201
|
Palmesino E, Moepps B, Gierschik P, Thelen M. Differences in CXCR4-mediated signaling in B cells. Immunobiology 2006; 211:377-89. [PMID: 16716807 DOI: 10.1016/j.imbio.2005.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 01/09/2023]
Abstract
Among all chemokine receptors CXCR4 possesses a unique response profile and distinguishes itself through a prolonged signaling capacity. Here, we investigated the signaling capacity of CXCR4 to its so far known unique ligand CXCL12 in B cell lines and primary CD19(+) B lymphocytes. During lymphopoiesis, CXCR4 is continuously expressed on the surface of B cells. However, its signaling profile changes inasmuch preB and proB cells migrate towards CXCL12, mobilize intracellular calcium and activate the small GTPases Rac1 and Cdc42, whereas mature B cells do not show these responses, albeit the cells retain the capability to migrate in response to CXCL13 and CCL21. By contrast, stimulation of B cells with CXCL12 at all stages of development results in the activation of the MAP-kinase cascade and in rapid CXCR4 internalization. The pathways leading to ERK1/2 activation are different in preB and mature B cell lines. In either case, ERK1/2 activation is pertussis toxin sensitive, but only in mature B-cells inhibition of PI3-kinase causes an almost complete block of ERK1/2 activation. Taken together, the results show that CXCR4 changes its coupling to downstream signal-transduction pathways in B cells, suggesting that receptor activity may depend on accessory proteins.
Collapse
Affiliation(s)
- Elena Palmesino
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | | | | | | |
Collapse
|
202
|
Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE. Molecular mechanism of 7TM receptor activation--a global toggle switch model. Annu Rev Pharmacol Toxicol 2006; 46:481-519. [PMID: 16402913 DOI: 10.1146/annurev.pharmtox.46.120604.141218] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multitude of chemically highly different agonists for 7TM receptors apparently do not share a common binding mode or active site but nevertheless act through induction of a common molecular activation mechanism. A global toggle switch model is proposed for this activation mechanism to reconcile the accumulated biophysical data supporting an outward rigid-body movement of the intracellular segments, as well as the recent data derived from activating metal ion sites and tethered ligands, which suggests an opposite, inward movement of the extracellular segments of the transmembrane helices. According to this model, a vertical see-saw movement of TM-VI-and to some degree TM-VII-around a pivot corresponding to the highly conserved prolines will occur during receptor activation, which may involve the outer segment of TM-V in an as yet unclear fashion. Small-molecule agonists can stabilize such a proposed active conformation, where the extracellular segments of TM-VI and -VII are bent inward toward TM-III, by acting as molecular glue deep in the main ligand-binding pocket between the helices, whereas larger agonists, peptides, and proteins can stabilize a similar active conformation by acting as Velcro at the extracellular ends of the helices and the connecting loops.
Collapse
Affiliation(s)
- Thue W Schwartz
- Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, and 7TM Pharma A/S, Hørsholm, Denmark.
| | | | | | | | | |
Collapse
|
203
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed Engl 2006; 45:2348-68. [PMID: 16557636 PMCID: PMC2842921 DOI: 10.1002/anie.200502794] [Citation(s) in RCA: 696] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
204
|
Kenakin T. Testing for inverse agonism with constitutive receptor systems. ACTA ACUST UNITED AC 2006; Chapter 9:Unit9.5. [PMID: 22294179 DOI: 10.1002/0471141755.ph0905s32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit discusses the use of constitutive 7-transmembrane/G protein coupled receptor (7TM/GPCR) activity for screening new drug entities. Following an introduction to constitutive 7TM/GPCR activity, the unit centers on the three basic components of a constitutive screening system: the receptor, the receptor coupling components (G protein), and the response reporting system. The design of specific assays to detect inverse agonism and the application of such systems to drug screening are also discussed. Finally, the relative advantages and disadvantages of inverse agonists as therapeutic agents are considered.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina, USA
| |
Collapse
|
205
|
Yao BB, Witte DG, Miller TR, Carr TL, Kang CH, Cassar S, Faghih R, Bennani YL, Surber BW, Hancock AA, Esbenshade TA. Use of an inverse agonist radioligand [3H]A-317920 reveals distinct pharmacological profiles of the rat histamine H3 receptor. Neuropharmacology 2006; 50:468-78. [PMID: 16316670 DOI: 10.1016/j.neuropharm.2005.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/30/2022]
Abstract
Selective radioligands for histamine H(3) receptors have been used to characterize H(3) receptor pharmacology by radioligand binding assays and to determine H(3) receptor distribution by tissue autoradiography. Here we report the synthesis and receptor binding characterization of [(3)H]A-317920 (furan-2-carboxylic acid(2-[4-[3-([3,5-(3)H]4-cyclopropanecarbonyl-phenoxy)-propyl]-piperazin-1-yl]-1-methyl-2-oxo-ethyl)-amide), a high affinity inverse agonist radioligand for the rat H(3) receptor. The binding of [(3)H]A-317920 to rat cortical and cloned H(3) receptors revealed fast on- and slower off-rate kinetics with calculated K(d) values in agreement with those determined in saturation binding assays (0.2 nM for both receptors). Further, we compared [(3)H]A-317920 with the agonist [(3)H](N)-alpha-methylhistamine ([(3)H]NalphaMH) as radioligand tools to study receptor pharmacology. Agonists and antagonists displaced [(3)H]NalphaMH with one-site binding characteristics and Hill slopes approached unity. In contrast, although antagonists exhibited one-site binding, [(3)H]A-317920 displacement by agonists was best fit by two-site binding models, and the potencies of the high affinity, GDP-sensitive sites correlated with the potencies defined in [(3)H]NalphaMH binding. Unlike [(125)I]iodoproxyfan, [(3)H]A-317920 exhibits potent and selective binding to rat H(3) receptors with low binding to non-H(3) sites, including cytochrome P450. These findings show that [(3)H]A-317920 is a potent rat H(3) receptor antagonist radioligand and has utility for studying H(3) receptor pharmacology.
Collapse
Affiliation(s)
- B Bei Yao
- Neuroscience Disease Research, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006; 281:10856-64. [PMID: 16492667 DOI: 10.1074/jbc.m513380200] [Citation(s) in RCA: 357] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Howard Hughes Medical Institute, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Negus SS. Some implications of receptor theory for in vivo assessment of agonists, antagonists and inverse agonists. Biochem Pharmacol 2006; 71:1663-70. [PMID: 16460689 PMCID: PMC1866283 DOI: 10.1016/j.bcp.2005.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/28/2005] [Accepted: 12/29/2005] [Indexed: 02/05/2023]
Abstract
Drug effects can be classified into three major phenotypes: agonist, antagonist and inverse agonist. Agonist and inverse agonist effects are associated with receptor activation and inactivation, respectively, whereas antagonism implies that a drug produces no effect when administered alone but blocks the effects of agonists and inverse agonists. Attention has only recently begun to focus on the theoretical and clinical implications of inverse agonists, and studies of inverse agonism have also stimulated revisions in receptor theory. This commentary addresses two specific issues related to the application of receptor theory to studies of inverse agonists in vivo. First, principles of receptor theory suggest that increasing drug doses produce a graded pharmacological stimulus that is transduced by receptor-containing tissue into a biological response. However, assays vary in their ability to detect those responses, and any given assay provides only a narrow window on the full range of underlying drug effects. Consequently, in vivo assessment of inverse agonists will benefit from development of assays sensitive to graded inverse agonist effects. Second, detection of inverse agonist effects requires some preexisting level of receptor activity (or tone). This tone can result from at least two sources: (a) endogenous ligands for the receptor, or (b) constitutive receptor activity. Strategies for discriminating these two sources of tone will also contribute to the in vivo assessment of inverse agonist effects. Studies with intermediate efficacy ligands may be especially helpful in this regard, because their effects are differentially influenced by endogenous agonist tone versus constitutive receptor tone.
