201
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
202
|
Hamilton PB, Rolshausen G, Uren Webster TM, Tyler CR. Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0042. [PMID: 27920387 PMCID: PMC5182438 DOI: 10.1098/rstb.2016.0042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Many fish populations are exposed to harmful levels of chemical pollution and selection pressures associated with these exposures have led to the evolution of tolerance. Our understanding of the physiological basis for these adaptations is limited, but they are likely to include processes involved with the absorption, distribution, metabolism and/or excretion of the target chemical. Other potential adaptive mechanisms include enhancements in antioxidant responses, an increased capacity for DNA and/or tissue repair and alterations to the life cycle of fish that enable earlier reproduction. Analysis of single-nucleotide polymorphism frequencies has shown that tolerance to hydrocarbon pollutants in both marine and estuarine fish species involves alteration in the expression of the xenobiotic metabolism enzyme CYP1A. In this review, we present novel data showing also that variants of the CYP1A gene have been under selection in guppies living in Trinidadian rivers heavily polluted with crude oil. Potential costs associated with these adaptations could reduce fitness in unpolluted water conditions. Integrating knowledge of local adaptation to pollution is an important future consideration in conservation practices such as for successful restocking, and improving connectivity within river systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Tamsyn M Uren Webster
- Department of Biosciences, Swansea University, Wallace Building, Swansea SA2 8PP, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
203
|
Histone methyltransferase MMSET promotes AID-mediated DNA breaks at the donor switch region during class switch recombination. Proc Natl Acad Sci U S A 2017; 114:E10560-E10567. [PMID: 29158395 DOI: 10.1073/pnas.1701366114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In B cells, Ig class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID), the activity of which leads to DNA double-strand breaks (DSBs) within IgH switch (S) regions. Preferential targeting of AID-mediated DSBs to S sequences is critical for allowing diversification of antibody functions, while minimizing potential off-target oncogenic events. Here, we used gene targeted inactivation of histone methyltransferase (HMT) multiple myeloma SET domain (MMSET) in mouse B cells and the CH12F3 cell line to explore its role in CSR. We find that deletion of MMSET-II, the isoform containing the catalytic SET domain, inhibits CSR without affecting either IgH germline transcription or joining of DSBs within S regions by classical nonhomologous end joining (C-NHEJ). Instead, we find that MMSET-II inactivation leads to decreased AID recruitment and DSBs at the upstream donor Sμ region. Our findings suggest a role for the HMT MMSET in promoting AID-mediated DNA breaks during CSR.
Collapse
|
204
|
Mu Y, Zelazowska MA, McBride KM. Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene. J Exp Med 2017; 214:3543-3552. [PMID: 29122947 PMCID: PMC5716038 DOI: 10.1084/jem.20170468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that regulate AID mutator activity at off-target genes are not well characterized. Mu et al. show AID phosphorylation dynamically controls activity at Myc and other sites. Pharmacological induction of AID phosphorylation leads to increased mutations, double strand breakss and translocations. Activation-induced cytidine deaminase (AID) is a mutator enzyme that targets immunoglobulin (Ig) genes to initiate antibody somatic hypermutation (SHM) and class switch recombination (CSR). Off-target AID association also occurs, which causes oncogenic mutations and chromosome rearrangements. However, AID occupancy does not directly correlate with DNA damage, suggesting that factors beyond AID association contribute to mutation targeting. CSR and SHM are regulated by phosphorylation on AID serine38 (pS38), but the role of pS38 in off-target activity has not been evaluated. We determined that lithium, a clinically used therapeutic, induced high AID pS38 levels. Using lithium and an AID-S38 phospho mutant, we compared the role of pS38 in AID activity at the Ig switch region and off-target Myc gene. We found that deficient pS38 abated AID chromatin association and CSR but not mutation at Myc. Enhanced pS38 elevated Myc translocation and mutation frequency but not CSR or Ig switch region mutation. Thus, AID activity can be differentially targeted by phosphorylation to induce oncogenic lesions.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| |
Collapse
|
205
|
Abe K, Takamatsu T, Sato T. Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 2017; 45:6669-6683. [PMID: 28535266 PMCID: PMC5499854 DOI: 10.1093/nar/gkx466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5΄-ACAGATAA/AGCTGTAT-3΄; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3΄-overhanging AA and TT dinucleotides for rejoining the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. These results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Takuo Takamatsu
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
206
|
Feng YL, Xiang JF, Liu SC, Guo T, Yan GF, Feng Y, Kong N, Li HD, Huang Y, Lin H, Cai XJ, Xie AY. H2AX facilitates classical non-homologous end joining at the expense of limited nucleotide loss at repair junctions. Nucleic Acids Res 2017; 45:10614-10633. [PMID: 28977657 PMCID: PMC5737864 DOI: 10.1093/nar/gkx715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
Phosphorylated histone H2AX, termed 'γH2AX', mediates the chromatin response to DNA double strand breaks (DSBs) in mammalian cells. H2AX deficiency increases the numbers of unrepaired DSBs and translocations, which are partly associated with defects in non-homologous end joining (NHEJ) and contributing to genomic instability in cancer. However, the role of γH2AX in NHEJ of general DSBs has yet to be clearly defined. Here, we showed that despite little effect on overall NHEJ efficiency, H2AX deficiency causes a surprising bias towards accurate NHEJ and shorter deletions in NHEJ products. By analyzing CRISPR/Cas9-induced NHEJ and by using a new reporter for mutagenic NHEJ, we found that γH2AX, along with its interacting protein MDC1, is required for efficient classical NHEJ (C-NHEJ) but with short deletions and insertions. Epistasis analysis revealed that ataxia telangiectasia mutated (ATM) and the chromatin remodeling complex Tip60/TRRAP/P400 are essential for this H2AX function. Taken together, these data suggest that a subset of DSBs may require γH2AX-mediated short-range nucleosome repositioning around the breaks to facilitate C-NHEJ with loss of a few extra nucleotides at NHEJ junctions. This may prevent outcomes such as non-repair and translocations, which are generally more destabilizing to genomes than short deletions and insertions from local NHEJ.
