201
|
Godina C, Pollak MN, Jernström H. Targeting IGF-IR improves neoadjuvant chemotherapy efficacy in breast cancers with low IGFBP7 expression. NPJ Precis Oncol 2024; 8:212. [PMID: 39362991 PMCID: PMC11450189 DOI: 10.1038/s41698-024-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
There has been a long-standing interest in targeting the type 1 insulin-like growth factor receptor (IGF-1R) signaling system in breast cancer due to its key role in neoplastic proliferation and survival. However, no IGF-1R targeting agent has shown substantial clinical benefit in controlled phase 3 trials, and no biomarker has been shown to have clinical utility in the prediction of benefit from an IGF-1R targeting agent. IGFBP7 is an atypical insulin-like growth factor binding protein as it has a higher affinity for the IGF-1R than IGF ligands. We report that low IGFBP7 gene expression identifies a subset of breast cancers for which the addition of ganitumab, an anti-IGF-1R monoclonal antibody, to neoadjuvant chemotherapy, substantially improved the pathological complete response rate compared to neoadjuvant chemotherapy alone. The pCR rate in the chemotherapy plus ganitumab arm was 46.9% in patients in the lowest quartile of IGFBP7 expression, in contrast to only 5.6% in the highest quartile. Furthermore, high IGFBP7 expression predicted increased distant metastasis risk. If our findings are confirmed, decisions to halt the development of IGF-1R targeting drugs, which were based on disappointing results of prior trials that did not use predictive biomarkers, should be reviewed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC, Canada
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
202
|
Isaac AR, Chauvet MG, Lima-Filho R, Wagner BDA, Caroli BG, Leite REP, Suemoto CK, Nunes PV, De Felice FG, Ferreira ST, Lourenco MV. Defective regulation of the eIF2-eIF2B translational axis underlies depressive-like behavior in mice and correlates with major depressive disorder in humans. Transl Psychiatry 2024; 14:397. [PMID: 39349438 PMCID: PMC11442801 DOI: 10.1038/s41398-024-03128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Major depressive disorder (MDD) is a significant cause of disability in adults worldwide. However, the underlying causes and mechanisms of MDD are not fully understood, and many patients are refractory to available therapeutic options. Impaired control of brain mRNA translation underlies several neurodevelopmental and neurodegenerative conditions, including autism spectrum disorders and Alzheimer's disease (AD). Nonetheless, a potential role for mechanisms associated with impaired translational control in depressive-like behavior remains elusive. A key pathway controlling translation initiation relies on the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α-P) which, in turn, blocks the guanine exchange factor activity of eIF2B, thereby reducing global translation rates. Here we report that the expression of EIF2B5 (which codes for eIF2Bε, the catalytic subunit of eIF2B) is reduced in postmortem MDD prefrontal cortex from two distinct human cohorts and in the frontal cortex of social isolation-induced depressive-like behavior model mice. Further, pharmacological treatment with anisomycin or with salubrinal, an inhibitor of the eIF2α phosphatase GADD34, induces depressive-like behavior in adult C57BL/6J mice. Salubrinal-induced depressive-like behavior is blocked by ISRIB, a compound that directly activates eIF2B regardless of the phosphorylation status of eIF2α, suggesting that increased eIF2α-P promotes depressive-like states. Taken together, our results suggest that impaired eIF2-associated translational control may participate in the pathophysiology of MDD, and underscore eIF2-eIF2B translational axis as a potential target for the development of novel approaches for MDD and related mood disorders.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Multidisciplinary Research Core in Biology (NUMPEX-BIO), Campus Duque de Caxias Professor Geraldo Cidade, Federal University of Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Mariana G Chauvet
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz de A Wagner
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno G Caroli
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Paula Villela Nunes
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen's University, Kingston, ON, Canada
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
203
|
Keir G, Petrover D, Caravella C, Goenka A, Rini JN, Franceschi AM. Hybrid Somatostatin Receptor PET/MRI of the Head and Neck. Radiographics 2024; 44:e240020. [PMID: 39325659 DOI: 10.1148/rg.240020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Hybrid PET/MRI has the potential to transform neuro-oncologic imaging, particularly in diagnosis and treatment planning of somatostatin receptor-expressing tumors of the head and neck. Hybrid PET/MRI combines high-resolution MRI with functional information from PET, providing precise anatomic information and overcoming difficulties in localization inherent to PET alone. There is a range of tumors in the head and neck that overexpress somatostatin receptors and are therefore amenable to evaluation with somatostatin receptor PET/MRI. These include meningiomas, paragangliomas, olfactory neuroblastomas, pituitary neuroendocrine tumors, middle ear neuroendocrine tumors, and medullary thyroid carcinomas. The combination of PET and MRI is superior to either modality alone and can address several unique diagnostic challenges associated with these lesions. The authors discuss the superior capabilities of somatostatin receptor PET/MRI, including improved lesion localization, more sensitive demonstration of disease extent, enhanced surveillance, optimized radiation therapy planning, and accurate prediction of response to somatostatin analog therapy. Although there are only a few dedicated PET/MRI units available in clinical practice, commercial software is now available that can automatically fuse PET/CT data with recently acquired MRI data, increasing the availability of this approach. Radiologists should be aware of the advantages of somatostatin receptor PET/MRI in evaluation of head and neck tumors as well as the potential pitfalls of this approach so that they can accurately advise clinicians and better interpret these studies. ©RSNA, 2024 See the invited commentary by Shatzkes and Strauss in this issue.