Collapse
Affiliation(s)
- S Stevens Negus
- Alcohol and Drug Abuse Research Center, 115 Mill Street, McLean Hospital, Harvard Medical School, Belmont, MA, United States.
| |
Collapse
|
208
|
Noeske T, Gutcaits A, Parsons C, Weil T. Allosteric Modulation of Family 3 GPCRs. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/qsar.200510139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
209
|
Ko MCH, Divin MF, Lee H, Woods JH, Traynor JR. Differential in vivo potencies of naltrexone and 6beta-naltrexol in the monkey. J Pharmacol Exp Ther 2006; 316:772-9. [PMID: 16258020 DOI: 10.1124/jpet.105.094409] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
6beta-Naltrexol is the major metabolite of the opioid receptor antagonist, naltrexone, in humans. However, there are no functional studies of 6beta-naltrexol in primates. The aim of this study was to compare the in vitro and in vivo potencies of naltrexone and 6beta-naltrexol in rhesus monkeys. Affinity and potency were determined using radioligand displacement and stimulation of 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding in monkey brain membranes. In vivo apparent pA(2) analysis was applied to compare the mu-opioid receptor (MOR) antagonist potency of both compounds in nondependent monkeys. In addition, the potencies of both compounds were determined in precipitating withdrawal manifested by increased respiratory parameters in acute morphine-dependent monkeys. In vitro assays revealed that naltrexone displayed 2-fold higher affinity and potency than 6beta-naltrexol for the MOR binding site and for MOR agonist-stimulated [(35)S]GTPgammaS binding, respectively. 6beta-Naltrexol (0.32-3.2 mg/kg) dose-dependently produced parallel rightward shifts of the dose-response curve of alfentanil-induced antinociception. Nevertheless, the apparent pA(2) value of 6beta-naltrexol (6.5) was 100-fold less potent than that of naltrexone (8.5) determined previously. 6beta-Naltrexol was also less potent than naltrexone in antagonizing other MOR-mediated effects including respiratory depression and itch/scratching. Naltrexone (0.0032-0.032 mg/kg) and 6beta-naltrexol (0.32-3.2 mg/kg) retained the same potency difference in precipitating withdrawal to a similar degree. Furthermore, 6beta-naltrexol failed to block naltrexone-precipitated withdrawal in morphine-dependent monkeys. These results indicate that naltrexone and 6beta-naltrexol display similar pharmacological actions with a large in vivo potency difference in monkeys such that 6beta-naltrexol may play a minimal role in the therapeutic or antagonist effects of naltrexone in primates.
Collapse
Affiliation(s)
- M C Holden Ko
- Department of Pharmacology, University of Michigan, Ann Arbor, 48109-0632, USA.
| | | | | | | | | |
Collapse
|
210
|
García-Borrón JC, Sánchez-Laorden BL, Jiménez-Cervantes C. Melanocortin-1 receptor structure and functional regulation. ACTA ACUST UNITED AC 2006; 18:393-410. [PMID: 16280005 DOI: 10.1111/j.1600-0749.2005.00278.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The melanogenic actions of the melanocortins are mediated by the melanocortin-1 receptor (MC1R). MC1R is a member of the G-protein-coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or alpha-melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist-independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.
Collapse
Affiliation(s)
- José C García-Borrón
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
211
|
Letavic MA, Barbier AJ, Dvorak CA, Carruthers NI. Recent medicinal chemistry of the histamine H3 receptor. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:181-206. [PMID: 16697898 DOI: 10.1016/s0079-6468(05)44405-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Michael A Letavic
- Johnson and Johnson Pharmaceutical Research and Development LLC, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
212
|
Abstract
This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca(2+) is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future.
Collapse
Affiliation(s)
- Stefan R Nahorski
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, Leicester LE1 9HN.
| |
Collapse
|
213
|
Abstract
Chemical signalling is the main mechanism by which biological function is controlled at all levels, from the single cell to the whole organism. Chemical recognition is the function of receptors, which, in addition to recognising endogenous chemical signals, are also the target of many important experimental and therapeutic drugs. Receptors, therefore, lie at the heart of pharmacology. This article describes the way in which the receptor concept originated early in the 20th century, and evolved through a highly innovative stage of quantitative theory based on chemical kinetics, to the point where receptors were first isolated and later cloned, until we now have a virtually complete catalogue of all the receptors present in the genome. Studies on signal transduction are revealing great complexity in the events linking ligand binding to the physiological or therapeutic response. Though some simple quantitative rules of 'receptor theory' are still useful, the current emphasis is on unravelling the pathways that link receptors to responses, and it will be some time before we know enough about them to embark on the next phase of 'receptor theory'.
Collapse
|
214
|
Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 2005; 26:625-30. [PMID: 16269190 DOI: 10.1016/j.tips.2005.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/15/2005] [Accepted: 10/11/2005] [Indexed: 11/26/2022]
Abstract
It is generally accepted that seven-transmembrane receptors have the capacity to regulate cellular signaling systems in the absence of occupancy by a ligand (i.e. the receptors display constitutive activity). Drugs can increase (agonists), decrease (inverse agonists) or not change (antagonists) receptor activity towards a cellular effector. Moreover, some drugs (protean ligands) have multiple pharmacological properties (e.g. agonism towards one response and inverse agonism towards another response coupled to the same receptor and measured from the same cells, simultaneously). In this article, we describe response-dependent constitutive activity and ligand pharmacology for 5-HT2A and 5-HT2C receptors in vitro. Moreover, we provide evidence that 5-HT2A and 5-HT2C receptor constitutive activity is physiologically relevant in vivo and suggest that strong consideration should be given to the impact of constitutive receptor activity on disease and the therapeutic potential of inverse agonism.
Collapse
Affiliation(s)
- Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
215
|
Abstract
Dietary calcium appears to play a pivotal role in the regulation of energy metabolism and obesity risk. High calcium diets attenuate body fat accumulation and weight gain during periods of over-consumption of an energy-dense diet and to increase fat breakdown and preserve metabolism during caloric restriction, thereby markedly accelerating weight and fat loss. This effect is mediated primarily by circulating calcitriol, which regulates adipocyte intracellular Ca(2+). Studies of human adipocyte metabolism demonstrate a key role for intracellular Ca(2+) in regulating lipid metabolism and triglyceride storage, with increased intracellular Ca(2+) resulting in stimulation of lipogenic gene expression and lipogenesis and suppression of lipolysis, resulting in adipocyte lipid filling and increased adiposity. Moreover, the increased calcitriol produced in response to low calcium diets stimulates adipocyte Ca(2+) influx and, consequently, promotes adiposity, while higher calcium diets inhibit lipogenesis, promote lipolysis, lipid oxidation and thermogenesis and inhibit diet-induced obesity in mice. Notably, dairy sources of calcium exert markedly greater effects in attenuating weight and fat gain and accelerating fat loss. This augmented effect of dairy products versus supplemental calcium has been localized, in part, to the whey fraction of dairy and is likely due to additional bioactive compounds, such as angiotensin converting enzyme (ACE) inhibitors in dairy, as well as the rich concentration of branched chain amino acids, which act synergistically with calcium to attenuate adiposity; however, these compounds do not fully account for the observed effects, as whey has significantly greater bioactivity than found in these compounds. These concepts are confirmed by epidemiological data as well as recent clinical trials which demonstrate that diets which include at least three daily servings of dairy products result in significant reductions in body fat mass in obese humans in the absence of caloric restriction and markedly accelerates the weight and body fat loss secondary to caloric restriction compared to low dairy diets. These data indicate an important role for dairy products in both the ability to maintain a healthy weight and the management of overweight and obesity.
Collapse
Affiliation(s)
- Michael B Zemel
- The University of Tennessee, 1215 W. Cumberland Ave, Room 229, Knoxville, TN 37996-1920, USA.
| |
Collapse
|
216
|
Varani K, Gessi S, Merighi S, Vincenzi F, Cattabriga E, Benini A, Klotz KN, Baraldi PG, Tabrizi MA, Lennan SM, Leung E, Borea PA. Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol 2005; 70:1601-12. [PMID: 16219300 DOI: 10.1016/j.bcp.2005.08.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/31/2005] [Accepted: 08/31/2005] [Indexed: 01/11/2023]
Abstract
The present study was designed to evaluate the effects of novel and recognised compounds at human recombinant A(2B) adenosine receptors expressed in Chinese hamster ovary (hA(2B)CHO), in human embryonic kidney 293 (hA(2B)HEK-293) and at endogenous A(2B) receptors in human mast cells (HMC-1). Saturation binding experiments performed using the new high affinity A(2B) adenosine radioligand [(3)H]-N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetra hydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide ([(3)H]-MRE 2029F20) revealed a single class of binding sites in hA(2B)CHO, hA(2B)HEK-293 and HMC-1 cells with K(D) (nM) of 1.65+/-0.18, 2.83+/-0.34, 2.62+/-0.27 and B(max) (fmol/mg protein) of 36+/-4, 475+/-50 and 128+/-15, respectively. The pharmacological profile of new compounds, determined in inhibition binding experiments in hA(2B)HEK-293 cells using [(3)H]-MRE 2029F20, showed a rank order of potency typical of the A(2B) receptors with K(i) values in the range 3.2-28nM. In functional assays, recognised agonists and antagonists were studied by evaluating their capability to modulate the cAMP production in hA(2B)CHO and in HMC-1 cells. Novel compounds were able to decrease NECA-stimulated cAMP production in hA(2B)CHO and in HMC-1 cells showing a high potency. New compounds were also able to inhibit cAMP levels in the absence of NECA and in the presence of forskolin stimulation in hA(2B)CHO and in HMC-1 cells. In HEK-293 cells MRE 2029F20 reduced cAMP basal levels with an IC(50) value of 2.9+/-0.3nM. These results suggest that novel compounds are antagonists with an inverse agonist activity in recombinant and native human A(2B) receptors.