Collapse
Affiliation(s)
- Yi-Li Feng
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ji-Feng Xiang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Si-Cheng Liu
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Tao Guo
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Guo-Fang Yan
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Na Kong
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Hao-Dan Li
- Shurui Tech Ltd, Hangzhou, Zhejiang 310005, China
| | - Yang Huang
- Shurui Tech Ltd, Hangzhou, Zhejiang 310005, China
| | - Hui Lin
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China
| | - Xiu-Jun Cai
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China
| | - An-Yong Xie
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310019, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
207
|
PAXX and Xlf interplay revealed by impaired CNS development and immunodeficiency of double KO mice. Cell Death Differ 2017; 25:444-452. [PMID: 29077092 DOI: 10.1038/cdd.2017.184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
The repair of DNA double-stranded breaks (DNAdsb) through non-homologous end joining (NHEJ) is a prerequisite for the proper development of the central nervous system and the adaptive immune system. Yet, mice with Xlf or PAXX loss of function are viable and present with very mild immune phenotypes, although their lymphoid cells are sensitive to ionizing radiation attesting for the role of these factors in NHEJ. In contrast, we show here that mice defective for both Xlf and PAXX are embryonically lethal owing to a massive apoptosis of post-mitotic neurons, a situation reminiscent to XRCC4 or DNA Ligase IV KO conditions. The development of the adaptive immune system in Xlf-/-PAXX-/- E18.5 embryos is severely affected with the block of B- and T-cell maturation at the stage of IgH and TCRβ gene rearrangements, respectively. This damaging phenotype highlights the functional nexus between Xlf and PAXX, which is critical for the completion of NHEJ-dependent mechanisms during mouse development.
Collapse
|
208
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
209
|
Abstract
Genetic abnormalities are present in all tumor types, although the frequency and type can vary. Chromosome abnormalities include highly aberrant structures, particularly chromothriptic chromosomes. The generation of massive sequencing data has illuminated the scope of the mutational burden in cancer genomes, identifying patterns of mutations (mutation signatures), which have the potential to shed light on the relatedness and etiologies of cancers and impact therapy response. Some mutation patterns are clearly attributable to disruptions in pathways that maintain genomic integrity. Here we review recent advances in our understanding of genetic changes occurring in cancers and the roles of genome maintenance pathways.
Collapse
Affiliation(s)
- Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
210
|
Verkoczy L, Alt FW, Tian M. Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies. Immunol Rev 2017; 275:89-107. [PMID: 28133799 DOI: 10.1111/imr.12505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major challenge for HIV-1 vaccine research is developing a successful immunization approach for inducing broadly neutralizing antibodies (bnAbs). A key shortcoming in meeting this challenge has been the lack of animal models capable of identifying impediments limiting bnAb induction and ranking vaccine strategies for their ability to promote bnAb development. Since 2010, immunoglobulin knockin (KI) technology, involving inserting functional rearranged human variable exons into the mouse IgH and IgL loci has been used to express bnAbs in mice. This approach has allowed immune tolerance mechanisms limiting bnAb production to be elucidated and strategies to overcome such limitations to be evaluated. From these studies, along with the wealth of knowledge afforded by analyses of recombinant Ig-based bnAb structures, it became apparent that key functional features of bnAbs often are problematic for their elicitation in mice by classic vaccine paradigms, necessitating more iterative testing of new vaccine concepts. In this regard, bnAb KI models expressing deduced precursor V(D)J rearrangements of mature bnAbs or unrearranged germline V, D, J segments (that can be assembled into variable region exons that encode bnAb precursors), have been engineered to evaluate novel immunogens/regimens for effectiveness in driving bnAb responses. One promising approach emerging from such studies is the ability of sequentially administered, modified immunogens (designed to bind progressively more mature bnAb precursors) to initiate affinity maturation. Here, we review insights gained from bnAb KI studies regarding the regulation and induction of bnAbs, and discuss new Ig KI methodologies to manipulate the production and/or expression of bnAbs in vivo, to further facilitate vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Departments of Medicine and Pathology, Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
211
|
Hsu E. Assembly and Expression of Shark Ig Genes. THE JOURNAL OF IMMUNOLOGY 2017; 196:3517-23. [PMID: 27183649 DOI: 10.4049/jimmunol.1600164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203
| |
Collapse
|
212
|
Xing M, Bjørås M, Daniel JA, Alt FW, Oksenych V. Synthetic lethality between murine DNA repair factors XLF and DNA-PKcs is rescued by inactivation of Ku70. DNA Repair (Amst) 2017; 57:133-138. [PMID: 28759779 PMCID: PMC5584571 DOI: 10.1016/j.dnarep.2017.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/25/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are recognized and repaired by the Classical Non-Homologous End-Joining (C-NHEJ) and Homologous Recombination pathways. C-NHEJ includes the core Ku70 and Ku80 (or Ku86) heterodimer that binds DSBs and thus promotes recruitment of accessory downstream NHEJ factors XLF, PAXX, DNA-PKcs, Artemis and other core subunits, XRCC4 and DNA Ligase 4 (Lig4). In the absence of core C-NHEJ factors, DNA repair can be performed by Alternative End-Joining, which likely depends on DNA Ligase 1 and DNA Ligase 3. Genetic inactivation of C-NHEJ factors, such as Ku70, Ku80, XLF, PAXX and DNA-PKcs results in viable mice showing increased levels of genomic instability and sensitivity to DSBs. Knockouts of XRCC4 or Lig4, on the other hand, as well as combined inactivation of XLF and DNA-PKcs, or XLF and PAXX, result in late embryonic lethality in mice, which in most cases correlate with severe apoptosis in the central nervous system. Here, we demonstrate that inactivation of the Ku70 gene rescues the synthetic lethality between XLF and DNA-PKcs, resulting in triple knockout mice that are indistinguishable from Ku70-deficient littermates by size or levels of genomic instability. Moreover, we find that combined inactivation of Ku70 and XLF results in viable mice. Together, these findings suggest that Ku70 is epistatic with XLF and DNA-PKcs and support a model in which inactivation of Ku70 allows DNA lesions to become accessible to alternative DNA repair pathways.
