201
|
Des Marais DL, Juenger TE. Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Ann N Y Acad Sci 2010; 1206:56-79. [PMID: 20860683 DOI: 10.1111/j.1749-6632.2010.05703.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in understanding the mechanisms of adaptive plant abiotic stress response has historically come from two separate fields. Molecular biologists employ mutagenic screens, experimental manipulations, and controlled stress treatment to identify genes that, when perturbed, have fairly large effects on phenotype. By contrast, quantitative and evolutionary geneticists generally study naturally occurring variants to inform multigenic models of trait architecture in an effort to predict, for example, the evolutionary response to selection. We discuss five emerging themes from the molecular study of osmotic stress response: the multigenic nature of adaptive response, the modular organization of response to specific cues, the pleiotropic effects of key signaling proteins, the integration of many environmental signals, and the abundant cross-talk between signaling pathways. We argue that these concepts can be incorporated into existing models of trait evolution and provide examples of what may constitute the molecular basis of plasticity and evolvability of abiotic stress response. We conclude by considering future directions in the study of the functional molecular evolution of abiotic stress response that may facilitate new discoveries in molecular biology, evolutionary studies, and plant breeding.
Collapse
Affiliation(s)
- David L Des Marais
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
202
|
Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1001-21. [PMID: 20523964 PMCID: PMC2938441 DOI: 10.1007/s00122-010-1351-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/28/2010] [Indexed: 05/18/2023]
Abstract
A restricted range in height and phenology of the elite Seri/Babax recombinant inbred line (RIL) population makes it ideal for physiological and genetic studies. Previous research has shown differential expression for yield under water deficit associated with canopy temperature (CT). In the current study, 167 RILs plus parents were phenotyped under drought (DRT), hot irrigated (HOT), and temperate irrigated (IRR) environments to identify the genomic regions associated with stress-adaptive traits. In total, 104 QTL were identified across a combination of 115 traits × 3 environments × 2 years, of which 14, 16, and 10 QTL were associated exclusively with DRT, HOT, and IRR, respectively. Six genomic regions were related to a large number of traits, namely 1B-a, 2B-a, 3B-b, 4A-a, 4A-b, and 5A-a. A yield QTL located on 4A-a explained 27 and 17% of variation under drought and heat stress, respectively. At the same location, a QTL explained 28% of the variation in CT under heat, while 14% of CT variation under drought was explained by a QTL on 3B-b. The T1BL.1RS (rye) translocation donated by the Seri parent was associated with decreased yield in this population. There was no co-location of consistent yield and phenology or height-related QTL, highlighting the utility of using a population with a restricted range in anthesis to facilitate QTL studies. Common QTL for drought and heat stress traits were identified on 1B-a, 2B-a, 3B-b, 4A-a, 4B-b, and 7A-a confirming their generic value across stresses. Yield QTL were shown to be associated with components of other traits, supporting the prospects for dissecting crop performance into its physiological and genetic components in order to facilitate a more strategic approach to breeding.
Collapse
Affiliation(s)
| | | | - Ky L. Mathews
- CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, QLD 4067 Australia
| | - C. Lynne McIntyre
- CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, QLD 4067 Australia
| | | | - Scott C. Chapman
- CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, QLD 4067 Australia
| |
Collapse
|
203
|
Ainsworth EA, Ort DR. How do we improve crop production in a warming world? PLANT PHYSIOLOGY 2010; 154:526-30. [PMID: 20921178 PMCID: PMC2949002 DOI: 10.1104/pp.110.161349] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/27/2010] [Indexed: 05/18/2023]
Affiliation(s)
| | - Donald R. Ort
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Departments of Plant Biology and Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
204
|
Moyle LC, Muir CD. Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evol Appl 2010; 3:409-21. [PMID: 25567935 PMCID: PMC3352507 DOI: 10.1111/j.1752-4571.2010.00143.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 02/05/2023] Open
Abstract
Although traditionally separated by different aims and methodologies, research on agricultural and evolutionary problems shares a common goal of understanding the mechanisms underlying functionally important traits. As such, research in both fields offers potential complementary and reciprocal insights. Here, we discuss adaptive stress responses (specifically to water stress) as an example of potentially fruitful research reciprocity, where agricultural research has clearly produced advances that could benefit evolutionary studies, while evolutionary studies offer approaches and insights underexplored in crop studies. We focus on research on Solanum species that include the domesticated tomato and its wild relatives. Integrated approaches to understanding ecological adaptation are particularly attractive in tomato and its wild relatives: many presumptively adaptive phenotypic differences characterize wild species, and the physiological and mechanistic basis of many relevant traits and environmental responses has already been examined in the context of cultivated tomato and some wild species. We highlight four specific instances where these reciprocal insights can be combined to better address questions that are fundamental both to agriculture and evolution.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
205
|
Obara M, Tamura W, Ebitani T, Yano M, Sato T, Yamaya T. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4(+) concentrations in hydroponic conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:535-47. [PMID: 20390245 PMCID: PMC2903690 DOI: 10.1007/s00122-010-1328-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/17/2010] [Indexed: 05/18/2023]
Abstract
Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4(+) as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between 'Koshihikari', a japonica variety, and 'Kasalath', an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 microM NH4(+). Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a 'Kasalath' segment of SL-218, which was localized to the long-arm of chromosome 6. The 'Kasalath' allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4(+) concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5-21.1% longer than that of 'Koshihikari' under different NH4(+) concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the 'Nipponbare' genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and 'Koshihikari'.