Collapse
Affiliation(s)
- Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Anderson AA, Kendal CE, Garcia-Maya M, Kenny AV, Morris-Triggs SA, Wu T, Reynolds R, Hohenester E, Saffell JL. A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J Neurochem 2005; 95:570-83. [PMID: 16135080 DOI: 10.1111/j.1471-4159.2005.03417.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neural cell adhesion molecule (NCAM) contributes to axon growth and guidance during development and learning and memory in adulthood. Although the Ig domains mediate homophilic binding, outgrowth activity localizes to two membrane proximal fibronectin-like domains. The first of these contains a site identified as a potential FGF receptor (FGFR) activation motif (FRM) important for NCAM stimulation of neurite outgrowth, but its activity has hitherto remained hypothetical. Here, we have tested the effects of a domain-specific antibody and peptides corresponding to the FRM in cellular assays in vitro. The first fibronectin domain antibody inhibited NCAM-stimulated outgrowth, indicating the importance of the domain for NCAM function. Monomeric FRM peptide behaved as an inverse agonist; low concentrations specifically inhibited neurite outgrowth stimulated by NCAM and cellular responses to FGF2, while saturating concentrations stimulated FGFR-dependent neurite outgrowth equivalent to NCAM itself. Dendrimeric FRM peptide was 125-fold more active and stimulated FGFR activation, FGFR-dependent and FGF-mimetic neurite outgrowth and cell survival (but not proliferation). We conclude that the FRM peptide contains NCAM-mimetic bioactivity accounted for by stimulation of FGF signalling pathways at the level of or upstream from FGF receptors, and discuss the possibility that FRM comprises part of an FGFR activation site on NCAM.
Collapse
Affiliation(s)
- Alexandra A Anderson
- Division of Cell and Molecular Biology, Faculty of Life Sciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Cikos S, Veselá J, Il'ková G, Rehák P, Czikková S, Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev 2005; 71:145-53. [PMID: 15791602 DOI: 10.1002/mrd.20256] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulating evidence indicates the role of endogenous catecholamines in mammalian embryogenesis. We searched public databases containing nucleotide sequences derived from mouse preimplantation cDNA libraries and found a partial sequence homology between a cDNA clone from mouse blastocysts and the mouse beta 2-adrenergic receptor sequence. No significant sequence homology was found for other mouse adrenergic and dopamine receptors. Using RT-PCR, we showed that beta 2-adrenoceptor is transcribed not only at blastocyst stage but also at earlier stages of preimplantation development as well as in oocytes. Moreover, we demonstrated that transcripts encoding both isoforms of the beta 3-adrenoceptor (beta 3a- and beta 3b-) are expressed in mouse oocytes and preimplantation embryos as well. We did not detect the beta 1-adrenoceptor transcript either in oocytes or in preimplantation embryos. Using an antibody against the mouse beta 2-adrenergic receptor, we showed that the receptor protein is expressed in oocytes and preimplantation embryos; in blastocysts, the immufluorescence labeling was stronger in the inner cell mass than in throphectodermal cells. The cell number of the in vitro cultured mouse preimplantation embryos exposed to isoproterenol (a potent beta adrenoceptor agonist) was lower than in control embryos, suggesting that activation of beta adrenergic receptors by appropriate agonist concentration can influence cell proliferation in mouse pre-implantation embryos. Thus, our results indicate that beta adrenergic receptors are expressed in mouse oocytes and preimplantation embryos and that ligands for the receptors can affect the mouse embryo even in the very early stages of development.
Collapse
Affiliation(s)
- Stefan Cikos
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltésovej 4, Kosice, Slovakia
| | | | | | | | | | | |
Collapse
|
219
|
Jordan S, Chen R, Koprivica V, Hamilton R, Whitehead RE, Tottori K, Kikuchi T. In vitro profile of the antidepressant candidate OPC-14523 at rat and human 5-HT1A receptors. Eur J Pharmacol 2005; 517:165-73. [PMID: 15985260 DOI: 10.1016/j.ejphar.2005.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 10/25/2022]
Abstract
This study determined the in vitro functional profile of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2-quinolinone monomethanesulfonate (OPC-14523) at rat and human serotonin (5-HT) 5-HT1A receptors and binding affinity of OPC-14523 at human frontocortical 5-HT1A receptors. OPC-14523 (1 microM) increased guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding to 5-HT1A receptor-containing regions of rat brain tissue sections (approximately 53% of the effect of 1 microM (+)8-hydroxy-2-(di-n-propylamino)tetralin ((+)8-OH-DPAT) that were blocked by the selective 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635). OPC-14523 also behaved as a partial agonist in its stimulation of [35S]GTPgammaS binding to membranes from rat hippocampus (pEC50=7.60+/-0.23, Emax=41.1% of the effect of 10 microM (+)8-OH-DPAT), human frontal cortex (pEC50=7.89+/-0.08; Emax=64% of the effect of 10 microM (+)8-OH-DPAT), and Chinese Hamster Ovary cells expressing cloned human 5-HT1A receptors (pEC50=8.0+/-0.11; Emax=85.5% of the effect of 10 microM 5-HT), and all of these effects of OPC-14523 were blocked by WAY-100635. Taken together, these data support the development of OPC-14523 as an antidepressant whose mechanism of action involves potent partial agonist activity at 5-HT1A receptors.
Collapse
Affiliation(s)
- Shaun Jordan
- Department of Neuroscience Research, Otsuka Maryland Medicinal Laboratories, 9900 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
221
|
Soudijn W, van Wijngaarden I, Ijzerman AP. Structure-activity relationships of inverse agonists for G-protein-coupled receptors. Med Res Rev 2005; 25:398-426. [PMID: 15816047 DOI: 10.1002/med.20031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been recently established that G-protein-coupled receptors (GPCRs) can be constitutively active, i.e., they can be active in the absence of an agonist. This activity can be inhibited by so-called inverse agonists. For a number of GPCRs, such inverse agonists have been developed and studied, now enabling for the first time a study into their structure-activity relationships.
Collapse
Affiliation(s)
- Willem Soudijn
- Leiden/Amsterdam Center for Drug Research, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | | |
Collapse
|
222
|
Sakhalkar SP, Patterson EB, Khan MM. Involvement of histamine H1 and H2 receptors in the regulation of STAT-1 phosphorylation: inverse agonism exhibited by the receptor antagonists. Int Immunopharmacol 2005; 5:1299-309. [PMID: 15914334 DOI: 10.1016/j.intimp.2005.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 01/10/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Signal transducer and activator of transcription-1 (STAT1) is a latent signal transducer protein which, on phosphorylation, is translocated from the cytoplasm to the nucleus and is subsequently activated. This study was designed to determine the involvement of histamine receptors in histamine-mediated effect on STAT1 phosphorylation. It is known that the actions of histamine mediated through H1 and H2 receptors are dependent on their respective downstream pathways, Ca(2+)-PKC and cAMP-PKA. In this study, we investigated the significance of PKA in STAT1 phosphorylation. C57BL/6 mouse splenocytes were isolated and treated with histamine (10(-7)-10(-4) M) and then activated with PMA (phorbol 12 myristate 13-acetate) plus ionomycin. The phosphorylated STAT1 levels were analyzed by immunoblotting. Histamine receptor agonists amthamine and betahistine, histamine receptor antagonists pyrilamine maleate, tripelennamine, ranitidine, cimetidine and thioperamide, cAMP agonists N(6), 2'-0-dibutyryladenosine-3',5'-cyclic monophosphate sodium salt (db-cAMP) and forskolin, protein kinase A inhibitors N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline-sulfonamide (H89) and Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (RpcAMPs) and tyrosine kinase inhibitor tyrphostin were used to identify the upstream signal transduction pathways. We observed that histamine augmented the phosphorylation of STAT1 through both H1 and H2 receptors. Furthermore, H1 and H2 receptor antagonists displayed inverse agonism. Ca(2+)-PKC-induced phosphorylation of STAT1 was completely inhibited by H89 and significantly inhibited by RpcAMPs. DbcAMP and forskolin augmented the Ca(2+)-PKC-induced STAT1 phosphorylation thus suggesting a convergent crosstalk between the two histamine receptor signaling pathways, PKA and PKC.