Collapse
Affiliation(s)
- Mengtan Xing
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Laboratory Center, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Magnar Bjørås
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Laboratory Center, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Jeremy A Daniel
- The NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Valentyn Oksenych
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Laboratory Center, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; The NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, United States; St. Olavs Hospital, Trondheim University Hospital, Clinic of Medicine, Postboks 3250 Sluppen, 7006 Trondheim, Norway.
| |
Collapse
|
213
|
Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2017; 114:8614-8619. [PMID: 28747530 DOI: 10.1073/pnas.1709203114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variable regions of Ig chains provide the antigen recognition portion of B-cell receptors and derivative antibodies. Ig heavy-chain variable region exons are assembled developmentally from V, D, J gene segments. Each variable region contains three antigen-contacting complementarity-determining regions (CDRs), with CDR1 and CDR2 encoded by the V segment and CDR3 encoded by the V(D)J junction region. Antigen-stimulated germinal center (GC) B cells undergo somatic hypermutation (SHM) of V(D)J exons followed by selection for SHMs that increase antigen-binding affinity. Some HIV-1-infected human subjects develop broadly neutralizing antibodies (bnAbs), such as the potent VRC01-class bnAbs, that neutralize diverse HIV-1 strains. Mature VRC01-class bnAbs, including VRC-PG04, accumulate very high SHM levels, a property that hinders development of vaccine strategies to elicit them. Because many VRC01-class bnAb SHMs are not required for broad neutralization, high overall SHM may be required to achieve certain functional SHMs. To elucidate such requirements, we used a V(D)J passenger allele system to assay, in mouse GC B cells, sequence-intrinsic SHM-targeting rates of nucleotides across substrates representing maturation stages of human VRC-PG04. We identify rate-limiting SHM positions for VRC-PG04 maturation, as well as SHM hotspots and intrinsically frequent deletions associated with SHM. We find that mature VRC-PG04 has low SHM capability due to hotspot saturation but also demonstrate that generation of new SHM hotspots and saturation of existing hotspot regions (e.g., CDR3) does not majorly influence intrinsic SHM in unmutated portions of VRC-PG04 progenitor sequences. We discuss implications of our findings for bnAb affinity maturation mechanisms.
Collapse
|
214
|
Abstract
DNA double-strand breaks (DSBs) serve as obligatory intermediates for Ig heavy chain (Igh) class switch recombination (CSR). The mechanisms by which DSBs are resolved to promote long-range DNA end-joining while suppressing genomic instability inherently associated with DSBs are yet to be fully elucidated. Here, we use a targeted short-hairpin RNA screen in a B-cell lymphoma line to identify the BRCT-domain protein BRIT1 as an effector of CSR. We show that conditional genetic deletion of BRIT1 in mice leads to a marked increase in unrepaired Igh breaks and a significant reduction in CSR in ex vivo activated splenic B cells. We find that the C-terminal tandem BRCT domains of BRIT1 facilitate its interaction with phosphorylated H2AX and that BRIT1 is recruited to the Igh locus in an activation-induced cytidine deaminase (AID) and H2AX-dependent fashion. Finally, we demonstrate that depletion of another BRCT-domain protein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect over what is observed upon loss of either protein alone. Our results identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-domain proteins contribute to optimal resolution of AID-induced DSBs.
Collapse
|
215
|
Seol JH, Shim EY, Lee SE. Microhomology-mediated end joining: Good, bad and ugly. Mutat Res 2017; 809:81-87. [PMID: 28754468 DOI: 10.1016/j.mrfmmm.2017.07.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSBs) are induced by a variety of genotoxic agents, including ionizing radiation and chemotherapy drugs for treating cancers. The elimination of DSBs proceeds via distinctive error-free and error-prone pathways. Repair by homologous recombination (HR) is largely error-free and mediated by RAD51/BRCA2 gene products. Classical non-homologous end joining (C-NHEJ) requires the Ku heterodimer and can efficiently rejoin breaks, with occasional loss or gain of DNA information. Recently, evidence has unveiled another DNA end-joining mechanism that is independent of recombination factors and Ku proteins, termed alternative non-homologous end joining (A-NHEJ). While A-NHEJ-mediated repair does not require homology, in a subtype of A-NHEJ, DSB breaks are sealed by microhomology (MH)-mediated base-pairing of DNA single strands, followed by nucleolytic trimming of DNA flaps, DNA gap filling, and DNA ligation, yielding products that are always associated with DNA deletion. This highly error-prone DSB repair pathway is termed microhomology-mediated end joining (MMEJ). Dissecting the mechanisms of MMEJ is of great interest because of its potential to destabilize the genome through gene deletions and chromosomal rearrangements in cells deficient in canonical repair pathways, including HR and C-NHEJ. In addition, evidence now suggests that MMEJ plays a physiological role in normal cells.