Collapse
Affiliation(s)
- Mitsuhiro Obara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami Iwate, 024-0003, Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3553-3562. [PMID: 20627896 DOI: 10.1093/jxb/erq192] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A previous study on maize F(2:3) families derived from Lo964xLo1016 highlighted one QTL in bin 1.06 (hereafter named root-yield-1.06) affecting root and agronomic traits of plants grown in well-watered (WW) and water-stressed (WS) conditions. Starting from different F(4) families, two pairs of near isogenic lines (NILs) were developed at root-yield-1.06. The objective of this study was to evaluate root-yield-1.06 effects across different water regimes, genetic backgrounds, and inbreeding levels. The NILs per se and their crosses with Lo1016 and Lo964 were tested in 2008 and 2009 near to Bologna, with the well-watered (WW) and water-stressed (WS) treatments providing, on average, 70 mm and 35 mm of water, respectively. For NILs per se, the interactions QTL x water regime and QTL x family were negligible in most cases; the QTL additive effects across families were significant for several traits, especially root clump weight. For NILs crosses, analogously to NILs per se, the interactions were generally negligible and the additive effects across water regimes and families were significant for most traits, especially grain yield. A meta-analysis carried out considering the QTLs described in this and previous studies inferred one single locus as responsible for the effects on roots and agronomic traits. Our results show that root-yield-1.06 has a major constitutive effect on root traits, plant vigour and productivity across water regimes, genetic backgrounds, and inbreeding levels. These features suggest that root-yield-1.06 is a valuable candidate for cloning the sequence underlying its effects and for marker-assisted selection to improve yield stability in maize.
Collapse
Affiliation(s)
- Pierangelo Landi
- Department of Agroenvironmental Sciences and Technology, University of Bologna, Viale Fanin 44, I-40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
207
|
Berger B, Parent B, Tester M. High-throughput shoot imaging to study drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3519-28. [PMID: 20660495 DOI: 10.1093/jxb/erq201] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drought is a complex stress which elicits a wide variety of plant responses. As such, genetic studies of drought are particularly difficult. Elucidation of the genetic basis of components contributing to drought tolerance is likely to be more tractable than that of overall drought tolerance. Certain of the traits which contribute to drought tolerance in plants and the high-throughput phenotyping techniques available to measure those traits are described in this paper. On the basis of the dynamic nature of drought, plant development, and the resulting stress response, the focus is on non-destructive imaging techniques which allow a temporal resolution and monitoring of the same plants throughout the experiment. Information on the physiological changes in response to drought over time is vital in order to identify and characterize different drought-tolerance mechanisms. High-throughput imaging provides a valuable new tool which allows the dissection of plant responses to drought into a series of component traits.
Collapse
Affiliation(s)
- Bettina Berger
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
208
|
Affiliation(s)
- John S Boyer
- College of Earth, Ocean and Environment (formerly College of Marine Studies), University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA.
| |
Collapse
|
209
|
Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3211-22. [PMID: 20525798 DOI: 10.1093/jxb/erq152] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, it has not contributed significantly to cultivar improvement for adaptation to low-yielding environments and breeding has relied largely on direct phenotypic selection for improved performance in these difficult environments. The limited success of the physiological and molecular breeding approaches now suggests that a careful rethink is needed of our strategies in order to understand better and breed for drought tolerance. A research programme for increasing drought tolerance of wheat should tackle the problem in a multi-disciplinary approach, considering interaction between multiple stresses and plant phenology, and integrating the physiological dissection of drought-tolerance traits and the genetic and genomics tools, such as quantitative trait loci (QTL), microarrays, and transgenic crops. In this paper, recent advances in the genetics and genomics of drought tolerance in wheat and barley are reviewed and used as a base for revisiting approaches to analyse drought tolerance in wheat. A strategy is then described where a specific environment is targeted and appropriate germplasm adapted to the chosen environment is selected, based on extensive definition of the morpho-physiological and molecular mechanisms of tolerance of the parents. This information was used to create structured populations and develop models for QTL analysis and positional cloning.