Collapse
Affiliation(s)
- Graham Keir
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - David Petrover
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Christopher Caravella
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Anuj Goenka
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Josephine N Rini
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| | - Ana M Franceschi
- From the Department of Radiology, Division of Neuroradiology, Weill Cornell, New York Presbyterian Hospital, 435 E 70th St, 26K, New York, NY 10021 (G.K.); Department of Radiology (D.P.), Division of Nuclear Medicine (C.C., J.N.R.), and Department of Radiation Oncology (A.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and Department of Radiology, Division of Neuroradiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY (A.M.F.)
| |
Collapse
|
204
|
Vázquez-Ibarra KC, Sánchez López JY, Pineda Razo TD, Cruz Lozano JR, Ortiz-Tamayo BG, Palafox-Mariscal LA, González Arreola RM, González-García JR, Ortiz-Lazareno PC. Metformin in combination with chemotherapy increases apoptosis in gastric cancer cells and counteracts senescence induced by chemotherapy. Oncol Lett 2024; 28:457. [PMID: 39114572 PMCID: PMC11304395 DOI: 10.3892/ol.2024.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death in the world, and there is a demand for new therapeutic agents to treat GC. Metformin has been demonstrated to be an antineoplastic agent in some types of cancer; however, it has not been sufficiently valued in treating GC because the effect of metformin in combination with chemotherapy regimens has not yet been evaluated. The present study aimed to evaluate the mechanisms underlying cell death induced by metformin alone or when combined with chemotherapy. The cytogenetic characteristics of the NCI-N87 cell line were determined by fluorescence in situ hybridization (FISH). To determine viability, the cells were treated with metformin, epirubicin, cisplatin, docetaxel and 5-fluorouracil (individually and at different concentrations). Subsequently, the cells were treated with metformin alone, and in combination with the chemotherapeutic drugs and the epirubicin + cisplatin + 5-fluorouracil, docetaxel + cisplatin + 5-fluorouracil, and cisplatin + 5-fluorouracil regimens. Cell viability, proliferation and mitochondrial membrane potential (ΔΨm) were analyzed by spectrophotometry. Apoptosis, caspase activity and cell cycle progression were assessed by flow cytometry. Finally, light microscopy was used to evaluate senescence and clonogenicity. The results revealed that metformin, alone and when combined with chemotherapy, increased the proportion of apoptotic cells, promoted the loss of ΔΨm, and induced apoptosis through caspase activity in GC cells. Moreover, metformin decreased cell proliferation. In addition, metformin alone did not induce senescence and it counteracted the effects of chemotherapy-induced senescence in GC cells. Additionally, metformin, alone and when combined with chemotherapy, decreased the clonogenic capacity of NCI-N87 GC cells. In conclusion, metformin may increase the effects of chemotherapy on NCI-N87 cell death and could represent an option to improve the treatment of GC.
Collapse
Affiliation(s)
- Katia Carolina Vázquez-Ibarra
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Josefina Yoaly Sánchez López
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Tomás Daniel Pineda Razo
- Medical Oncology Service, Western National Medical Center, Mexican Social Security Institute, Guadalajara, Jalisco 44329, Mexico
| | - José Roberto Cruz Lozano
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Brenda Guadalupe Ortiz-Tamayo
- Division of Biological and Environmental Sciences, University Center of Biological and Agricultural Sciences, University of Guadalajara, Guadalajara, Jalisco 44600, Mexico
| | - Luis Arturo Palafox-Mariscal
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Rosa María González Arreola
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Juan Ramón González-García
- Genetic Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco, 44340, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
205
|
Hong J, Fu T, Liu W, Yu M, Lin Y, Min C, Lin D. Gut microbiota dynamics in KK-Ay mice: restoration following antibiotic treatment. Folia Microbiol (Praha) 2024; 69:1159-1173. [PMID: 38536641 DOI: 10.1007/s12223-024-01157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/11/2024] [Indexed: 09/07/2024]
Abstract
The primary aim of this study was to investigate the alterations in the microbial community of KK-Ay mice following antibiotic treatment. A comparative analysis of the gut microbiota was conducted between KK-Ay mice treated with antibiotics and those without treatment. The microbial community dynamics in antibiotic-treated KK-Ay mice were meticulously assessed over an eight-week period using 16S rDNA sequencing analysis. Simultaneously, dynamic renal function measurements were performed. The results demonstrated a marked decrease in bacterial DNA abundance following antibiotic intervention, coupled with a substantial reduction in bacterial diversity and a profound alteration in microbial composition. These observed microbiota changes persisted in the KK-Ay mice throughout the eight-week post-antibiotic treatment period. Particularly noteworthy was the reemergence of bacterial populations after two weeks or more, resulting in a microbiota composition resembling that of untreated KK-Ay mice. This transition was characterized by a significant increase in the abundance of clostridia at the class level, Lachnospirales and Oscillospirales at the order level, and Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Concurrently, there was a notable decrease in Clostridia_UCG-014. The observed alterations in the gut microbiota of antibiotic-treated KK-Ay mice suggest a dynamic response to antibiotic intervention and subsequent restoration towards the original untreated state.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, People's Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
206
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
207
|
Sánchez-Garrido MA, Serrano-López V, Ruiz-Pino F, Vázquez MJ, Rodríguez-Martín A, Torres E, Velasco I, Rodríguez AB, Chicano-Gálvez E, Mora-Ortiz M, Ohlsson C, Poutanen M, Pinilla L, Gaytán F, Douros JD, Yang B, Müller TD, DiMarchi RD, Tschöp MH, Finan B, Tena-Sempere M. Superior metabolic improvement of polycystic ovary syndrome traits after GLP1-based multi-agonist therapy. Nat Commun 2024; 15:8498. [PMID: 39353946 PMCID: PMC11445520 DOI: 10.1038/s41467-024-52898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous condition, defined by oligo-/anovulation, hyper-androgenism and/or polycystic ovaries. Metabolic complications are common in patients suffering PCOS, including obesity, insulin resistance and type-2 diabetes, which severely compromise the clinical course of affected women. Yet, therapeutic options remain mostly symptomatic and of limited efficacy for the metabolic and reproductive alterations of PCOS. We report here the hormonal, metabolic and gonadal responses to the glucagon-like peptide-1 (GLP1)-based multi-agonists, GLP1/Estrogen (GLP1/E), GLP1/gastric inhibitory peptide (GLP1/GIP) and GLP1/GIP/Glucagon, in two mouse PCOS models, with variable penetrance of metabolic and reproductive traits, and their comparison with metformin. Our data illustrate the superior efficacy of GLP1/E vs. other multi-agonists and metformin in the management of metabolic complications of PCOS; GLP1/E ameliorates also ovarian cyclicity in an ovulatory model of PCOS, without direct estrogenic uterotrophic effects. In keeping with GLP1-mediated brain targeting, quantitative proteomics reveals changes in common and distinct hypothalamic pathways in response to GLP1/E between the two PCOS models, as basis for differential efficiency. Altogether, our data set the basis for the use of GLP1-based multi-agonists, and particularly GLP1/E, in the personalized management of PCOS.