Collapse
Affiliation(s)
- Ja-Hwan Seol
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
216
|
Arya R, Bassing CH. V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends Genet 2017; 33:479-489. [PMID: 28532625 PMCID: PMC5499712 DOI: 10.1016/j.tig.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.
Collapse
Affiliation(s)
- Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
217
|
Abstract
DNA-dependent protein kinase (DNA-PK) is a large protein complex central to the nonhomologous end joining (NHEJ) DNA-repair pathway. It comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer of DNA-binding proteins Ku70 and Ku80. Here, we report the cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs at 4.4-Å resolution and the DNA-PK holoenzyme at 5.8-Å resolution. The DNA-PKcs structure contains three distinct segments: the N-terminal region with an arm and a bridge, the circular cradle, and the head that includes the kinase domain. Two perpendicular apertures exist in the structure, which are sufficiently large for the passage of dsDNA. The DNA-PK holoenzyme cryo-EM map reveals density for the C-terminal globular domain of Ku80 that interacts with the arm of DNA-PKcs. The Ku80-binding site is adjacent to the previously identified density for the DNA-binding region of the Ku70/Ku80 complex, suggesting concerted DNA interaction by DNA-PKcs and the Ku complex.
Collapse
|
218
|
Lim J, Giri PK, Kazadi D, Laffleur B, Zhang W, Grinstein V, Pefanis E, Brown LM, Ladewig E, Martin O, Chen Y, Rabadan R, Boyer F, Rothschild G, Cogné M, Pinaud E, Deng H, Basu U. Nuclear Proximity of Mtr4 to RNA Exosome Restricts DNA Mutational Asymmetry. Cell 2017; 169:523-537.e15. [PMID: 28431250 DOI: 10.1016/j.cell.2017.03.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/19/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pankaj Kumar Giri
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Veronika Grinstein
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lewis M Brown
- Department of Biological Sciences, Quantitative Proteomics Center, Columbia University, New York, NY 10027, USA
| | - Erik Ladewig
- Departments of Systems Biology and Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ophélie Martin
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Raul Rabadan
- Departments of Systems Biology and Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - François Boyer
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michel Cogné
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Eric Pinaud
- Université de Limoges, Centre National de la Recherche Scientifique, CHU Limoges, CRIBL, UMR 7276, 87000 Limoges, France
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
219
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
220
|
Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017; 66:801-817. [PMID: 28622525 DOI: 10.1016/j.molcel.2017.05.015] [Citation(s) in RCA: 1332] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.
Collapse
Affiliation(s)
- Andrew N Blackford
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Stephen P Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
221
|
Schwertman P, Bekker-Jensen S, Mailand N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 2017; 17:379-94. [PMID: 27211488 DOI: 10.1038/nrm.2016.58] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability.
Collapse
Affiliation(s)
- Petra Schwertman
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
222
|
Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome 2017; 28:262-274. [DOI: 10.1007/s00335-017-9688-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/25/2017] [Indexed: 12/22/2022]
|
223
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
224
|
HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells. Leukemia 2017; 31:2515-2522. [PMID: 28360415 DOI: 10.1038/leu.2017.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
With combined antiretroviral therapy (cART), the risk for HIV-infected individuals to develop a non-Hodgkin lymphoma is diminished. However, the incidence of Burkitt lymphoma (BL) remains strikingly elevated. Most BL present a t(8;14) chromosomal translocation which must take place at a time of spatial proximity between the translocation partners. The two partner genes, MYC and IGH, were found colocalized only very rarely in the nuclei of normal peripheral blood B-cells examined using 3D-FISH while circulating B-cells from HIV-infected individuals whose exhibited consistently elevated levels of MYC-IGH colocalization. In vitro, incubating normal B-cells from healthy donors with a transcriptionally active form of the HIV-encoded Tat protein rapidly activated transcription of the nuclease-encoding RAG1 gene. This created DNA damage, including in the MYC gene locus which then moved towards the center of the nucleus where it sustainably colocalized with IGH up to 10-fold more frequently than in controls. In vivo, this could be sufficient to account for the elevated risk of BL-specific chromosomal translocations which would occur following DNA double strand breaks triggered by AID in secondary lymph nodes at the final stage of immunoglobulin gene maturation. New therapeutic attitudes can be envisioned to prevent BL in this high risk group.
Collapse
|
225
|
Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 2017; 542:489-493. [PMID: 28199309 PMCID: PMC5382874 DOI: 10.1038/nature21406] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients.