Collapse
Affiliation(s)
- Delphine Fleury
- Australian Centre for Plant Functional Genomics (ACPFG), University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | | | | | | |
Collapse
|
210
|
Asins MJ, Bolarín MC, Pérez-Alfocea F, Estañ MT, Martínez-Andújar C, Albacete A, Villalta I, Bernet GP, Dodd IC, Carbonell EA. Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:105-15. [PMID: 20180091 DOI: 10.1007/s00122-010-1294-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 02/01/2010] [Indexed: 05/10/2023]
Abstract
Grafting desirable crop varieties on stress-tolerant rootstocks provides an opportunity to increase crop salt tolerance. Here, a commercial hybrid tomato variety was grafted on two populations of recombinant inbred lines developed from a salt-sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt-tolerant lines, as male parents, from S. pimpinellifolium, the P population, and S. cheesmaniae, the C population, to identify an easy screening method for identifying rootstocks conferring salt tolerance in terms of fruit yield. Potential physiological components of salt tolerance were assessed in the scion: leaf biomass, [Na(+)], nutrition, water relations and xylem ABA concentration. A significant correlation between scion fruit yield and scion leaf fresh weight, water potential or the ABA concentration was found in the C population under salinity, but the only detected QTL did not support this relationship. The rootstocks of the P population clearly affected seven traits related to the sodium, phosphorous and copper concentrations and water content of the scion leaf, showing heritability estimates around 0.4 or higher. According to heritability estimates in the P population, up to five QTLs were detected per trait. QTLs contributing over 15% to the total variance were found for P and Cu concentrations and water content of the scion leaf, and the proportion of fresh root weight. Correlation and QTL analysis suggests that rootstock-mediated improvement of fruit yield in the P population under salinity is mainly explained by the rootstock's ability to minimise perturbations in scion water status.
Collapse
Affiliation(s)
- M J Asins
- IVIA, Carretera Moncada-Náquera, km 4.5, Apartado Oficial, 46113, Moncada, Valencia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Chin JH, Lu X, Haefele SM, Gamuyao R, Ismail A, Wissuwa M, Heuer S. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1073-86. [PMID: 20035315 DOI: 10.1007/s00122-009-1235-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 11/30/2009] [Indexed: 05/05/2023]
Abstract
Marker-assisted breeding is a very useful tool for breeders but still lags behind its potential because information on the effect of quantitative trait loci (QTLs) in different genetic backgrounds and ideal molecular markers are unavailable. Here, we report on some first steps toward the validation and application of the major rice QTL Phosphate uptake 1 (Pup1) that confers tolerance of phosphorus (P) deficiency in rice (Oryza sativa L.). Based on the Pup1 genomic sequence of the tolerant donor variety Kasalath that recently became available, markers were designed that target (1) putative genes that are partially conserved in the Nipponbare reference genome and (2) Kasalath-specific genes that are located in a large insertion-deletion (INDEL) region that is absent in Nipponbare. Testing these markers in 159 diverse rice accessions confirmed their diagnostic value across genotypes and showed that Pup1 is present in more than 50% of rice accessions adapted to stress-prone environments, whereas it was detected in only about 10% of the analyzed irrigated/lowland varieties. Furthermore, the Pup1 locus was detected in more than 80% of the analyzed drought-tolerant rice breeding lines, suggesting that breeders are unknowingly selecting for Pup1. A hydroponics experiment revealed genotypic differences in the response to P deficiency between upland and irrigated varieties but confirmed that root elongation is independent of Pup1. Contrasting Pup1 near-isogenic lines (NILs) were subsequently grown in two different P-deficient soils and environments. Under the applied aerobic growth conditions, NILs with the Pup1 locus maintained significantly higher grain weight plant(-1) under P deprivation in comparison with intolerant sister lines without Pup1. Overall, the data provide evidence that Pup1 has the potential to improve yield in P-deficient and/or drought-prone environments and in diverse genetic backgrounds.