Collapse
Affiliation(s)
- Miguel A Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| | - Víctor Serrano-López
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - María Jesús Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Andrea Rodríguez-Martín
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | - Ana Belén Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| | | | - Marina Mora-Ortiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Lipids & Atherosclerosis Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Gaytán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of München, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain.
| |
Collapse
|
208
|
Wan Y, Su Z. The Impact of Resistance Exercise Training on Glycemic Control Among Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biol Res Nurs 2024; 26:597-623. [PMID: 38623887 DOI: 10.1177/10998004241246272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Background: The prevalence of type 2 diabetes mellitus (T2DM) presents a challenge for health organizations because of its high likelihood of morbidity and mortality. There is an increasing body of evidence exploring the efficacy of resistance training (RT) alone on glycemic control. Objective: To update the effectiveness of RT on glycosylated hemoglobin (HbA1c) and fasting glucose in adults diagnosed with T2DM. Methods: CINAHL (EBSDCO), PubMed, MEDLINE (Ovid), and EMBASE (Ovid) databases were searched from inception to 30 January 2024. Published randomized controlled trials (RCTs) of adult humans with T2DM assessing the impact of RT on HbA1c and fasting glucose compared with control condition were included. Data were pooled by the inverse-variance method and reported as mean differences (MDs) with 95% confidence intervals (CIs). Results: Forty-six RCTs totaling 2130 participants met the inclusion criteria. Meta-analysis demonstrated RT significantly reduced HbA1c (MD -0.50% [95% CI, -0.67, -0.34 %], p < .00,001) and fasting glucose (MD -12.03 mg/dl [95% CI, -19.36, -4.69 mg/dl], p = .001). Subgroup analyses found that exercise training durations, gender, and risk of bias had statistically significant effects on HbA1c levels and fasting glucose concentrations after resistance training. However, meta-regression analyses revealed that variables including year of publication, number of sessions per week, mean sample age, sample size, and study quality scores did not significantly affect the change in either HbA1c or glucose. Conclusion: Our meta-analysis with meta-regression delivers further evidence that RT programs are effective approach in attenuation of HbA1c and fasting glucose in individuals with T2DM.
Collapse
Affiliation(s)
- Yuwen Wan
- Faculty of physical education, Jiangxi Institute of Applied Science and Technology, Nanchang, China
| | - Zhanguo Su
- Faculty of physical education, Huainan Normal University, Huainan, China
- International College, Krirk University, Bangkok, Thailand
| |
Collapse
|
209
|
Ceyzériat K, Badina AM, Petrelli F, Montessuit S, Nicolaides A, Millet P, Savioz A, Martinou JC, Tournier BB. Inhibition of the mitochondrial pyruvate carrier in astrocytes reduces amyloid and tau accumulation in the 3xTgAD mouse model of Alzheimer's disease. Neurobiol Dis 2024; 200:106623. [PMID: 39103022 DOI: 10.1016/j.nbd.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by an accumulation of pathologic amyloid-beta (Aβ) and Tau proteins, neuroinflammation, metabolic changes and neuronal death. Reactive astrocytes participate in these pathophysiological processes by releasing pro-inflammatory molecules and recruiting the immune system, which further reinforces inflammation and contributes to neuronal death. Besides these neurotoxic effects, astrocytes can protect neurons by providing them with high amounts of lactate as energy fuel. Astrocytes rely on aerobic glycolysis to generate lactate by reducing pyruvate, the end product of glycolysis, through lactate dehydrogenase. Consequently, limited amounts of pyruvate enter astrocytic mitochondria through the Mitochondrial Pyruvate Carrier (MPC) to be oxidized. The MPC is a heterodimer composed of two subunits MPC1 and MPC2, the function of which in astrocytes has been poorly investigated. Here, we analyzed the role of the MPC in the pathogeny of AD, knowing that a reduction in overall glucose metabolism has been associated with a drop in cognitive performances and an accumulation of Aβ and Tau. We generated 3xTgAD mice in which MPC1 was knocked-out in astrocytes specifically and focused our study on the biochemical hallmarks of the disease, mainly Aβ and neurofibrillary tangle production. We show that inhibition of the MPC before the onset of the disease significantly reduces the quantity of Aβ and Tau aggregates in the brain of 3xTgAD mice, suggesting that acting on astrocytic glucose metabolism early on could hinder the progression of the disease.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- CIBM Center for Biomedical Imaging, Geneva, Switzerland; Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Aurélien M Badina
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesco Petrelli
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Sylvie Montessuit
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Alekos Nicolaides
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Armand Savioz
- Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland
| | - Jean-Claude Martinou
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Switzerland
| | - Benjamin B Tournier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospital of Geneva and Geneva Neuroscience Center, Geneva, Switzerland.