Collapse
Affiliation(s)
- Shilpa P Sakhalkar
- Department of Pharmaceutical Sciences, Creighton University Medical Center, Omaha, NE 68178, USA
| | | | | |
Collapse
|
223
|
Mathiesen JM, Ulven T, Martini L, Gerlach LO, Heinemann A, Kostenis E. Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol Pharmacol 2005; 68:393-402. [PMID: 15870392 DOI: 10.1124/mol.104.010520] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti-inflammatory drugs indomethacin and ramatroban, the latter showing clinical efficacy in treating allergic asthma, have been shown to act as a classic agonist and antagonist, respectively, of the G protein-coupled chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2 receptor). Here, we report the identification of two indole derivatives 1-(4-ethoxyphenyl)-5-methoxy-2-methylindole-3-carboxylic acid and N(alpha)-tosyltryptophan (hereafter referred to as 1 and 2, respectively), which are structurally related to indomethacin and ramatroban but which selectively interfere with a specific G protein-independent signaling pathway of CRTH2. In whole-cell saturation-binding assays, 1 and 2 both increase the number of [(3)H]prostaglandin D2 (PGD2)-recognizing CRTH2 sites and the affinity of PGD2 for CRTH2. Enzyme-linked immunosorbent assays show that they do not alter the total number of CRTH2 receptors on the cell surface. Analysis of their binding mode indicates that unlike indomethacin or ramatroban, 1 and 2 can occupy CRTH2 simultaneously with PGD2. On a functional level, however, 1 and 2 do not interfere with PGD2-mediated activation of heterotrimeric G proteins by CRTH2. In contrast, both compounds inhibit PGD2-mediated arrestin translocation via a G protein-independent mechanism. In human eosinophils endogenously expressing CRTH2, 1 selectively decreases the efficacy but not the potency of PGD2-induced shape change, unlike ramatroban, which displays competitive antagonistic behavior. These data show for the first time that "antagonists" can cause markedly dissimilar degrees of inhibition for different effector pathways and suggest that it may be possible to develop novel classes of specific signal-inhibiting drugs distinct from conventional antagonists.
Collapse
|
224
|
|
225
|
Krueger KM, Witte DG, Ireland-Denny L, Miller TR, Baranowski JL, Buckner S, Milicic I, Esbenshade TA, Hancock AA. G protein-dependent pharmacology of histamine H3 receptor ligands: evidence for heterogeneous active state receptor conformations. J Pharmacol Exp Ther 2005; 314:271-81. [PMID: 15821027 DOI: 10.1124/jpet.104.078865] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously reported pharmacological studies using the imidazole-containing histamine H3 receptor ligands GT-2331 (Cipralisant) and proxyfan resulted in a range of classifications (antagonist, agonist, and protean) for these compounds. We examined the role that the signaling system, with particular emphasis on the type of G protein, had on the pharmacology observed for H3 ligands. Ligands were assessed using assays measuring neurotransmitter release, cAMP, and guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding. Whereas clobenpropit and ciproxifan were consistently antagonists, GT-2331, proxyfan, and imetit exhibited differential activity. Although GT-2331 and proxyfan exhibited little agonist activity in neurotransmitter release assays, both demonstrated full agonism relative to (R)-alpha-methylhistamine in cAMP assays. In [35S]GTPgammaS binding assays, GT-2331 and proxyfan demonstrated partial agonism. Imetit showed full agonism in most assays, but it was slightly less efficacious in a neurotransmitter release assay and in [35S]GTPgammaS binding at the human H3 receptor. To further examine these ligands, we coexpressed G alpha16 or chimeric G alpha q/i5 in human embryonic kidney cells expressing the human H3 receptor and assayed intracellular calcium and cAMP levels. GT-2331, proxyfan, and imetit demonstrated full agonism in all assays of cAMP activity. However, in cells expressing G alpha16, they exhibited minimal agonism in calcium mobilization assays, whereas imetit showed partial agonism. When G alpha q/i5 was used, the activity of both GT-2331 and proxyfan increased, whereas imetit became a full agonist. These results demonstrate that GT-2331 and proxyfan's differential pharmacology at the H3 receptor depends on the type of G protein used and provide indirect evidence for differential ligand-bound active states that mediate signaling by the H3 receptor.
Collapse
Affiliation(s)
- Kathleen M Krueger
- Neurosciences Research, Abbott Laboratories, Global Pharmaceutical Research and Development, Abbott Park, IL 60064-6125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Lu ZL, Gallagher R, Sellar R, Coetsee M, Millar RP. Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: evidence for ligand-selective, receptor-active conformations. J Biol Chem 2005; 280:29796-803. [PMID: 15967801 DOI: 10.1074/jbc.m413520200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human gonadotropin-releasing hormone (GnRH) receptor is evolutionarily configured for high affinity binding of GnRH I ([Tyr(5),Leu(7),Arg(8)]GnRH) but at lower affinity for GnRH II ([His(5),Trp(7),Tyr(8)]GnRH). GnRH I is more potent in the activation of the G(q/11) protein in the gonadotrope; however, GnRH II is more potent in the stimulation of apoptosis and antiproliferative effects through activating G(i) protein-mediated signaling, implying that GnRH I and II selectively stabilize different receptor-active conformations that preferentially couple to different signaling pathways. Receptor activation involves ligand induction or conformational selection, but the molecular basis of the communication between ligand-binding sites and receptor allosteric sites remains unclear. We have sought conformational coupling between receptor-ligand intermolecular interactions and intramolecular interaction networks in the human GnRH receptor by mutating remote residues that induce differential ligand binding affinity shifts for GnRH I and II. We have demonstrated that certain Ala mutations in the intracellular segments of transmembrane domains 3 (Met(132)), 5 (Met(227)), 6 (Phe(272) and Phe(276)), and 7 (Ile(322) and Tyr(323)) of the human GnRH receptor allosterically increased ligand binding affinity for GnRH II but had little effect on GnRH I binding affinity. We examined the role of the three amino acids that differ in these two ligands, and we found that Tyr(8) in GnRH II plays a dominant role for the increased affinity of the receptor mutants for GnRH II. We propose that creation of a high affinity binding site for GnRH II accompanies receptor conformational changes, i.e."induced fit" or "conformational selection," mainly determined by the intermolecular interactions between Tyr(8) and the receptor contact residues, which can be facilitated by disruption of particular sets of receptor-stabilizing intramolecular interactions. The findings suggest that GnRH I and II binding may selectively stabilize different receptor-active conformations and therefore different ligand-induced selective signaling described previously for these ligands.
Collapse
Affiliation(s)
- Zhi-Liang Lu
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, UK.
| | | | | | | | | |
Collapse
|
227
|
Dupré DJ, Rola-Pleszczynski M, Stanková J. Inverse agonism: more than reverting constitutively active receptor signaling. Biochem Cell Biol 2005; 82:676-80. [PMID: 15674435 DOI: 10.1139/o04-128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seven-transmembrane receptors constitute one of the major families of proteins encoded by the genome. This type of receptor is one of the most important targets of the pharmaceutical industry, and many of the drugs with significant therapeutic action have been shown to be inverse agonists. Concepts regarding the mechanisms by which ligands activate and inactivate receptors are thought to be far more complex that a simple on-off switch. For both drug design and pharmacology principles, it is important to understand the mechanisms by which these drugs achieve their effects. Recent studies have demonstrated intriguing actions of inverse agonists. They have been shown not only to block constitutive responses of receptors but also to activate and regulate seven-transmembrane receptor signaling and trafficking. The activation of pathways by inverse agonists was shown to occur mainly via G-protein-independent mechanisms. These findings emphasize the importance of inverse agonism as a principle of receptor regulation. In this paper, we will review the evidence supporting inverse agonist promoted signaling and trafficking.
Collapse
Affiliation(s)
- Denis J Dupré
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | |
Collapse
|
228
|
Lagane B, Ballet S, Planchenault T, Balabanian K, Le Poul E, Blanpain C, Percherancier Y, Staropoli I, Vassart G, Oppermann M, Parmentier M, Bachelerie F. Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis. Mol Pharmacol 2005; 67:1966-76. [PMID: 15761117 DOI: 10.1124/mol.104.009779] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor that governs migration of leukocytes and serves as a coreceptor for the R5 tropic strains of human immunodeficiency virus (HIV). CCR5-mediated signaling in response to CC chemokines relies on G protein activation. Desensitization, which rapidly turns off G protein-dependent signaling, involves phosphorylation of CCR5 that promotes interaction of the receptor with beta-arrestins for endocytosis. Whether coupling to G proteins, desensitization, and endocytosis of CCR5 require the same structural determinants remains a matter of investigation. Here, we show that CCR5 displayed agonist-independent coupling to G proteins. This constitutive activity of the receptor was abrogated by TAK779 (N,N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclohepten-8-yl]carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium chloride), a nonpeptidic CCR5 ligand that inhibits HIV infection and was found to depend on the integrity of the Asp-Arg-Tyr (DRY) motif. Changing Arg-126 by the neutral residue Asn (R126N-CCR5 mutant) abolished CCR5-mediated activation of G proteins, either constitutively or in response to agonists. In contrast, R126N-CCR5 not only retained agonist-promoted phosphorylation and beta-arrestin-dependent endocytosis but also displayed a higher basal phosphorylation than wild-type CCR5. Expression of beta-arrestin in R126N-CCR5-expressing cells resulted in receptor down-regulation, thereby suggesting that R126N-CCR5 spontaneously interacts with beta-arrestins. However, although expression of beta-arrestin favored wild-type CCR5-mediated chemotaxis, it failed to promote migration of cells expressing R126N-CCR5. Overall, these data indicate that structural requirements for CCR5-mediated activation of G proteins, albeit not involved in receptor desensitization and internalization, are needed for beta-arrestin-mediated chemotaxis. These results have implications for how distinct biological responses of CCR5 might rely on a different set of receptor conformations.