Collapse
Affiliation(s)
- Joong Hyoun Chin
- International Rice Research Institute (IRRI), Plant Breeding, Genetics, and Biotechnology Division (PBGB), DAPO Box 7777, Metro Manila, Philippines
| | | | | | | | | | | | | |
Collapse
|
212
|
Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci U S A 2010; 107:5669-74. [PMID: 20212128 PMCID: PMC2851765 DOI: 10.1073/pnas.0910798107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.
Collapse
Affiliation(s)
- Zhonghai Ren
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Zhimin Zheng
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100094, China
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Viswanathan Chinnusamy
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jianhua Zhu
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Department of Statistics, University of California, Riverside, CA 92521; and
| | - Xinping Cui
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Kei Iida
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Jian-Kang Zhu
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
- Center for Plant Stress Genomics and Technology, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
213
|
Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:443-62. [PMID: 20192746 DOI: 10.1146/annurev-arplant-042809-112116] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions such as drought, heat, or salinity cause extensive losses to agricultural production worldwide. Progress in generating transgenic crops with enhanced tolerance to abiotic stresses has nevertheless been slow. The complex field environment with its heterogenic conditions, abiotic stress combinations, and global climatic changes are but a few of the challenges facing modern agriculture. A combination of approaches will likely be needed to significantly improve the abiotic stress tolerance of crops in the field. These will include mechanistic understanding and subsequent utilization of stress response and stress acclimation networks, with careful attention to field growth conditions, extensive testing in the laboratory, greenhouse, and the field; the use of innovative approaches that take into consideration the genetic background and physiology of different crops; the use of enzymes and proteins from other organisms; and the integration of QTL mapping and other genetic and breeding tools.
Collapse
Affiliation(s)
- Ron Mittler
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
214
|
Ashraf M. Inducing drought tolerance in plants: Recent advances. Biotechnol Adv 2010; 28:169-83. [DOI: 10.1016/j.biotechadv.2009.11.005] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022]
|
215
|
Costa JH, de Melo DF, Gouveia Z, Cardoso HG, Peixe A, Arnholdt-Schmitt B. The alternative oxidase family of Vitis vinifera reveals an attractive model to study the importance of genomic design. PHYSIOLOGIA PLANTARUM 2009; 137:553-65. [PMID: 19682279 DOI: 10.1111/j.1399-3054.2009.01267.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.
Collapse
Affiliation(s)
- José Hélio Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, PO Box 6029, 60455-900, Fortaleza, Ceará, Brazil
| | | | | | | | | | | |
Collapse
|
216
|
Reynolds M, Manes Y, Izanloo A, Langridge P. Phenotyping approaches for physiological breeding and gene discovery in wheat. ANNALS OF APPLIED BIOLOGY 2009. [PMID: 0 DOI: 10.1111/j.1744-7348.2009.00351.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
217
|
Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B. Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. PHYSIOLOGIA PLANTARUM 2009; 137:532-52. [PMID: 19941624 DOI: 10.1111/j.1399-3054.2009.01302.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Olive (Olea europaea L.) trees are mainly propagated by adventitious rooting of semi-hardwood cuttings. However, efficient commercial propagation of valuable olive tree cultivars or landraces by semi-hardwood cuttings can often be restricted by a low rooting capacity. We hypothesize that root induction is a plant cell reaction linked to oxidative stress and that activity of stress-induced alternative oxidase (AOX) is importantly involved in adventitious rooting. To identify AOX as a source for potential functional marker sequences that may assist tree breeding, genetic variability has to be demonstrated that can affect gene regulation. The paper presents an applied, multidisciplinary research approach demonstrating first indications of an important relationship between AOX activity and differential adventitious rooting in semi-hardwood cuttings. Root induction in the easy-to-root Portuguese cultivar 'Cobrançosa' could be significantly reduced by treatment with salicyl-hydroxamic acid, an inhibitor of AOX activity. On the contrary, treatment with H2O2 or pyruvate, both known to induce AOX activity, increased the degree of rooting. Recently, identification of several O. europaea (Oe) AOX gene sequences has been reported from our group. Here we present for the first time partial sequences of OeAOX2. To search for polymorphisms inside of OeAOX genes, partial OeAOX2 sequences from the cultivars 'Galega vulgar', 'Cobrançosa' and 'Picual' were cloned from genomic DNA and cDNA, including exon, intron and 3'-untranslated regions (3'-UTRs) sequences. The data revealed polymorphic sites in several regions of OeAOX2. The 3'-UTR was the most important source for polymorphisms showing 5.7% of variability. Variability in the exon region accounted 3.4 and 2% in the intron. Further, analysis performed at the cDNA from microshoots of 'Galega vulgar' revealed transcript length variation for the 3'-UTR of OeAOX2 ranging between 76 and 301 bp. The identified polymorphisms and 3'-UTR length variation can be explored in future studies for effects on gene regulation and a potential linkage to olive rooting phenotypes in view of marker-assisted plant selection.