| |
Collapse
|
210
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
211
|
Valencia-Sanchez S, Davis M, Martensen J, Hoeffer C, Link C, Opp MR. Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice. Brain Behav Immun 2024; 121:74-86. [PMID: 39043346 PMCID: PMC11563030 DOI: 10.1016/j.bbi.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Protein Kinase RNA-activated (PKR) is an enzyme that plays a role in many systemic processes, including modulation of inflammation, and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). PKR phosphorylation results in the production of several cytokines involved in the regulation / modulation of sleep, including interleukin-1β, tumor necrosis factor-α and interferon-γ. We hypothesized targeting PKR would alter spontaneous sleep of mice, attenuate responses to sleep deprivation, and inhibit responses to immune challenge. To test these hypotheses, we determined the sleep-wake phenotype of mice lacking PKR (knockout; PKR-/-) during undisturbed baseline conditions; in responses to six hours of sleep deprivation; and after immune challenge with lipopolysaccharide (LPS). Adult male mice (C57BL/6J, n = 7; PKR-/-, n = 7) were surgically instrumented with EEG recording electrodes and an intraperitoneal microchip to record core body temperature. During undisturbed baseline conditions, PKR -/- mice spent more time in non-rapid eye movement sleep (NREMS) and rapid-eye movement sleep (REMS), and less time awake at the beginning of the dark period of the light:dark cycle. Delta power during NREMS, a measure of sleep depth, was less in PKR-/- mice during the dark period, and core body temperatures were lower during the light period. Both mouse strains responded to sleep deprivation with increased NREMS and REMS, although these changes did not differ substantively between strains. The initial increase in delta power during NREMS after sleep deprivation was greater in PKR-/- mice, suggesting a faster buildup of sleep pressure with prolonged waking. Immune challenge with LPS increased NREMS and inhibited REMS to the same extent in both mouse strains, whereas the initial LPS-induced suppression of delta power during NREMS was greater in PKR-/- mice. Because sleep regulatory and immune responsive systems in brain are redundant and overlapping, other mediators and signaling pathways in addition to PKR are involved in the responses to acute sleep deprivation and LPS immune challenge.
Collapse
Affiliation(s)
- S Valencia-Sanchez
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M Davis
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - J Martensen
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - C Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - C Link
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M R Opp
- Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
212
|
Lin H, Baker JW, Meister K, Lak KL, Martin Del Campo SE, Smith A, Needleman B, Nadzam G, Ying LD, Varban O, Reyes AM, Breckenbridge J, Tabone L, Gentles C, Echeverri C, Jones SB, Gould J, Vosburg W, Jones DB, Edwards M, Nimeri A, Kindel T, Petrick A. American society for metabolic and bariatric surgery: intra-operative care pathway for minimally invasive Roux-en-Y gastric bypass. Surg Obes Relat Dis 2024; 20:895-909. [PMID: 39097472 DOI: 10.1016/j.soard.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Clinical care pathways help guide and provide structure to clinicians and providers to improve healthcare delivery and quality. The Quality Improvement and Patient Safety Committee (QIPS) of the American Society for Metabolic and Bariatric Surgery (ASMBS) has previously published care pathways for the performance of laparoscopic sleeve gastrectomy (LSG) and pre-operative care of patients undergoing Roux-en-Y gastric bypass (RYGB). OBJECTIVE This current RYGB care pathway was created to address intraoperative care, defined as care occurring on the day of surgery from the preoperative holding area, through the operating room, and into the postanesthesia care unit (PACU). METHODS PubMed queries were performed from January 2001 to December 2019 and reviewed according to Level of Evidence regarding specific key questions developed by the committee. RESULTS Evidence-based recommendations are made for care of patients undergoing RYGB including the pre-operative holding area, intra-operative management and performance of RYGB, and concurrent procedures. CONCLUSIONS This document may provide guidance based on recent evidence to bariatric surgeons and providers for the intra-operative care for minimally invasive RYGB.
Collapse
Affiliation(s)
- Henry Lin
- Department of Surgery, Signature Healthcare, Brockton, Massachusetts.
| | - John W Baker
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Kathleen L Lak
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - April Smith
- Department of Pharmacy, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska
| | | | - Geoffrey Nadzam
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Lee D Ying
- Department of Surgery, Yale New Haven Hospital, New Haven, Connecticut
| | - Oliver Varban
- Department of Surgery, Henry Ford Hospital, Detroit, Michigan
| | - Angel Manuel Reyes
- Department of General Surgery, St. Michael Medical Center, Silverdale, Washington
| | - Jamie Breckenbridge
- Department of General Surgery, Fort Belvoir Community Hospital, Fort Belvoir, Virginia
| | - Lawrence Tabone
- Department of Surgery, West Virginia University, Morgantown, West Virginia
| | - Charmaine Gentles
- Department of Surgery, Northshore University Hospital, Manhasset, New York
| | | | - Stephanie B Jones
- Department of Anesthesiology, Northwell Health, New Hyde Park, New York
| | - Jon Gould
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Wesley Vosburg
- Department of Surgery, Grand Strand Medical Center, Myrtle Beach, South Carolina
| | - Daniel B Jones
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Abdelrahman Nimeri
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tammy Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony Petrick
- Department of Surgery, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
213
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
214
|
dos Santos MC, da Silva DS, Cordeiro JP, Domingos LF, da Silva Gomes EH, Nogueira BV, Bocalini DS, Lima Leopoldo AP, Leopoldo AS. High-intensity interval training improves cardiomyocyte contractile function and myofilament sensitivity to intracellular Ca 2+ in obese rats. Exp Physiol 2024; 109:1710-1727. [PMID: 39207362 PMCID: PMC11442780 DOI: 10.1113/ep092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
High-intensity interval training (HIIT) has shown significant results in addressing adiposity and risk factors associated with obesity. However, there are no studies that investigate the effects of HIIT on contractility and intracellular Ca2+ handling. The purpose of this study was to explore the impact of HIIT on cardiomyocyte contractile function and intracellular Ca2+ handling in rats in which obesity was induced by a saturated high-fat diet (HFD). Male Wistar rats were initially randomized into a standard diet and a HFD group. The experimental protocol spanned 23 weeks, comprising the induction and maintenance of obesity (15 weeks) followed by HIIT treatment (8 weeks). Performance was assessed using the maximum oxygen consumption test (V ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ ). Evaluation encompassed cardiac, adipose and skeletal muscle histology, as well as contractility and intracellular Ca2+ handling. HIIT resulted in a reduction in visceral area, an increase inV ̇ O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{max}}}}$ , and an augmentation of gastrocnemius fibre diameter in obese subjects. Additionally, HIIT led to a decrease in collagen fraction, an increase in percentage shortening, and a reduction in systolic Ca2+/percentage shortening and systolic Ca2+/maximum shortening rates. HIIT induces physiological cardiac remodelling, enhancing the contractile function of cardiomyocytes and improving myofilament sensitivity to Ca2+ in the context of obesity. This approach not only enhances cardiorespiratory and physical performance but also reduces visceral area and prevents interstitial fibrosis.