Collapse
Affiliation(s)
- Bernard Lagane
- Institut Pasteur, Unité d'Immunologie Virale, 28 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Bartlett PJ, Young KW, Nahorski SR, Challiss RAJ. Single Cell Analysis and Temporal Profiling of Agonist-mediated Inositol 1,4,5-Trisphosphate, Ca2+, Diacylglycerol, and Protein Kinase C Signaling using Fluorescent Biosensors. J Biol Chem 2005; 280:21837-46. [PMID: 15788407 DOI: 10.1074/jbc.m411843200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The magnitude and temporal nature of intracellular signaling cascades can now be visualized directly in single cells by the use of protein domains tagged with enhanced green fluorescent protein (eGFP). In this study, signaling downstream of G protein-coupled receptor-mediated phospholipase C (PLC) activation has been investigated in a cell line coexpressing recombinant M(3) muscarinic acetylcholine and alpha(1B) -adrenergic receptors. Confocal measurements of changes in inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)), using the pleckstrin homology domain of PLCdelta1 tagged to eGFP (eGFP-PH(PLCdelta)), and 1,2-diacylglycerol (DAG), using the C1 domain of protein kinase Cgamma (PKCgamma) (eGFP-C1(2)-PKCgamma), demonstrated clear translocation responses to methacholine and noradrenaline. Single cell EC(50) values calculated for each agonist indicated that responses to downstream signaling targets (Ca(2+) mobilization and PKC activation) were approximately 10-fold lower compared with respective Ins(1,4,5)P(3) and DAG EC(50) values. Examining the temporal profile of second messenger responses to sub-EC(50) concentrations of noradrenaline revealed oscillatory Ins(1,4,5)P(3), DAG, and Ca(2+) responses. Oscillatory recruitments of conventional (PKCbetaII) and novel (PKCepsilon) PKC isoenzymes were also observed which were synchronous with the Ca(2+) response measured simultaneously in the same cell. However, oscillatory PKC activity (as determined by translocation of eGFP-tagged myristoylated alanine-rich C kinase substrate protein) required oscillatory DAG production. We suggest a model that uses regenerative Ca(2+) release via Ins(1,4,5)P(3) receptors to initiate oscillatory second messenger production through a positive feedback effect on PLC. By acting on various components of the PLC signaling pathway the frequency-encoded Ca(2+) response is able to maintain signal specificity at a level downstream of PKC activation.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Cell Physiology and Pharmacology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, United Kingdom.
| | | | | | | |
Collapse
|
230
|
Zhang M, Mizrachi D, Fanelli F, Segaloff DL. The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J Biol Chem 2005; 280:26169-76. [PMID: 15908694 PMCID: PMC1237128 DOI: 10.1074/jbc.m502102200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human lutropin receptor (hLHR) plays a pivotal role in reproductive endocrinology. A number of naturally occurring mutations of the hLHR have been identified that cause the receptor to become constitutively active. To gain further insights into the structural basis for the activation of the hLHR by activating mutations, we chose to examine a particularly strong constitutively activating mutation of this receptor, L457R, in which a leucine that is highly conserved among rhodopsin-like G protein-coupled receptors in helix 3 has been substituted with arginine. Using both disruptive as well as reciprocal mutagenesis strategies, our studies demonstrate that the ability of L457R to stabilize an active form of the hLHR is because of the formation of a salt bridge between the replacing amino acid and Asp-578 in helix 6. Such a lock between the transmembrane portions of helices 3 and 6 is concurrent with weakening the connections between the cytosolic ends of the same helices, including the interaction found in the wild-type receptor between Arg-464, of the (E/D)R(Y/W) motif, and Asp-564. This structural effect is properly marked by the increase in the solvent accessibility of selected amino acids at the cytosolic interfaces between helices 3 and 6. The integrity of the conserved amino acids Asn-615 and Asn-619 in helix 7 is required for the transfer of the structural change from the activating mutation site to the cytosolic interface between helices 3 and 6. The results of in vitro and computational experiments further suggest that the structural trigger of the constitutive activity of the L457R mutant may also be responsible for its lack of hormone responsiveness.
Collapse
Affiliation(s)
- Meilin Zhang
- From the Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242 and
| | - Dario Mizrachi
- From the Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242 and
| | - Francesca Fanelli
- the Dulbecco Telethon Institute and Department of Chemistry, University of Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | - Deborah L. Segaloff
- From the Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242 and
- ** To whom correspondence should be addressed: Dept. of Physiology and Biophysics, 5–470 Bowen Science Bldg., The University of Iowa, IA City, IA 52242. Tel.: 319-335-7850; Fax: 319-335-7330; E-mail:
| |
Collapse
|
231
|
Banères JL, Mesnier D, Martin A, Joubert L, Dumuis A, Bockaert J. Molecular Characterization of a Purified 5-HT4 Receptor. J Biol Chem 2005; 280:20253-60. [PMID: 15774473 DOI: 10.1074/jbc.m412009200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serotonin 5-HT(4(a)) receptor, a G-protein-coupled receptor (GPCR), was produced as a functional isolated protein using Escherichia coli as an expression system. The isolated receptor was characterized at the molecular level by circular dichroism (CD) and steady-state fluorescence. A specific change in the near-UV CD band associated with the GPCR disulfide bond connecting the third transmembrane domain to the second extracellular loop (e2) was observed upon agonist binding to the purified receptor. This is a direct experimental evidence for a change in the conformation of the e2 loop upon receptor activation. Different variations were obtained depending whether the ligand was an agonist (partial or full) or an inverse agonist. In contrast, antagonist binding did not induce any variation. These observations provide a first direct evidence for the fact that free (or antagonist-occupied), active (partial- or full agonist-occupied) and silent (inverse agonist-occupied) states of the receptor involve different arrangements of the e2 loop. Finally, ligand-induced changes in the fluorescence emission profile of the purified receptor confirmed that the partial agonist stabilized a single, well-defined, conformational state and not a mixture of different states. This result is of particular interest in a pharmacological perspective since it directly demonstrates that the efficacy of a drug is likely due to the stabilization of a ligand-specific state rather than selection of a mixture of different conformational states of the receptor.
Collapse
MESH Headings
- Animals
- Benzimidazoles/metabolism
- Binding Sites
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Circular Dichroism
- Drug Therapy
- Escherichia coli/genetics
- Gene Expression
- Indoles/metabolism
- Mice
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Receptors, Serotonin, 5-HT4/chemistry
- Receptors, Serotonin, 5-HT4/genetics
- Receptors, Serotonin, 5-HT4/metabolism
- Recombinant Proteins
- Serotonin Antagonists/metabolism
- Spectrometry, Fluorescence
- Structure-Activity Relationship
- Sulfonamides/metabolism
Collapse
Affiliation(s)
- Jean-Louis Banères
- UMR CNRS 5074, Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, 15 Avenue Ch. Flahault, 34093 Montpellier Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
232
|
Ladds G, Davis K, Das A, Davey J. A constitutively active GPCR retains its G protein specificity and the ability to form dimers. Mol Microbiol 2005; 55:482-97. [PMID: 15659165 DOI: 10.1111/j.1365-2958.2004.04394.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G protein-coupled receptors (GPCRs) are cell surface proteins which help to regulate the physiology of all the major organ systems within higher eukaryotes. They are stimulated by multiple ligands and activate a range of effector molecules to bring about changes in cell behaviour. The use of constitutively active mutants (CAMs) of GPCRs has enabled a better understanding of receptor activation as CAMs exhibit ligand-independent signalling negating the use of ligands. Here we introduce the fission yeast Schizosaccharomyces pombe as a host for producing CAMs, by describing the isolation and characterization of constitutive mutants of the P-factor receptor (Mam2). One mutant Mam2[P261L] contained a single-amino-acid substitution (Pro261 to Leu) within a region of high homology in GPCRs. Substitution of this proline leads to an 18-fold increase in ligand-independent signalling. We utilized Mam2[P261L] to investigate CAM activity by demonstrating that Mam2[P261L] is efficiently trafficked to the cell surface where it can form fully functional oligomeric complexes with the native receptor. Mam2[P261L] also retains the G protein specificity (RG-profile) of the native receptor and only induces constitutive signalling in the same G proteins. Finally, evidence is provided to indicate that CAM activity results from a reduction in the kinetics of G protein binding. This is the first time that S. pombe has been utilized for isolating and characterizing CAMs and the techniques employed will complement the current systems available for studying these important receptors.