Collapse
|
218
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|
219
|
Muir CD, Moyle LC. Antagonistic epistasis for ecophysiological trait differences between Solanum species. THE NEW PHYTOLOGIST 2009; 183:789-802. [PMID: 19659589 DOI: 10.1111/j.1469-8137.2009.02949.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epistasis, the nonadditive interaction between loci, is thought to play a role in many fundamental evolutionary processes, including adaptive differentiation and speciation. Focusing on species differences in ecophysiological traits, we examined the strength and direction of pairwise epistatic interactions between target chromosomal regions from one species, when co-introgressed into the genetic background of a foreign species. A full diallel cross was performed using 15 near-isogenic lines (NILs) constructed between two tomato species (Solanum habrochaites and Solanum lycopersicum) to compare the phenotypic effects of each chromosomal region singly and in combination with each other region. We detected main effect quantitative trait loci (QTLs) for two of our three focal traits. Epistatic effects accounted for c. 25% of detected effects on trait means, depending on the trait. Strikingly, all but two interactions were antagonistic, with the combined effect of chromosomal regions acting in the opposite direction from that of one or both individual chromosomal regions. Our study is one of the few to systematically examine pairwise epistatic effects in a nonmicrobial system. Our results suggest that epistatic interactions can contribute substantially to the genetic basis of traits involved in adaptive species differentiation, especially highly complex, multivariate traits.
Collapse
Affiliation(s)
- Christopher D Muir
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47401, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47401, USA
| |
Collapse
|
220
|
Hochholdinger F, Tuberosa R. Genetic and genomic dissection of maize root development and architecture. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:172-7. [PMID: 19157956 DOI: 10.1016/j.pbi.2008.12.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/26/2008] [Accepted: 12/06/2008] [Indexed: 05/21/2023]
Abstract
The complex architecture and plasticity of the maize root system is controlled by a plethora of genes. Mutant analyses have identified genes regulating shoot-borne root initiation (RTCS) and root hair elongation (RTH1 and RTH3). Quantitative trait locus (QTL) studies have highlighted the importance of seminal roots, lateral roots, and root hairs in phosphorus acquisition. Additionally, QTLs that influence root features were shown to affect yield under different water regimes and under flooding conditions. Finally, proteome and transcriptome analyses provided insights into maize root development and identified candidate genes associated with cell specification, and lateral root initiation in pericycle cells. The targeted application of forward-genetics and reverse-genetics approaches will accelerate the unraveling of the functional basis of root development and architecture.
Collapse
Affiliation(s)
- Frank Hochholdinger
- University of Tuebingen, Center for Plant Molecular Biology (ZMBP), Department of General Genetics, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | |
Collapse
|
221
|
Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 2009; 9:377-96. [PMID: 19330365 DOI: 10.1007/s10142-009-0123-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 12/11/2022]
Abstract
Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats.
Collapse
|
222
|
Ergen NZ, Budak H. Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. PLANT, CELL & ENVIRONMENT 2009; 32:220-36. [PMID: 19054353 DOI: 10.1111/j.1365-3040.2008.01915.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A deeper understanding of the drought response and genetic improvement of the cultivated crops for better tolerance requires attention because of the complexity of the drought response syndrome and the loss of genetic diversity during domestication. We initially screened about 200 wild emmer wheat genotypes and then focused on 26 of these lines, which led to the selection of two genotypes with contrasting responses to water deficiency. Six subtractive cDNA libraries were constructed, and over 13 000 expressed sequence tags (ESTs) were sequenced using leaf and root tissues of wild emmer wheat genotypes TR39477 (tolerant) and TTD-22 (sensitive), and modern wheat variety Kiziltan drought stressed for 7 d. Clustering and assembly of ESTs resulted in 2376 unique sequences (1159 without hypothetical proteins and no hits), 75% of which were represented only once. At this level of EST sampling, each tissue shared a very low percentage of transcripts (13-26%). The data obtained indicated that the genotypes shared common elements of drought stress as well as distinctly differential expression patterns that might be illustrative of their contrasting ability to tolerate water deficiencies. The new EST data generated here provide a highly diverse and rich source for gene discovery in wheat and other grasses.