Collapse
|
226
|
Rommel PC, Oliveira TY, Nussenzweig MC, Robbiani DF. RAG1/2 induces genomic insertions by mobilizing DNA into RAG1/2-independent breaks. J Exp Med 2017; 214:815-831. [PMID: 28179379 PMCID: PMC5339680 DOI: 10.1084/jem.20161638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/23/2022] Open
Abstract
Rommel et al. reveal a novel RAG1/2-mediated insertion pathway, which has the potential to destabilize the lymphocyte genome and shares features with DNA insertions observed in human cancer. The RAG recombinase (RAG1/2) plays an essential role in adaptive immunity by mediating V(D)J recombination in developing lymphocytes. In contrast, aberrant RAG1/2 activity promotes lymphocyte malignancies by causing chromosomal translocations and DNA deletions at cancer genes. RAG1/2 can also induce genomic DNA insertions by transposition and trans-V(D)J recombination, but only few such putative events have been documented in vivo. We used next-generation sequencing techniques to examine chromosomal rearrangements in primary murine B cells and discovered that RAG1/2 causes aberrant insertions by releasing cleaved antibody gene fragments that subsequently reintegrate into DNA breaks induced on a heterologous chromosome. We confirmed that RAG1/2 also mobilizes genomic DNA into independent physiological breaks by identifying similar insertions in human lymphoma and leukemia. Our findings reveal a novel RAG1/2-mediated insertion pathway distinct from DNA transposition and trans-V(D)J recombination that destabilizes the genome and shares features with reported oncogenic DNA insertions.
Collapse
Affiliation(s)
- Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
227
|
Zan H, Tat C, Qiu Z, Taylor JR, Guerrero JA, Shen T, Casali P. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends to modulate antibody class-switch DNA recombination. Nat Commun 2017; 8:14244. [PMID: 28176781 PMCID: PMC5309807 DOI: 10.1038/ncomms14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Antibody class-switch DNA recombination (CSR) is initiated by AID-introduced DSBs in the switch (S) regions targeted for recombination, as effected by Ku70/Ku86-mediated NHEJ. Ku-deficient B cells, however, undergo (reduced) CSR through an alternative(A)-NHEJ pathway, which introduces microhomologies in S-S junctions. As microhomology-mediated end-joining requires annealing of single-strand DNA ends, we addressed the contribution of single-strand annealing factors HR Rad52 and translesion DNA polymerase θ to CSR. Compared with their Rad52+/+ counterparts, which display normal CSR, Rad52-/- B cells show increased CSR, fewer intra-Sμ region recombinations, no/minimal microhomologies in S-S junctions, decreased c-Myc/IgH translocations and increased Ku70/Ku86 recruitment to S-region DSB ends. Rad52 competes with Ku70/Ku86 for binding to S-region DSB ends. It also facilitates a Ku-independent DSB repair, which favours intra-S region recombination and mediates, particularly in Ku absence, inter-S-S recombination, as emphasized by the significantly greater CSR reduction in Rad52-/- versus Rad52+/+ B cells on Ku86 knockdown.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Connie Tat
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Zhifang Qiu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Julia R. Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Justin A. Guerrero
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Tian Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, UT Health Science Center, San Antonio, Texas 78229, USA
| |
Collapse
|
228
|
Bhargava R, Carson CR, Lee G, Stark JM. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency. Proc Natl Acad Sci U S A 2017; 114:728-733. [PMID: 28057860 PMCID: PMC5278456 DOI: 10.1073/pnas.1612204114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Caree R Carson
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Gabriella Lee
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010;
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
229
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
230
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
231
|
Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer. RESEARCH AND PERSPECTIVES IN NEUROSCIENCES 2017. [DOI: 10.1007/978-3-319-60192-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
232
|
Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Res Rev 2017; 33:76-88. [PMID: 27181190 DOI: 10.1016/j.arr.2016.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration - primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene - the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions.
Collapse
|
233
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
234
|
Vaidyanathan B, Chaudhry A, Yewdell WT, Angeletti D, Yen WF, Wheatley AK, Bradfield CA, McDermott AB, Yewdell JW, Rudensky AY, Chaudhuri J. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J Exp Med 2016; 214:197-208. [PMID: 28011866 PMCID: PMC5206498 DOI: 10.1084/jem.20160789] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Vaidyanathan et al. report that the environmental sensor aryl hydrocarbon receptor is inducibly expressed in B cells downstream of BCR signaling and that it controls B cell fates by negatively modulating class switching and plasma cell differentiation via aicda and prdm1, respectively. Generation of cellular heterogeneity is an essential feature of the adaptive immune system. This is best exemplified during humoral immune response when an expanding B cell clone assumes multiple cell fates, including class-switched B cells, antibody-secreting plasma cells, and memory B cells. Although each cell type is essential for immunity, their generation must be exquisitely controlled because a class-switched B cell cannot revert back to the parent isotype, and a terminally differentiated plasma cell cannot contribute to the memory pool. In this study, we show that an environmental sensor, the aryl hydrocarbon receptor (AhR) is highly induced upon B cell activation and serves a critical role in regulating activation-induced cell fate outcomes. We find that AhR negatively regulates class-switch recombination ex vivo by altering activation-induced cytidine deaminase expression. We further demonstrate that AhR suppresses class switching in vivo after influenza virus infection and immunization with model antigens. In addition, by regulating Blimp-1 expression via Bach2, AhR represses differentiation of B cells into plasmablasts ex vivo and antibody-secreting plasma cells in vivo. These experiments suggest that AhR serves as a molecular rheostat in B cells to brake the effector response, possibly to facilitate optimal recall responses. Thus, AhR might represent a novel molecular target for manipulation of B cell responses during vaccination.