Collapse
Affiliation(s)
- Graham Ladds
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | |
Collapse
|
233
|
Abstract
The superfamily of G-protein-coupled receptors (GPCRs) was discussed at a recent Cambridge Healthtech Institute meeting. Scientists working in both academia and industry participated in 2 days of talks that addressed important issues related to the use of GPCRs as targets. The meeting delved into questions and strategies surrounding receptor structure, lack of knowledge about endogenous ligands, novel methodology for identifying compounds from high-throughput screening, the development process from hits to leads, and what constitutes adequate proof-of-principle studies. This report highlights several presentations related to the ongoing search for more effective GPCR-targeted drug discovery efforts.
Collapse
|
234
|
Emmerson PJ, McKinzie JH, Surface PL, Suter TM, Mitch CH, Statnick MA. Na+ modulation, inverse agonism, and anorectic potency of 4-phenylpiperidine opioid antagonists. Eur J Pharmacol 2005; 494:121-30. [PMID: 15212965 DOI: 10.1016/j.ejphar.2004.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/28/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
Differences in the anorectic activity of morphinan (e.g., naltrexone) and 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4PP) opioid receptor antagonists have been described. In an attempt to explain these differences, the influence of Na(+) on opioid binding affinity and functional activity of 4PP antagonists was compared to other opioid antagonists. The binding affinities of neutral antagonists were unaffected by the addition of Na(+), whereas that for the peptide, inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI174864) was increased. Similarly, the binding affinities of the 4PP antagonist (3R,4R)-1-((S)-3-hydroxy-3-cyclohexylpropyl)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidine (LY255582) and other 4PP antagonists were increased in the presence of Na(+) with the greatest effects at the delta opioid receptor followed by the mu and kappa opioid receptors, respectively. Similar to ICI174864, 4PP antagonists were found to inhibit basal GTPgamma[(35)S] binding at the delta opioid receptor indicating inverse agonist activity. A correlation was observed between the binding affinities in the presence of Na(+), the inverse agonist potency, and the anorectic potency of 4PP antagonists. These data suggest that 4PP antagonists differ from morphinan antagonists in their inverse agonist activity and suggest a relationship between inverse agonism and anorectic activity.
Collapse
Affiliation(s)
- Paul J Emmerson
- Endocrine Research, Lilly Research Laboratories, Lilly Corporate Center DC0403, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
235
|
Park PSH, Filipek S, Wells JW, Palczewski K. Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 2005; 43:15643-56. [PMID: 15595821 PMCID: PMC1752221 DOI: 10.1021/bi047907k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G protein-coupled receptor (GPCR)-mediated signal transduction has been studied for more than a century. Despite the intense focus on this class of proteins, a molecular understanding of what constitutes the functional form of the receptor is still uncertain. GPCRs have traditionally been conceptualized as monomeric proteins, and this view has changed little over the years until relatively recently. Recent biochemical and biophysical studies have challenged this traditional concept, and point instead to a mechanistic view of signal transduction wherein the receptor functions as an oligomer. Cooperative interactions within such an oligomeric array may be critical for the propagation of an external signal across the cell membrane and to the G protein, and may therefore underlie the mechanistic basis of signaling.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195-6485, USA.
| | | | | | | |
Collapse
|
236
|
Sánchez-Más J, Hahmann C, Gerritsen I, García-Borrón JC, Jiménez-Cervantes C. Agonist-independent, high constitutive activity of the human melanocortin 1 receptor. ACTA ACUST UNITED AC 2005; 17:386-95. [PMID: 15250941 DOI: 10.1111/j.1600-0749.2004.00160.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The melanocortins (alpha-melanocyte-stimulating hormone and adrenocorticotropin) act on epidermal melanocytes to increase melanogenesis, the eumelanin/pheomelanin ratio and dendricity. These actions are mediated by the heptahelical melanocortin 1 receptor (MC1R), positively coupled to adenylyl cyclase. Gain-of-function mouse Mc1r alleles are associated with a dark, eumelanic coat. Conversely, loss-of-function variants, or overexpression of agouti, a natural melanocortin antagonist, yield yellow, pheomelanic furs. In humans, loss-of-function MC1R variants are associated with fair skin, poor tanning, propensity to freckle and increased skin cancer risk. Therefore, MC1R is a key regulator of mammalian pigmentation. Several observations such as induction of constitutive pigmentation in amelanotic mouse melanoma cells following expression of MC1R indicate that the receptor might display agonist-independent activity. We report a systematic and comparative study of MC1R and Mc1r constitutive activity. We show that expression of MC1R in heterologous systems leads to an agonist-independent increase in cyclic adenosine monophophate (cAMP). Basal signalling is a function of receptor expression and is two to fourfold higher for MC1R than for Mc1r. Moreover, it is observed in human melanoma cells over-expressing the MC1R. Constitutive signalling is abolished or reduced by point mutations of MC1R impairing the response to agonists, and is only doubled by the Lys94Glu mutation, mimicking the constitutively active mouse E(so-3J) allele. Stable or transient expression of wild-type MC1R, but not of loss-of-function mutants, potently stimulates forskolin activation of adenylyl cyclase, a common feature of constitutively active Gs-coupled receptors. Therefore, human MC1R displays a strong agonist-independent constitutive activity.
Collapse
Affiliation(s)
- Jesús Sánchez-Más
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, 30071 Espinardo, Spain
| | | | | | | | | |
Collapse
|
237
|
Jacobsen R, Lorenzen JK, Toubro S, Krog-Mikkelsen I, Astrup A. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes (Lond) 2005; 29:292-301. [PMID: 15672116 DOI: 10.1038/sj.ijo.0802785] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Observational studies have shown an inverse association between dietary calcium intake and body weight, and a causal relation is likely. However, the underlying mechanisms are not understood. OBJECTIVE We examined whether high and low calcium intakes from mainly low-fat dairy products, in diets high or normal in protein content, have effects on 24-h energy expenditure (EE) and substrate oxidation, fecal energy and fat excretion, and concentrations of substrates and hormones involved in energy metabolism and appetite. DESIGN In all, 10 subjects participated in a randomized crossover study of three isocaloric 1-week diets with: low calcium and normal protein (LC/NP: 500 mg calcium, 15% of energy (E%) from protein), high calcium and normal protein (HC/NP: 1800 mg calcium, 15E% protein), and high calcium and high protein (HC/HP: 1800 mg calcium, 23E% protein). RESULTS The calcium intake had no effect on 24-h EE or fat oxidation, but fecal fat excretion increased approximately 2.5-fold during the HC/NP diet compared with the LC/NP and the HC/HP diets (14.2 vs 6.0 and 5.9 g/day; P < 0.05). The HC/NP diet also increased fecal energy excretion as compared with the LC/NP and the HC/HP diets (1045 vs 684 and 668 kJ/day; P < 0.05). There were no effects on blood cholesterol, free fatty acids, triacylglycerol, insulin, leptin, or thyroid hormones. CONCLUSIONS A short-term increase in dietary calcium intake, together with a normal protein intake, increased fecal fat and energy excretion by approximately 350 kJ/day. This observation may contribute to explain why a high-calcium diet produces weight loss, and it suggests that an interaction with dietary protein level may be important.
Collapse
Affiliation(s)
- R Jacobsen
- Department of Human Nutrition, Centre for Advanced Food Studies, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
238
|
Zemel MB, Richards J, Mathis S, Milstead A, Gebhardt L, Silva E. Dairy augmentation of total and central fat loss in obese subjects. Int J Obes (Lond) 2005; 29:391-7. [PMID: 15672113 DOI: 10.1038/sj.ijo.0802880] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE We have previously demonstrated an antiobesity effect of dietary Ca; this is largely mediated by Ca suppression of calcitriol levels, resulting in reduced adipocyte intracellular Ca2+ and, consequently, a coordinated increase in lipid utilization and decrease in lipogenesis. Notably, dairy Ca is markedly more effective than other Ca sources. DESIGN Obese subjects were placed on balanced deficit (-500 kcal/day) diets and randomized to control (400-500 mg Ca/day; n = 16) or yogurt (1100 mg Ca/day; n = 18) treatments for 12 weeks. Dietary macronutrients and fiber were held constant at the US average. MEASUREMENTS Body weight, body fat and fat distribution (by dual-energy X-ray absorptiometry), blood pressure and circulating lipids were measured at baseline and after 12 weeks of intervention. RESULTS Fat loss was markedly increased on the yogurt diet (-4.43+/-0.47 vs -2.75+/-0.73 kg in yogurt and control groups; P<0.005) while lean tissue loss was reduced by 31% on the yogurt diet. Trunk fat loss was augmented by 81% on the yogurt vs control diet (P<0.001), and this was reflected in a markedly greater reduction in waist circumference (-3.99+/-0.48 vs -0.58+/-1.04 cm, P<0.001). Further, the fraction of fat lost from the trunk was higher on the yogurt diet vs control (P<0.005). CONCLUSION Isocaloric substitution of yogurt for other foods significantly augments fat loss and reduces central adiposity during energy restriction..