Collapse
Affiliation(s)
- Neslihan Z Ergen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Turkey
| | | |
Collapse
|
223
|
Semenov MA, Halford NG. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2791-804. [PMID: 19487387 DOI: 10.1093/jxb/erp164] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Global warming is causing changes in temperature at a rate unmatched by any temperature change over the last 50 million years. Crop cultivars have been selected for optimal performance under the current climatic conditions. With global warming, characterized by shifts in weather patterns and increases in frequency and magnitude of extreme weather events, new ideotypes will be required with a different set of physiological traits. Severe pressure has been placed on breeders to produce new crop cultivars for a future, rapidly-changing environment that can only be predicted with a great degree of uncertainty and is not available in the present day for direct experiments or field trials. Mathematical modelling, therefore, in conjunction with crop genetics, represents a powerful tool to assist in the breeding process. In this review, drought and high temperature are considered as key stress factors with a high potential impact on crop yield that are associated with global warming, focusing on their effects on wheat. Modelling techniques are described which can help to quantify future threats to wheat growth under climate change and simple component traits that are amenable to genetic analysis are identified. This approach could be used to support breeding programmes for new wheat cultivars suitable for future environments brought about by the changing climate.
Collapse
Affiliation(s)
- Mikhail A Semenov
- Department of Biomathematics and Bioinformatics, Rothamsted Research, Centre for Mathematical and Computational Biology, Harpenden, Herts AL5 2JQ, UK
| | | |
Collapse
|
224
|
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ. Raising yield potential in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1899-918. [PMID: 19363203 DOI: 10.1093/jxb/erp016] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in crop research have the potential to accelerate genetic gains in wheat, especially if co-ordinated with a breeding perspective. For example, improving photosynthesis by exploiting natural variation in Rubisco's catalytic rate or adopting C(4) metabolism could raise the baseline for yield potential by 50% or more. However, spike fertility must also be improved to permit full utilization of photosynthetic capacity throughout the crop life cycle and this has several components. While larger radiation use efficiency will increase the total assimilates available for spike growth, thereby increasing the potential for grain number, an optimized phenological pattern will permit the maximum partitioning of the available assimilates to the spikes. Evidence for underutilized photosynthetic capacity during grain filling in elite material suggests unnecessary floret abortion. Therefore, a better understanding of its physiological and genetic basis, including possible signalling in response to photoperiod or growth-limiting resources, may permit floret abortion to be minimized for a more optimal source:sink balance. However, trade-offs in terms of the partitioning of assimilates to competing sinks during spike growth, to improve root anchorage and stem strength, may be necessary to prevent yield losses as a result of lodging. Breeding technologies that can be used to complement conventional approaches include wide crossing with members of the Triticeae tribe to broaden the wheat genepool, and physiological and molecular breeding strategically to combine complementary traits and to identify elite progeny more efficiently.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT) Int. Apdo. Postal 6-641, 06600 México, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
225
|
Habash DZ, Kehel Z, Nachit M. Genomic approaches for designing durum wheat ready for climate change with a focus on drought. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2805-15. [PMID: 19584119 DOI: 10.1093/jxb/erp211] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Climate change is projected to have a significant impact on temperature and precipitation profiles in the Mediterranean basin. The incidence and severity of drought will become commonplace and this will reduce the productivity of rain-fed crops such as durum wheat. Genetic diversity is the material basis for crop improvement and plant breeding has exploited naturally occurring variation to deliver cultivars with improved resistance to abiotic stresses. The coupling of new genomic tools, technologies, and resources with genetic approaches is essential to underpin wheat breeding through marker-assisted selection and hence mitigate climate change. Improvements in crop performance under abiotic stresses have primarily targeted yield-related traits and it is anticipated that the application of genomic technologies will introduce new target traits for consideration in wheat breeding for resistance to drought. Many traits relating to the plant's response and adaptation to drought are complex and multigenic, and quantitative genetics coupled with genomic technologies have the potential to dissect complex genetic traits and to identify regulatory loci, genes and networks. Full realization of our abilities to manipulate metabolism, transduction pathways, and transcription factors for crop improvement ultimately relies on our basic understanding of the regulation of plant networks at all levels of function.
Collapse
Affiliation(s)
- D Z Habash
- Plant Science Department, Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | |
Collapse
|