Collapse
Affiliation(s)
- Bharat Vaidyanathan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Ashutosh Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Davide Angeletti
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Biochemistry, Cellular, and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Alexander Y Rudensky
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Howard Hughes Medical Institute, Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 .,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| |
Collapse
|
235
|
Wang Q, Kieffer-Kwon KR, Oliveira TY, Mayer CT, Yao K, Pai J, Cao Z, Dose M, Casellas R, Jankovic M, Nussenzweig MC, Robbiani DF. The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med 2016; 214:49-58. [PMID: 27998928 PMCID: PMC5206505 DOI: 10.1084/jem.20161649] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023] Open
Abstract
Wang et al. show that antibody gene deamination by activation-induced cytidine deaminase (AID) is restricted to a short time window in early G1 as a result of AID’s transient nuclear localization and accessibility of the target sites. Activation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic. Here, we show that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm. Consistent with this observation, the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G1 after chromosomes decondense. Altering the timing of cell cycle–regulated AID nuclear residence increases DNA damage at off-target sites. Thus, the cell cycle–controlled breakdown and reassembly of the nuclear membrane and the restoration of transcription after mitosis constitute an essential time window for AID-induced deamination, and provide a novel DNA damage mechanism restricted to early G1.
Collapse
Affiliation(s)
- Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Kaihui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Zhen Cao
- Weill Cornell Medical College and Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Marei Dose
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 .,Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
236
|
Lio CW, Zhang J, González-Avalos E, Hogan PG, Chang X, Rao A. Tet2 and Tet3 cooperate with B-lineage transcription factors to regulate DNA modification and chromatin accessibility. eLife 2016; 5. [PMID: 27869616 PMCID: PMC5142813 DOI: 10.7554/elife.18290] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022] Open
Abstract
Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine, facilitating DNA demethylation and generating new epigenetic marks. Here we show that concomitant loss of Tet2 and Tet3 in mice at early B cell stage blocked the pro- to pre-B cell transition in the bone marrow, decreased Irf4 expression and impaired the germline transcription and rearrangement of the Igκ locus. Tet2/3-deficient pro-B cells showed increased CpG methylation at the Igκ 3' and distal enhancers that was mimicked by depletion of E2A or PU.1, as well as a global decrease in chromatin accessibility at enhancers. Importantly, re-expression of the Tet2 catalytic domain in Tet2/3-deficient B cells resulted in demethylation of the Igκ enhancers and restored their chromatin accessibility. Our data suggest that TET proteins and lineage-specific transcription factors cooperate to influence chromatin accessibility and Igκ enhancer function by modulating the modification status of DNA.
Collapse
Affiliation(s)
- Chan-Wang Lio
- Division of Signaling and Gene Expression, San Diego, United States
| | - Jiayuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Patrick G Hogan
- Division of Signaling and Gene Expression, San Diego, United States
| | - Xing Chang
- Division of Signaling and Gene Expression, San Diego, United States.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sanford Consortium for Regenerative Medicine, San Diego, United States
| | - Anjana Rao
- Division of Signaling and Gene Expression, San Diego, United States.,Sanford Consortium for Regenerative Medicine, San Diego, United States.,Department of Pharmacology, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| |
Collapse
|
237
|
Hartlerode AJ, Willis NA, Rajendran A, Manis JP, Scully R. Complex Breakpoints and Template Switching Associated with Non-canonical Termination of Homologous Recombination in Mammalian Cells. PLoS Genet 2016; 12:e1006410. [PMID: 27832076 PMCID: PMC5104497 DOI: 10.1371/journal.pgen.1006410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
A proportion of homologous recombination (HR) events in mammalian cells resolve by "long tract" gene conversion, reflecting copying of several kilobases from the donor sister chromatid prior to termination. Cells lacking the major hereditary breast/ovarian cancer predisposition genes, BRCA1 or BRCA2, or certain other HR-defective cells, reveal a bias in favor of long tract gene conversion, suggesting that this aberrant HR outcome might be connected with genomic instability. If termination of gene conversion occurs in regions lacking homology with the second end of the break, the normal mechanism of HR termination by annealing (i.e., homologous pairing) is not available and termination must occur by as yet poorly defined non-canonical mechanisms. Here we use a previously described HR reporter to analyze mechanisms of non-canonical termination of long tract gene conversion in mammalian cells. We find that non-canonical HR termination can occur in the absence of the classical non-homologous end joining gene XRCC4. We observe obligatory use of microhomology (MH)-mediated end joining and/or nucleotide addition during rejoining with the second end of the break. Notably, non-canonical HR termination is associated with complex breakpoints. We identify roles for homology-mediated template switching and, potentially, MH-mediated template switching/microhomology-mediated break-induced replication, in the formation of complex breakpoints at sites of non-canonical HR termination. This work identifies non-canonical HR termination as a potential contributor to genomic instability and to the formation of complex breakpoints in cancer.
Collapse
Affiliation(s)
- Andrea J. Hartlerode
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas A. Willis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anbazhagan Rajendran
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - John P. Manis
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
238
|
Tian M, Cheng C, Chen X, Duan H, Cheng HL, Dao M, Sheng Z, Kimble M, Wang L, Lin S, Schmidt SD, Du Z, Joyce MG, Chen Y, DeKosky BJ, Chen Y, Normandin E, Cantor E, Chen RE, Doria-Rose NA, Zhang Y, Shi W, Kong WP, Choe M, Henry AR, Laboune F, Georgiev IS, Huang PY, Jain S, McGuire AT, Georgeson E, Menis S, Douek DC, Schief WR, Stamatatos L, Kwong PD, Shapiro L, Haynes BF, Mascola JR, Alt FW. Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell 2016; 166:1471-1484.e18. [PMID: 27610571 DOI: 10.1016/j.cell.2016.07.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/20/2016] [Indexed: 11/15/2022]
Abstract
The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120. We now describe a mouse vaccination model that allows a germline human IGHV1-2(∗)02 segment to undergo normal V(D)J recombination and, thereby, leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. When sequentially immunized with modified gp120 glycoproteins designed to engage VRC01 germline and intermediate antibodies, IGHV1-2(∗)02-rearranging mice, which also express a VRC01-antibody precursor light chain, can support the affinity maturation of VRC01 precursor antibodies into HIV-neutralizing antibody lineages.
