL β 0.002 [95% CI 0.001 to 0.004], albeit only in women. Additionally, sAAa demonstrated a significant positive association with adiponectin β 0.007 [95% CI 0.001 to 0.01]while concurrently displaying significant negative associations with CRP β -0.02 [95% CI -0.044 to -0.0001], TNF-α β -0.105 [95% CI -0.207 to -0.004], IL-6 β [95% CI -0.39 -0.75 to -0.04], and ghrelin β -5.95 [95% CI -11.71 to -0.20], specifically within the female population. CONCLUSION Our findings delineate significant associations between sAAa and markers indicative of cardiovascular disease risk and inflammation among overweight/obese adult Qatari females. Subsequent investigations are warranted to elucidate the nuances of these gender-specific associations comprehensively.
Collapse
Affiliation(s)
- Neyla S. Al Akl
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | | | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
198
|
Hernandez N, Lokhnygina Y, Ramaker ME, Ilkayeva O, Muehlbauer MJ, Crawford ML, Grant RP, Hsia DS, Jain N, Bain JR, Armstrong S, Newgard CB, Freemark M, Gumus Balikcioglu P. Sex Differences in Branched-chain Amino Acid and Tryptophan Metabolism and Pathogenesis of Youth-onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e1345-e1358. [PMID: 38066593 PMCID: PMC10940256 DOI: 10.1210/clinem/dgad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 03/16/2024]
Abstract
OBJECTIVES Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids including tryptophan for uptake into β cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance, we compared urine metabolites in overweight/obese youth with type 2 diabetes (T2D) with those in nondiabetic overweight/obese and lean youth. METHODS Metabolites were measured in 24-hour and first-morning urine samples of 56 nondiabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, aged 12 to 21 years. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and nondiabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-HIAA/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and hemoglobin A1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSION Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.
Collapse
Affiliation(s)
- Natalie Hernandez
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Megan Elizabeth Ramaker
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Matthew L Crawford
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Russell P Grant
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Daniel S Hsia
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Nina Jain
- Division of Endocrinology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James R Bain
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah Armstrong
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
- Division of General Pediatrics and Adolescent Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Freemark
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
199
|
Alyavi AL, Sobirova GN, Abdullaev AO, Shadmanova DA. Ways to overcome difficulties in diagnosing non-alcoholic fatty liver disease. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2024:175-181. [DOI: 10.31146/1682-8658-ecg-218-10-175-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The purpose of the study is to evaluate the status and capabilities of modern types of diagnostics of non-alcoholic fatty liver disease as part of a meta-analysis of scientific data. Materials and methods. The literature search was carried out in electronic databases Cochrane Library, PubMed.gov, Elsevier.com, Google Scholar. The analysis of the data obtained was focused on works published between 2010 and 2023 (the bias in the form of later studies was used in isolated cases when it came to fundamental scientometric data). Results. After reviewing 693 scientific papers for duplication and inconsistency, 38 sources were selected. Conclusions. The analysis of scientific data revealed that despite the understanding of the pathogenetic causes of non-alcoholic fatty liver disease and the complexity of this disease, liver biopsy still remains the gold standard for assessing liver health. In this regard, there is a need to introduce accessible non-imaging tools and accurate biomarkers, with the help of which it will be possible not only to make an adequate diagnosis, but also to analyze new treatments for NAFLD in clinical trials.
Collapse
Affiliation(s)
- A. L. Alyavi
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - G. N. Sobirova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - A. O. Abdullaev
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| | - D. A. Shadmanova
- State Institution “Republican Specialized Scientific and Practical Medical Center for Therapy and Medical Rehabilitation” (RSNPMCT and MR) Tashkent Medical Academy (TMA)
| |
Collapse
|
200
|
Ma ZA, Wang LX, Zhang H, Li HZ, Dong L, Wang QH, Wang YS, Pan BC, Zhang SF, Cui HT, Lv SQ. Jianpi Gushen Huayu decoction ameliorated diabetic nephropathy through modulating metabolites in kidney, and inhibiting TLR4/NF-κB/NLRP3 and JNK/P38 pathways. World J Diabetes 2024; 15:502-518. [PMID: 38591083 PMCID: PMC10999033 DOI: 10.4239/wjd.v15.i3.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/21/2023] [Accepted: 01/30/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.
Collapse
Affiliation(s)
- Zi-Ang Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Li-Xin Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Hui Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Han-Zhou Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Li Dong
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Qing-Hai Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Yuan-Song Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Bao-Chao Pan
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Shu-Fang Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou 061000, Hebei Province, China
| | - Huan-Tian Cui
- The First School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 065000, Yunnan Province, China
| | - Shu-Quan Lv
- Department of Endocrinology, Hebei Cangzhou Hospital of Integrative Medicine, Cangzhou 061000, Hebei Province, China
| |
Collapse
|