Collapse
Affiliation(s)
- Matheus Corteletti dos Santos
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Daniel Sesana da Silva
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Jóctan Pimentel Cordeiro
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Lucas Furtado Domingos
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Ezio Henrique da Silva Gomes
- Postgraduate Program in Biotechnology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Breno Valentim Nogueira
- Postgraduate Program in Biotechnology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Morphology, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Danilo Sales Bocalini
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - Ana Paula Lima Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Sports, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| | - André Soares Leopoldo
- Postgraduate Program in Physiological Sciences, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Postgraduate Program in Physical Education, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Postgraduate Program in Nutrition and Health, Health Sciences CenterFederal University of Espírito SantoEspírito SantoVitóriaBrazil
- Department of Sports, Center of Physical Education and SportsFederal University of Espírito SantoEspírito SantoVitóriaBrazil
| |
Collapse
|
215
|
Wang Y, Chen J, Wang C, Chen T, He L. GW9508 ameliorates cognitive dysfunction via autophagy pathway in streptozotocin-induced mouse model of Alzheimer's disease. Fundam Clin Pharmacol 2024; 38:906-923. [PMID: 38486405 DOI: 10.1111/fcp.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND G protein-coupled receptor 40 (GPR40) is a potential drug target for Alzheimer's disease (AD), and its agonist GW9508 ameliorates cognitive impairment by intravenous administration. OBJECTIVES The present study was conducted to investigate the efficacy of GW9508 administered peripherally on cognitive dysfunction in streptozotocin (STZ)-induced AD mice. METHODS Seventy male ICR mice were randomly divided into seven groups: vehicle sham group, model, Donepezil, GW9508-L, GW9508-M, GW9508-H, and GW1100 + GW9508-H groups, and administered either vehicle (artificial cerebrospinal fluid [aCSF]) or STZ (3 mg/kg in the vehicle) once a day (9:00 a.m.) by intracerebroventricular injection bilaterally on day 1 and day 3, respectively. After 2 weeks of recovery, all mice were given drug treatment. Behavioral experiments were applied to test the recognition and spatial memory of mice, while molecular biology experiments such as Western blot, ELISA, and Nissl staining were used to detect the corresponding changes of signaling pathways. RESULTS Intraperitoneal administration of GW9508 prevented STZ-induced cognitive impairment as well as decreased the level of p-tau and Aβ1-42 in plasma and brain. GW9508 upregulated the expression of gut-brain peptides like PYY, CCK, IGF-1, and GLP-1 both in blood circulation and brain and downregulated the expression level of autophagy-related proteins through activating Akt/mTOR signaling pathway. Meanwhile, the treatment effect of GW9508 was reversed by GPR40 antagonist GW1100 significantly. CONCLUSION Peripheral administration of GW9508 exhibits neuroprotective effects, and it could be a promising therapy for AD. The neuroprotective mechanism of GW9508 was based on promoting gut-brain peptide secretion, activating Akt/mTOR signal pathway, and regulating neuronal autophagy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
216
|
Silva ACR, Antunes-Correa LDM, Juliani FL, Carrilho LAO, Costa FO, Martinez CAR, Mendes MCS, Carvalheira JBC. Assessing the role of prognostic nutritional index in predicting outcomes for rectal cancer surgery. Clin Nutr ESPEN 2024; 63:644-650. [PMID: 39094853 DOI: 10.1016/j.clnesp.2024.07.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/18/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS The association of Prognostic Nutritional Index (PNI) with prognosis has been established for various cancer types, including rectal cancer. However, the precise relationship between PNI and body composition characteristics in patients with non-metastatic rectal cancer remain unclear. This study aimed to investigate the impact of PNI on overall survival and disease-free survival in non-metastatic rectal cancer patients undergoing total surgical resection. Additionally, it sought to assess the inflammatory status and body composition in patients across different PNI levels. METHODS Patients with non-metastatic rectal cancer who underwent total surgical resection, were consecutively enrolled. PNI was calculated using the formula: PNI = (10 × serum albumin [g/dl]) + (0.005 × lymphocytes/μL). Body composition was assessed using CT-derived measurements and laboratory tests performed at diagnosis were used to calculate inflammatory indices. Univariate and multivariate logistic regression analyses as well as Kaplan-Meier curves were used to determine prognostic values. RESULTS A total of 298 patients were included. Patients with low PNI demonstrated significantly reduced overall survival and disease-free survival compared to those with high PNI (Hazard ratio [HR] 1.85; Confidence interval [CI] 1.30-2 0.62; p = 0.001). Moreover, patients with low PNI exhibited heightened systemic inflammatory status and reduced skeletal muscle index, increased muscle radiodensity, as well as a decrease in subcutaneous adipose tissue area, subcutaneous fat index, and low attenuation of both subcutaneous and visceral adipose tissue. CONCLUSION The PNI, assessed prior to treatment initiation, serves as a prognostic biomarker for non-metastatic rectal cancer patients undergoing total surgical resection and is linked with both inflammation and alterations in body composition.