Collapse
Affiliation(s)
- Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hwei-Ling Cheng
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Dao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Michael Kimble
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sherry Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Zhou Du
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Yiwei Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon J DeKosky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Yimin Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Elizabeth Cantor
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Pei-Yi Huang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Suvi Jain
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Eric Georgeson
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - William R Schief
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA 02129, USA; Harvard University, Cambridge, MA 02129, USA
| | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
239
|
Ioannidou A, Goulielmaki E, Garinis GA. DNA Damage: From Chronic Inflammation to Age-Related Deterioration. Front Genet 2016; 7:187. [PMID: 27826317 PMCID: PMC5078321 DOI: 10.3389/fgene.2016.00187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
To lessen the "wear and tear" of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression.
Collapse
Affiliation(s)
- Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HellasHeraklion, Greece; Department of Biology, University of CreteHeraklion, Greece
| |
Collapse
|
240
|
Chen Z, Gowan K, Leach SM, Viboolsittiseri SS, Mishra AK, Kadoishi T, Diener K, Gao B, Jones K, Wang JH. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing. BMC Genomics 2016; 17:823. [PMID: 27769169 PMCID: PMC5075209 DOI: 10.1186/s12864-016-3153-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023] Open
Abstract
Background Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Results Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. Conclusions We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3153-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.,Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Ameet K Mishra
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Tanya Kadoishi
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Katrina Diener
- Genomic and Microarray Core, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bifeng Gao
- Genomic and Microarray Core, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E, 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
241
|
Immune and inflammatory responses to DNA damage in cancer and aging. Mech Ageing Dev 2016; 165:10-16. [PMID: 27720808 DOI: 10.1016/j.mad.2016.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Genome instability is a hallmark of both cancer and aging processes. Beyond cell-autonomous responses, it is known that DNA damage also elicits systemic mechanisms aimed at favoring survival and damaged cells clearance. Among these mechanisms, immune activation and NF-κB-mediated inflammation play central roles in organismal control of DNA damage. We focus herein on the different experimental evidences that have allowed gaining mechanistic insight about this relationship. We also describe the functional consequences of defective immune function in cancer development and age-related alterations. Finally, we discuss different intervention strategies based on enhancing immunity or on the modulation of the inflammatory response to improve organism homeostasis in cancer and aging.
Collapse
|
242
|
Delbridge ARD, Pang SHM, Vandenberg CJ, Grabow S, Aubrey BJ, Tai L, Herold MJ, Strasser A. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice. J Exp Med 2016; 213:2039-48. [PMID: 27621418 PMCID: PMC5030795 DOI: 10.1084/jem.20150477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/08/2016] [Indexed: 01/29/2023] Open
Abstract
Delbridge, Strasser, and collaborators show that potentially oncogenic RAG1/2-dependent DNA lesions trigger apoptosis through the induction of BIM, which functions as an efficient tumor suppressor. Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers.
Collapse
Affiliation(s)
- Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, the Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
243
|
PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line. Proc Natl Acad Sci U S A 2016; 113:10619-24. [PMID: 27601633 DOI: 10.1073/pnas.1611882113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway. Core C-NHEJ factors, such as XRCC4, are required for joining DSB intermediates of the G1 phase-specific V(D)J recombination reaction in progenitor lymphocytes. Core factors also contribute to joining DSBs in cycling mature B-lineage cells, including DSBs generated during antibody class switch recombination (CSR) and DSBs generated by ionizing radiation. The XRCC4-like-factor (XLF) C-NHEJ protein is dispensable for V(D)J recombination in normal cells, but because of functional redundancy, it is absolutely required for this process in cells deficient for the ataxia telangiectasia-mutated (ATM) DSB response factor. The recently identified paralogue of XRCC4 and XLF (PAXX) factor has homology to these two proteins and variably contributes to ionizing radiation-induced DSB repair in human and chicken cells. We now report that PAXX is dispensable for joining V(D)J recombination DSBs in G1-arrested mouse pro-B-cell lines, dispensable for joining CSR-associated DSBs in a cycling mouse B-cell line, and dispensable for normal ionizing radiation resistance in both G1-arrested and cycling pro-B lines. However, we find that combined deficiency for PAXX and XLF in G1-arrested pro-B lines abrogates DSB joining during V(D)J recombination and sensitizes the cells to ionizing radiation exposure. Thus, PAXX provides core C-NHEJ factor-associated functions in the absence of XLF and vice versa in G1-arrested pro-B-cell lines. Finally, we also find that PAXX deficiency has no impact on V(D)J recombination DSB joining in ATM-deficient pro-B lines. We discuss implications of these findings with respect to potential PAXX and XLF functions in C-NHEJ.