Collapse
Affiliation(s)
- M B Zemel
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996-1920, USA.
| | | | | | | | | | | |
Collapse
|
239
|
Barber R. Determination of the Intrinsic Efficacies of β2 -adrenergic Agonists. Allergol Int 2005. [DOI: 10.2332/allergolint.54.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
240
|
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of Galpha, Gbeta, and Ggamma subunits are important transducers of hormonal signals in organisms as evolutionarily distant as plants and humans. The genomes of diploid angiosperms, such as that of the model species Arabidopsis thaliana, encode only single canonical Galpha and Gbeta subunits, only two identified Ggamma subunits, and just one regulator of G protein signaling (RGS) protein. However, a wide range of processes-including seed germination, shoot and root growth, and stomatal regulation-are altered in Arabidopsis and rice plants with mutations in G protein components. Such mutants exhibit altered responsiveness to a number of plant hormones, including gibberellins, brassinosteroids, abscisic acid, and auxin. This review describes possible mechanisms by which such pleiotropic effects are generated and considers possible explanations for why G protein component mutations in plants fail to be lethal. A possible role of G protein signaling in the control of phenotypic plasticity, a hallmark of plant growth, is also discussed.
Collapse
|
241
|
Leeb-Lundberg LMF. Bradykinin specificity and signaling at GPR100 and B2 kinin receptors. Br J Pharmacol 2004; 143:931-2. [PMID: 15545288 PMCID: PMC1575967 DOI: 10.1038/sj.bjp.0706031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
242
|
Moniri NH, Covington-Strachan D, Booth RG. Ligand-directed functional heterogeneity of histamine H1 receptors: novel dual-function ligands selectively activate and block H1-mediated phospholipase C and adenylyl cyclase signaling. J Pharmacol Exp Ther 2004; 311:274-81. [PMID: 15169829 DOI: 10.1124/jpet.104.070086] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The autacoid and neurotransmitter histamine activates the H(1) G protein-coupled receptor (GPCR) to stimulate predominantly phospholipase C (PLC)/inositol phosphate (IP) signaling and, to a lesser extent, adenylyl cyclase (AC)/cAMP signaling in a variety of mammalian cells and tissues, as well as H(1)-transfected clonal cell lines. This study reports that two novel H(1) receptor ligands developed in our laboratory, (-)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (trans-PAT) and (+/-)-cis-5-phenyl-7-dimethylamino-5,6,7,8-tetrahydro-9H-benzocycloheptane (cis-PAB), activate H(1) receptors to selectively stimulate AC/cAMP formation and PLC/IP formation, respectively, in Chinese hamster ovary cells transfected with guinea pig H(1) receptor cDNA. trans-PAT and cis-PAB also are shown to be functionally selective antagonists of H(1)-linked PLC/IP and AC/cAMP signaling, respectively. Whereas cis-PAB H(1) receptor activity is shown to be typically competitive, trans-PAT displays a complex interaction with the H(1) receptor that is not competitive regarding antagonism of saturation binding by the standard H(1) antagonist radioligand [(3)H]mepyramine or H(1)/PLC/IP functional activation by histamine. trans-PAT, however, does competitively block H(1)/PLC/IP functional activation by cis-PAB. Molecular determinants for trans-PAT versus cis-PAB differential binding to H(1) receptors, which presumably leads to differential activation of AC/cAMP versus PLC/IP signaling, likely involves stereochemical factors as well as more subtle steric influences. Results suggest the trans-PAT and cis-PAB probes will be useful to study molecular mechanisms of ligand-directed GPCR multifunctional signaling. Moreover, because most untoward cardiovascular-, respiratory-, and gastrointestinal H(1) receptor-mediated effects proceed via the PLC/IP pathway, PAT-type agonists that selectively enhance H(1)-mediated AC/cAMP signaling provide a mechanistic basis for exploiting H(1) receptor activation for drug design purposes.
Collapse
Affiliation(s)
- Nader H Moniri
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
243
|
Khan MZ, Brandimarti R, Patel JP, Huynh N, Wang J, Huang Z, Fatatis A, Meucci O. Apoptotic and antiapoptotic effects of CXCR4: is it a matter of intrinsic efficacy? Implications for HIV neuropathogenesis. AIDS Res Hum Retroviruses 2004; 20:1063-71. [PMID: 15585097 PMCID: PMC2669736 DOI: 10.1089/aid.2004.20.1063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CXCR4, the specific receptor for the chemokine SDF-1 alpha that also binds CXCR4-using HIV gp120s, affects survival of different cell types, including neurons. However, current data show that the outcome of CXCR4 activation on neuronal survival may vary depending on the ligand and/or the cellular conditions. In this study, we have systematically compared the effects of SDF-1 alpha and gp120(IIIB) (with or without CD4) on several intracellular pathways involved in cell survival, including MAP kinases and Akt-dependent pathways. Our data show that gp120(IIIB) and SDF-1 alpha are both potent activators of MAP kinases in neuronal and non-neuronal cells, though the kinetic of these responses is slightly different. Furthermore, unlike SDF-1 alpha, and independently of CD4, gp120(IIIB) is unable to stimulate Akt and some of its antiapoptotic targets (NF-kappa B and MDM2)--despite its ability to activate other signaling pathways in the same conditions. Finally, the viral protein is more efficient in recruiting some effectors (e.g., JNK) than others in comparison with SDF-1 alpha (EC(50) = 0.1 vs. 0.6 nM). We conclude that the intrinsic efficacy of the two ligands is significantly different and is pathway dependent. These findings have important implications for our understanding of CXCR4-mediated responses in the CNS, as well as the role of this coreceptor in HIV neuropathogenesis.
Collapse
Affiliation(s)
- Muhammad Z Khan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Ostrom RS, Insel PA. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 2004; 143:235-45. [PMID: 15289291 PMCID: PMC1575337 DOI: 10.1038/sj.bjp.0705930] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/26/2004] [Accepted: 06/01/2004] [Indexed: 11/09/2022] Open
Abstract
The many components of G-protein-coupled receptor (GPCR) signal transduction provide cells with numerous combinations with which to customize their responses to hormones, neurotransmitters, and pharmacologic agonists. GPCRs function as guanine nucleotide exchange factors for heterotrimeric (alpha, beta, gamma) G proteins, thereby promoting exchange of GTP for GDP and, in turn, the activation of 'downstream' signaling components. Recent data indicate that individual cells express mRNA for perhaps over 100 different GPCRs (out of a total of nearly a thousand GPCR genes), several different combinations of G-protein subunits, multiple regulators of G-protein signaling proteins (which function as GTPase activating proteins), and various isoforms of downstream effector molecules. The differential expression of such protein combinations allows for modulation of signals that are customized for a specific cell type, perhaps at different states of maturation or differentiation. In addition, in the linear arrangement of molecular interactions involved in a given GPCR-G-protein-effector pathway, one needs to consider the localization of receptors and post-receptor components in subcellular compartments, microdomains, and molecular complexes, and to understand the movement of proteins between these compartments. Co-localization of signaling components, many of which are expressed at low overall concentrations, allows cells to tailor their responses by arranging, or spatially organizing in unique and kinetically favorable ways, the molecules involved in GPCR signal transduction. This review focuses on the role of lipid rafts and a subpopulation of such rafts, caveolae, as a key spatial compartment enriched in components of GPCR signal transduction. Recent data suggest cell-specific patterns for expression of those components in lipid rafts and caveolae. Such domains likely define functionally important, cell-specific regions of signaling by GPCRs and drugs active at those GPCRs.