Collapse
Affiliation(s)
- Amanda Cristina Ribeiro Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Lígia de Moraes Antunes-Correa
- Universidade Estadual de Campinas (UNICAMP), Escola de Educação Física, Érico Veríssimo Avenue, 701 - Barão Geraldo, 13083-851, Campinas, SP, Brazil
| | - Fabiana Lascala Juliani
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Larissa Ariel Oliveira Carrilho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Felipe Osório Costa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Carlos Augusto Real Martinez
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - Maria Carolina Santos Mendes
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil
| | - José Barreto Campello Carvalheira
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Divisão de Oncologia, Departamento de Anestesiologia, Oncologia e Radiologia, Tessália Vieira de Camargo Street, 126. Cidade Universitária "Zeferino Vaz", 13083-887, Campinas, SP, Brazil.
| |
Collapse
|
217
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
218
|
Lobato TB, Manoel R, Pereira ACG, Correa IS, Iser-Bem PN, Santos ESDS, Pereira JNB, de Araújo MJL, Borges JCDO, Pauferro JRB, Diniz VLS, Scervino MVM, Serdan TD, Pithon-Curi TC, Masi LN, Hirabara SM, Curi R, Gorjão R. Insulin resistance in nonobese type 2 diabetic Goto Kakizaki rats is associated with a proinflammatory T lymphocyte profile. FEBS Lett 2024; 598:2566-2580. [PMID: 39095330 DOI: 10.1002/1873-3468.14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 08/04/2024]
Abstract
Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Richelieau Manoel
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Ilana Souza Correa
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Tamires Duarte Serdan
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina-UFSC, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
219
|
Hosseini M, Chow CM, Nadi M, Hackett D, Marandi SM. Improvement in physical function and lipid profile following low-intensity resistance training and a lower limb conditioning program in people with diabetic neuropathy. J Bodyw Mov Ther 2024; 40:1123-1131. [PMID: 39593423 DOI: 10.1016/j.jbmt.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/04/2024] [Accepted: 07/07/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) impairs glucose and fat metabolism and physical functioning. This study examined the effects of low-intensity resistance exercise training (LI-RT) and a lower limb conditioning program (LLCP) on physical function and lipid profile in DPN. METHODS Forty-five diabetic women with mild to moderate neuropathy (55.5 ± 3.1 y) were randomly assigned to one of three groups: LI-RT (n = 15), LLCP (n = 15), and control (n = 15). The LI-RT and LLCP groups trained 3 times/week (90 min/session) for 12 weeks. The LI-RT group completed 3 sets of 10 repetitions for ten exercises at 30-repetition maximum; the LLCP group performed 12 lower extremity motions designed for peripheral neuropathy; and the control group followed their routine daily activities. Physical function was assessed using the Timed Up and Go Test (TUG), Five Times Sit-to-Stand (FTSTS) test, and 6-min walking test (6MWT). Blood lipid profile was assessed. RESULTS Both the LI-RT and LLCP groups significantly improved in TUG scores compared to the control group (p ≤ 0.05). No significant changes between groups were observed for the FTSTS and 6MWT. The LI-RT and LLCP groups, compared to the control group, showed a significant reduction in low-density lipoprotein (p ≤ 0.05), and triglycerides (p ≤ 0.001). High-density lipoproteins showed non-significant changes. CONCLUSION Low intensity training involving resistance exercises or lower limb range of motion enhance physical function and lipid profile in patients with DPN. High intensity exercise could be risky and deter adherence. Hence, these gentler exercise programs offer viable options for enhancing health and fitness in DPN patients.
Collapse
Affiliation(s)
- Mahdi Hosseini
- University of Isfahan, Sports Sciences Department, Isfahan, Iran, Postal code: 8174673441.
| | - Chin-Moi Chow
- Faculty of Medicine and Health, The University of Sydney, Sydney School of Health Sciences, NSW, 2006, Australia.
| | - Maryam Nadi
- University of Isfahan, Sports Sciences Department, Isfahan, Iran, Postal code: 8174673441.
| | - Daniel Hackett
- Faculty of Medicine and Health, The University of Sydney, Sydney School of Health Sciences, NSW, 2006, Australia.
| | | |
Collapse
|
220
|
Saha S, Bapat S, Vijayasarathi D, Vyas R. Exploring potential biomarkers and lead molecules in gastric cancer by network biology, drug repurposing and virtual screening strategies. Mol Divers 2024:10.1007/s11030-024-10995-6. [PMID: 39348085 DOI: 10.1007/s11030-024-10995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Gastric cancer poses a significant global health challenge, necessitating innovative approaches for biomarker discovery and therapeutic intervention. This study employs a multifaceted strategy integrating network biology, drug repurposing, and virtual screening to elucidate and expand the molecular landscape of gastric cancer. We identified and prioritized key genes implicated in gastric cancer by utilizing data from diverse databases and text-mining techniques. Network analysis underscored intricate gene interactions, emphasizing potential therapeutic targets such as CTNNB1, BCL2, TP53, etc, and highlighted ACTB among the top hub genes crucial in disease progression. Drug repurposing on 626 FDA-approved drugs for digestive system-related cancers revealed Norgestimate and Nimesulide as likely top candidates for gastric cancer, validated by molecular docking and dynamics simulations. Further, combinatorial synthesis of scaffold libraries derived from known chemotypes generated 56,160 virtual compounds, of which 76 new compounds were prioritized based on promising binding affinities and interactions at critical residues. Hotspot residue analysis identified GLU 214 and others as essential for ligand binding stability, enhancing compound efficacy and specificity. These findings support the therapeutic potential of targeting beta-actin protein in gastric cancer treatment, suggesting a future for further experimental validation and clinical translation. In conclusion, this study highlights the potential of repurposable drugs and virtual screening which can be used in combination with existing anti-gastric cancer drugs for gastric cancer therapy, emphasizing the role of computational methodologies in drug discovery.