Collapse
|
244
|
Frazzi R, Auffray C, Ferrari A, Filippini P, Rutella S, Cesario A. Integrative systems medicine approaches to identify molecular targets in lymphoid malignancies. J Transl Med 2016; 14:252. [PMID: 27580852 PMCID: PMC5007715 DOI: 10.1186/s12967-016-1018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022] Open
Abstract
Although survival rates for lymphoproliferative disorders are steadily increasing both in the US and in Europe, there is need for optimizing front-line therapies and developing more effective salvage strategies. Recent advances in molecular genetics have highlighted the biological diversity of lymphoproliferative disorders. In particular, integrative approaches including whole genome sequencing, whole exome sequencing, and transcriptome or RNA sequencing have been instrumental to the identification of molecular targets for treatment. Herein, we will discuss how genomic, epigenomic and proteomic approaches in lymphoproliferative disorders have supported the discovery of molecular lesions and their therapeutic targeting in the clinic.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, IRCCS "Arcispedale S. Maria Nuova", Reggio Emilia, Italy
| | - Charles Auffray
- European Institute for Systems Biology and Medicine (EISBM), Paris, France
| | - Angela Ferrari
- Division of Hematology, IRCCS "Arcispedale S. Maria Nuova", Reggio Emilia, Italy
| | - Perla Filippini
- Division of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar
| | - Sergio Rutella
- John van Geest Cancer Research Centre, College of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK.
| | - Alfredo Cesario
- Clinical Governance and International Research Activities, Fondazione Policlinico Gemelli, Rome, Italy.,Division of Thoracic Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,European Association of Systems Medicine, Aachen, Germany
| |
Collapse
|
245
|
Zhao L, Frock RL, Du Z, Hu J, Chen L, Krangel MS, Alt FW. Orientation-specific RAG activity in chromosomal loop domains contributes to Tcrd V(D)J recombination during T cell development. J Exp Med 2016; 213:1921-36. [PMID: 27526713 PMCID: PMC4995090 DOI: 10.1084/jem.20160670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
T cell antigen receptor δ (Tcrd) variable region exons are assembled by RAG-initiated V(D)J recombination events in developing γδ thymocytes. Here, we use linear amplification-mediated high-throughput genome-wide translocation sequencing (LAM-HTGTS) to map hundreds of thousands of RAG-initiated Tcrd D segment (Trdd1 and Trdd2) rearrangements in CD4(-)CD8(-) double-negative thymocyte progenitors differentiated in vitro from bone marrow-derived hematopoietic stem cells. We find that Trdd2 joins directly to Trdv, Trdd1, and Trdj segments, whereas Trdd1 joining is ordered with joining to Trdd2, a prerequisite for further rearrangement. We also find frequent, previously unappreciated, Trdd1 and Trdd2 rearrangements that inactivate Tcrd, including sequential rearrangements from V(D)J recombination signal sequence fusions. Moreover, we find dozens of RAG off-target sequences that are generated via RAG tracking both upstream and downstream from the Trdd2 recombination center across the Tcrd loop domain that is bounded by the upstream INT1-2 and downstream TEA elements. Disruption of the upstream INT1-2 boundary of this loop domain allows spreading of RAG on- and off-target activity to the proximal Trdv domain and, correspondingly, shifts the Tcrd V(D)J recombination landscape by leading to predominant V(D)J joining to a proximal Trdv3 pseudogene that lies just upstream of the normal boundary.
Collapse
Affiliation(s)
- Lijuan Zhao
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Richard L Frock
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Jiazhi Hu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
246
|
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 2016; 353:science.aaf8729. [PMID: 27492474 DOI: 10.1126/science.aaf8729] [Citation(s) in RCA: 936] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
The generation of genetic variation (somatic hypermutation) is an essential process for the adaptive immune system in vertebrates. We demonstrate the targeted single-nucleotide substitution of DNA using hybrid vertebrate and bacterial immune systems components. Nuclease-deficient type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) and the activation-induced cytidine deaminase (AID) ortholog PmCDA1 were engineered to form a synthetic complex (Target-AID) that performs highly efficient target-specific mutagenesis. Specific point mutation was induced primarily at cytidines within the target range of five bases. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced. Although combination of nickase Cas9(D10A) and the deaminase was highly effective in yeasts, it also induced insertion and deletion (indel) in mammalian cells. Use of uracil DNA glycosylase inhibitor suppressed the indel formation and improved the efficiency.
Collapse
Affiliation(s)
- Keiji Nishida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takayuki Arazoe
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan. Institute for Advanced Bioscience, Keio University, Tsuruoka, Yamagata, Japan. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Satomi Banno
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Mika Kakimoto
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Mayura Tabata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masao Mochizuki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Aya Miyabe
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Michihiro Araki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kiyotaka Y Hara
- Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Zenpei Shimatani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
247
|
Heinäniemi M, Vuorenmaa T, Teppo S, Kaikkonen MU, Bouvy-Liivrand M, Mehtonen J, Niskanen H, Zachariadis V, Laukkanen S, Liuksiala T, Teittinen K, Lohi O. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. eLife 2016; 5. [PMID: 27431763 PMCID: PMC4951197 DOI: 10.7554/elife.13087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes.
Collapse
Affiliation(s)
- Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Vuorenmaa
- School of Medicine, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- School of Medicine, University of Tampere, Tampere, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Mehtonen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olli Lohi
- School of Medicine, University of Tampere, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| |
Collapse
|
248
|
Pérez-García A, Pérez-Durán P, Wossning T, Sernandez IV, Mur SM, Cañamero M, Real FX, Ramiro AR. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway. EMBO Mol Med 2016; 7:1327-36. [PMID: 26282919 PMCID: PMC4604686 DOI: 10.15252/emmm.201505348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.
Collapse
Affiliation(s)
- Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Thomas Wossning
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isora V Sernandez
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
249
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
250
|
Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells. Cell 2016; 164:644-55. [PMID: 26871630 DOI: 10.1016/j.cell.2015.12.039] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.
Collapse
|