Collapse
Affiliation(s)
- Rennolds S Ostrom
- Department of Pharmacology and the Vascular Biology Center of Excellence, University of Tennessee Health Science Center, Memphis, TN 38163, U.S.A
| | - Paul A Insel
- Department of Pharmacology, 0636, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, U.S.A
- Department of Medicine, 0636, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, U.S.A
| |
Collapse
|
245
|
Harding SE, Gong H. ?-Adrenoceptor Blockers as Agonists: Coupling of ?2-Adrenoceptors to Multiple G-Proteins in the Failing Human Heart. ACTA ACUST UNITED AC 2004; 10:181-5; quiz 186-7. [PMID: 15314476 DOI: 10.1111/j.1527-5299.2004.02052.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beta blockers have been shown in clinical trials to improve cardiac function and reduce mortality of heart failure patients. However, these agents require careful titration since they can produce an initial decrease in cardiac output. The authors have recently shown that beta blockers, including some used clinically, can directly depress contraction of myocardium from the failing (but not nonfailing) human heart. This occurs on single ventricular myocytes and is therefore completely independent of any inhibition of endogenous catecholamines. The effect appears to be mediated primarily by the beta2-adrenoceptor (AR) and is dependent on the inhibitory guanine nucleotide binding protein, Gi. Using a transgenic mouse model, as well as adenoviral vectors to overexpress Gi or the human beta2AR in adult myocytes of various species, the authors demonstrate that agents that are blockers for bAR/Gs coupling can be agonists at a beta2AR/Gi-coupled form of the receptor. The negative effect of beta blockers could contribute to the initial cardiodepression that is observed when introducing these agents in heart failure patients. However, in the long term, beta2AR/Gi coupling may enhance the ability of beta blockers to protect and improve the function of the failing heart.
Collapse
Affiliation(s)
- Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College School of Science, Technology and Medicine, Dovehouse Street, London SW3 6LY, United Kingdom.
| | | |
Collapse
|
246
|
De Deurwaerdère P, Navailles S, Berg KA, Clarke WP, Spampinato U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 2004; 24:3235-41. [PMID: 15056702 PMCID: PMC6730027 DOI: 10.1523/jneurosci.0112-04.2004] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous research has pointed out that serotonin2c (5-HT2C) receptor, a subtype of 5-HT receptors belonging to the G-protein-coupled receptor superfamily, modulates the activity of mesencephalic dopamine (DA) neurons, the dysfunction of which is involved in devastating diseases such as schizophrenia, Parkinson's disease, and drug addiction. In the present study, using in vivo intracerebral microdialysis and Chinese hamster ovary (CHO) cells expressing 5-HT2C receptors to identify appropriate 5-HT2C receptor ligands, we sought to determine whether the property of 5-HT2C receptors to spontaneously activate intracellular signaling pathways in vitro (constitutive activity) participates in the tonic inhibitory control that they exert on DA release in the rat striatum and nucleus accumbens in vivo. In CHO cells, the purported antagonist 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f] indole hydrochloride (SB 206553), but not 6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridin-3-yl carbamoyl] indoline (SB 242084), decreased basal inositol phosphate accumulation, thus behaving as a 5-HT2C inverse agonist. Its effect was prevented by SB 242084. In vivo, SB 206553 (1-10 mg/kg) elicited a dose-dependent and clear-cut increase in accumbal and striatal DA release compared with SB 242084 (1-10 mg/kg), and the 5-HT2C agonist S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine hydrochloride (Ro-60-0175) (0.3-3 mg/kg) inhibited DA release. Pretreatment by SB 242084 reversed the change in DA release elicited by Ro-60-0175 and SB 206553. Furthermore, SB 206553-stimulated DA release was insensitive to reduction of 5-HT neuronal function induced by the 5-HT1A agonist (+/-)-8-hydroxy-2-dipropylaminotetralin or intra-raphe injections of 5,7-dihydroxytryptamine neurotoxin. The obtained results provide the first in vivo evidence that constitutive activity of the 5-HT2C receptor tonically inhibits mesencephalic DA neurons and underscore the need for a better understanding of the pathophysiological role of constitutive receptor activity.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Unité Mixte de Recherche Centre National de la Recherche Scientifique 5541-Université Victor Segalen Bordeaux 2, Boîte Postale 31, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
247
|
Ogilvie P, Thelen S, Moepps B, Gierschik P, da Silva Campos AC, Baggiolini M, Thelen M. Unusual Chemokine Receptor Antagonism Involving a Mitogen-Activated Protein Kinase Pathway. THE JOURNAL OF IMMUNOLOGY 2004; 172:6715-22. [PMID: 15153488 DOI: 10.4049/jimmunol.172.11.6715] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antagonism of chemokines on chemokine receptors constitutes a new regulatory principle in inflammation. Eotaxin (CCL11), an agonist for CCR3 and an attractant of eosinophils, basophils, and Th2 lymphocytes, was shown to act as an antagonist for CCR2, which is widely expressed on leukocytes and is essential for inflammatory responses. In this report we provide direct evidence for a novel mechanism how chemokine receptor function can be arrested by endogenous ligands. We show that binding of eotaxin to CCR2 stimulates the mitogen-activated protein kinases extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of the mitogen-activated protein kinase kinase 1/2-ERK pathway is indispensable for eotaxin-mediated attenuation of CCR2 function, as inhibition of ERK phosphorylation abolishes the arresting effect. ERK is also activated by CCR2 agonists, e.g., monocyte chemoattractant protein-1 (CCL2). However, the involved pathways are different, although in either case coupling of CCR2 to pertussis toxin-sensitive heterotrimeric G proteins is necessary. The results are in agreement with the view that CCR2 could assume different activation states depending on the ligand it encounters. With respect to actin polymerization and calcium mobilization, the different activation states lead to agonistic and antagonistic responses. It is conceivable that the intracellular signal transduction pathway that is activated by eotaxin could cause an attenuation of proinflammatory responses mediated by CCR2.
Collapse
|
248
|
Abstract
Pharmacological receptor theory is discussed with special reference to advances made during the past 25 years. Thus, the operational model has supplanted analysis of drug-receptor interaction in functional systems whereas the extended ternary complex model is used routinely to simulate quantitatively G-protein-coupled receptor (GPCR) behavior. Six new behaviors for GPCRs, centered on spontaneous production of receptor active states, ligand-selective receptor active states, oligomerization with other proteins (receptor and non-receptor) and allosteric mechanisms, have been characterized and each holds the potential for new drug discovery for therapeutic benefit.
Collapse
Affiliation(s)
- Terry Kenakin
- Assay Development Compound Profiling, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
249
|
Takezako T, Gogonea C, Saad Y, Noda K, Karnik SS. “Network Leaning” as a Mechanism of Insurmountable Antagonism of the Angiotensin II Type 1 Receptor by Non-peptide Antagonists. J Biol Chem 2004; 279:15248-57. [PMID: 14754891 DOI: 10.1074/jbc.m312728200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mechanistic understanding of the insurmountable antagonism of the angiotensin II type 1 (AT(1)) receptor could be fundamental in the quest for discovery and improvement of drugs. Candesartan and EXP3174 are competitive, reversible insurmountable antagonists of the AT(1) receptor. They contain di-acidic substitutions, whereas the surmountable antagonist, losartan, contains only one acidic group. We tested the hypothesis that these two classes of ligands interact with the AT(1) receptor through similar but not identical bonds and that the differences in the acid-base group contacts are critical for insurmountable antagonism. By pharmacological characterization of site-directed AT(1) receptor mutants expressed in COS1 cells we show that specific interactions with Gln(257) in transmembrane 6 distinguishes insurmountable antagonists and that abolishing these interactions transforms insurmountable to surmountable antagonism. In the Q257A mutant, the dissociation rate of [(3)H]candesartan is 2.8-fold more than the rate observed with wild type, and the association rate was reduced 4-fold lower than the wild type. The pattern of antagonism of angiotensin II concentration-response in the Q257A mutant pretreated with EXP3174 and candesartan is surmountable. We propose that leaning ability of insurmountable antagonists on Gln(257) in the wild-type receptor is the basis of an antagonist-mediated conformational transition, which is responsible for both slow dissociation and inhibition of maximal IP response.
Collapse
Affiliation(s)
- Takanobu Takezako
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
250
|
Brink CB, Harvey BH, Bodenstein J, Venter DP, Oliver DW. Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology. Br J Clin Pharmacol 2004; 57:373-87. [PMID: 15025734 PMCID: PMC1884481 DOI: 10.1111/j.1365-2125.2003.02046.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 11/03/2003] [Indexed: 12/23/2022] Open
Abstract
PROBLEM STATEMENT During especially the past two decades many discoveries in biological sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future. SCOPE AND CONTENTS OF REVIEW In this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor 'cross-talk' and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications. CONCLUSIONS It is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.
Collapse
Affiliation(s)
- C B Brink
- Division of Pharmacology, School of Pharmacy, Potchefstroom University for CHE, Potchefstroom, South Africa.
| | | | | | | | | |
Collapse
|