Collapse
Affiliation(s)
- Sagarika Saha
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Sanket Bapat
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Durairaj Vijayasarathi
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Renu Vyas
- MIT ADTU School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, Maharashtra, India.
| |
Collapse
|
221
|
Cicek G, Ozcan O, Akyol P, Isik O, Novak D, Küçük H. The effect of aerobic and high-intensity interval training on plasma pentraxin 3 and lipid parameters in overweight and obese women. PeerJ 2024; 12:e18123. [PMID: 39372725 PMCID: PMC11451446 DOI: 10.7717/peerj.18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Background It is unclear whether different exercise programs lead to an increase in the concentration of plasma Pentraxin3 (PTX3), an anti-inflammatory protein. This study aimed to investigate the effects of aerobic exercise (AE) and high-intensity interval training (HIIT) on plasma PTX3 levels in overweight and obese women. Method A total of 45 sedentary women aged between 32.26 ± 6.30 voluntarily participated in the study. The control group (CG, n = 15) was selected among normal-weight women. Women in the group of participants who partook in exercise consisted of overweight and obese women according to a random method, including the AE group (n = 15) and the HIIT group (n = 15). The AE session conducted was 50 min in duration and consisted of warm-up exercises (5 min), and primary exercises (40 min, basic aerobic-step exercises). HIIT consists of warm-up exercises (5 min), primary exercises (work intervals: 6-10 × 1 min (80-90% HRmax), rest intervals: 1 min (walk, 50% HRmax), 21-29 min running. The exercises were applied for three sessions/week for 12 weeks. Fasting blood samples were taken from all participants before and after exercise and their body composition was measured. Results As a result of two different 12-week exercises, serum PTX3 levels increased significantly by 47.53% in the AE group and 50.21% in the HIIT group (p < 0.01). It was determined that the mean PTX3 before and after exercise increased from 1.71 ± 0.43 to 2.47 ± 0.40 ng/dL and HIIT from 1.62 ± 0.39 to 2.31 ± 0.33 ng/dL. A significant decrease in body mass index (BMI) values were detected, approximately 5.81% in the AE group and 5.06% in the HIIT group (p < .01). A significant decrease was detected in glucose, insulin, HOMA-IR, LDL-C, and hsCRP whereas HDL-C and VO2max value increased significantly in both exercise groups (p < .05; p < .01). There were no significant differences in TG and TC levels between groups (p > .05). Also, no significant differences were found between the two types of exercises in terms of parameters. A significant negative correlation in the total sample was found between PTX3 with BMI, fat mass, LDL-C, and hsCRP. Conclusion The percentage change in PTX3 values was not different between exercise types, whereas PTX3 was increased with exercise, regardless of the type of exercise. It can be said that both aerobic and HIIT increase PTX3, VO2max levels and improve lipid metabolism in overweight and obese women.
Collapse
Affiliation(s)
- Guner Cicek
- Faculty of Sports Sciences, Hitit University, Corum, Turkey
| | - Oguzhan Ozcan
- Department of Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Pelin Akyol
- Faculty of Education, Department of Physical Education and Sports, Ondokuz Mayıs University, Samsun, Turkey
| | - Ozkan Isik
- Faculty of Sports Sciences, Balıkesir University, Balıkesir, Turkey
| | - Dario Novak
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Hamza Küçük
- Yasar Doğu Faculty of Sport Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
222
|
Hu NW, Ondrejcak T, Klyubin I, Yang Y, Walsh DM, Livesey FJ, Rowan MJ. Patient-derived tau and amyloid-β facilitate long-term depression in vivo: role of tumour necrosis factor-α and the integrated stress response. Brain Commun 2024; 6:fcae333. [PMID: 39391333 PMCID: PMC11465085 DOI: 10.1093/braincomms/fcae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive cognitive decline in older individuals accompanied by the deposition of two pathognomonic proteins amyloid-β and tau. It is well documented that synaptotoxic soluble amyloid-β aggregates facilitate synaptic long-term depression, a major form of synaptic weakening that correlates with cognitive status in Alzheimer's disease. Whether synaptotoxic tau, which is also associated strongly with progressive cognitive decline in patients with Alzheimer's disease and other tauopathies, also causes facilitation remains to be clarified. Young male adult and middle-aged rats were employed. Synaptotoxic tau and amyloid-β were obtained from different sources including (i) aqueous brain extracts from patients with Alzheimer's disease and Pick's disease tauopathy; (ii) the secretomes of induced pluripotent stem cell-derived neurons from individuals with trisomy of chromosome 21; and (iii) synthetic amyloid-β. In vivo electrophysiology was performed in urethane anaesthetized animals. Evoked field excitatory postsynaptic potentials were recorded from the stratum radiatum in the CA1 area of the hippocampus with electrical stimulation to the Schaffer collateral-commissural pathway. To study the enhancement of long-term depression, relatively weak low-frequency electrical stimulation was used to trigger peri-threshold long-term depression. Synaptotoxic forms of tau or amyloid-β were administered intracerebroventricularly. The ability of agents that inhibit the cytokine tumour necrosis factor-α or the integrated stress response to prevent the effects of amyloid-β or tau on long-term depression was assessed after local or systemic injection, respectively. We found that diffusible tau from Alzheimer's disease or Pick's disease patients' brain aqueous extracts or the secretomes of trisomy of chromosome 21 induced pluripotent stem cell-derived neurons, like Alzheimer's disease brain-derived amyloid-β and synthetic oligomeric amyloid-β, potently enhanced synaptic long-term depression in live rats. We further demonstrated that long-term depression facilitation by both tau and amyloid-β was age-dependent, being more potent in middle-aged compared with young animals. Finally, at the cellular level, we provide pharmacological evidence that tumour necrosis factor-α and the integrated stress response are downstream mediators of long-term depression facilitation by both synaptotoxic tau and amyloid-β. Overall, these findings reveal the promotion of an age-dependent synaptic weakening by both synaptotoxic tau and amyloid-β. Pharmacologically targeting shared mechanisms of tau and amyloid-β synaptotoxicity, such as tumour necrosis factor-α or the integrated stress response, provides an attractive strategy to treat early Alzheimer's disease.
Collapse
Affiliation(s)
- Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| | - Yin Yang
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London WC1N 1DZ, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine, and Institute of Neuroscience, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|
223
|
Sekret T, Vlasenko M. Endothelial dysfunction in patients with different obesity phenotypes. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (UKRAINE) 2024; 20:383-388. [DOI: 10.22141/2224-0721.20.5.2024.1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. Obesity is a progressive problem in society. The degree of cardiovascular risk in obesity depends on the distribution of adipose tissue, as well as on the endothelial function, since it is endothelial dysfunction that is one of the first links in triggering the development of cardiovascular diseases. The purpose of the study was to determine the functional state of the endothelium in patients with different obesity phenotypes. Materials and methods. During 2019–2021, 88 people were examined: 25 men, 63 women. Their average age was 37.42 ± 11.77 years. A history was collected from all patients in order to determine risk factors for cardiovascular pathology. The blood levels of adipocytokines (leptin and adiponectin) and proinflammatory cytokines (interleukin (ІL) 6, ІL-8, ІL-17) were evaluated using the AU480 biochemical analyzer (Beckman Coulter, Inc., USA). Statistical processing of the results was carried out with the help of the Statistica 7 package (StatSoft, USA). Results. The study had demonstrated that leptin levels in all obesity phenotypes were higher than the reference values of the reagent sets. Consequently, adiponectin level with the progression of visceral obesity was as close as possible to the lower indicators of reference norms. It was found that ІL-17 is an interleukin that triggered an inflammatory reaction in all examined patients. ІL-17 stimulated the activity of pro-inflammatory cytokines ІL-8, ІL-6. The highest cytokine activity was recorded in the presence of visceral obesity without metabolic disorders (phenotype III): ІL-6 was 3.28 ± 1.52 pg/ml, ІL-8 was 96.55 ± 20.30 pg/ml. Due to the activation of the inflammatory reaction, NO synthase is secreted in a state of functional tension, therefore, its level is higher in phenotypes III and IV. Over time, its activity is expected to drop sharply, which will provoke endothelial remodeling. Conclusions. Patients with different phenotypes have a predisposition to endothelial dysfunction. Visceral obesity is the main predictor of the further development of insulin resistance, cardiometabolic disorders, as evidenced by an increase in the level of NO synthase, ІL-17, ІL-8, leptin.
Collapse
|
224
|
Moradi N, Azizi M, Niromand E, Tahmasebi W. The effect of combined training with quinoa seed supplementation on total antioxidant capacity, HbA1c, lipid profile, and blood pressure in women with type 2 diabetes. SPORT SCIENCES FOR HEALTH 2024. [DOI: 10.1007/s11332-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/25/2024] [Indexed: 01/05/2025]
|
225
|
Obón-Santacana M, Moratalla-Navarro F, Guinó E, Carreras-Torres R, Díez-Obrero V, Bars-Cortina D, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Devall M, Casey G, Li L, Moreno V. Diet Impacts on Gene Expression in Healthy Colon Tissue: Insights from the BarcUVa-Seq Study. Nutrients 2024; 16:3131. [PMID: 39339731 PMCID: PMC11434945 DOI: 10.3390/nu16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Introduction: The global rise of gastrointestinal diseases, including colorectal cancer and inflammatory bowel diseases, highlights the need to understand their causes. Diet is a common risk factor and a crucial regulator of gene expression, with alterations observed in both conditions. This study aims to elucidate the specific biological mechanisms through which diet influences the risk of bowel diseases. (2) Methods: We analyzed data from 436 participants from the BarcUVa-Seq population-based cross-sectional study utilizing gene expression profiles (RNA-Seq) from frozen colonic mucosal biopsies and dietary information from a semi-quantitative food frequency questionnaire. Dietary variables were evaluated based on two dietary patterns and as individual variables. Differential expression gene (DEG) analysis was performed for each dietary factor using edgeR. Protein-protein interaction (PPI) analysis was conducted with STRINGdb v11 for food groups with more than 10 statistically significant DEGs, followed by Reactome-based enrichment analysis for the resulting networks. (3) Results: Our findings reveal that food intake, specifically the consumption of blue fish, alcohol, and potatoes, significantly influences gene expression in the colon of individuals without tumor pathology, particularly in pathways related to DNA repair, immune system function, and protein glycosylation. (4) Discussion: These results demonstrate how these dietary components may influence human metabolic processes and affect the risk of bowel diseases.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Department of Gastroenterology, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, 17190 Salt, Girona, Spain
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Barcelona, Spain
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
226
|
Volloch V, Rits-Volloch S. Quintessential Synergy: Concurrent Transient Administration of Integrated Stress Response Inhibitors and BACE1 and/or BACE2 Activators as the Optimal Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2024; 25:9913. [PMID: 39337400 PMCID: PMC11432332 DOI: 10.3390/ijms25189913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The present study analyzes two potential therapeutic approaches for Alzheimer's disease (AD). One is the suppression of the neuronal integrated stress response (ISR). Another is the targeted degradation of intraneuronal amyloid-beta (iAβ) via the activation of BACE1 (Beta-site Aβ-protein-precursor Cleaving Enzyme) and/or BACE2. Both approaches are rational. Both are promising. Both have substantial intrinsic limitations. However, when combined in a carefully orchestrated manner into a composite therapy they display a prototypical synergy and constitute the apparently optimal, potentially most effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
227
|
Emmons HA, Fordahl SC. Moderate-intensity aerobic exercise enhanced dopamine signaling in diet-induced obese female mice without preventing body weight gain. Neuroscience 2024; 555:1-10. [PMID: 39032807 PMCID: PMC11344652 DOI: 10.1016/j.neuroscience.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. Therefore, the aim of this study was to investigate whether moderate-intensity exercise could reduce body weight gain and the associated decreases in dopamine signaling observed with high-fat diet-induced adiposity. We hypothesized that exercise would attenuate body weight gain and diet-induced inflammation in high-fat (HF)-fed mice, resulting in dopamine signaling (release and reuptake rate) comparable to sedentary, low-fat (LF)-fed counterparts. This hypothesis was tested using a mouse model of diet-induced obesity (DIO) and fast-scan cyclic voltammetry to measure evoked dopamine release and reuptake rates. Although the exercise protocol employed in this study was not sufficient to prevent significant body weight gain, there was an enhancement of dopamine signaling observed in female mice fed a HF diet that underwent treadmill running. Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.
Collapse
Affiliation(s)
| | - Steve C Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC, USA.
| |
Collapse
|
228
|
Xue H, Liu Y, Liu Y, Li H, Liang Q, Ma L, Liu J, Zhao M. Myosteatosis and the clinical outcomes of patients with liver cirrhosis: A meta-analysis. PLoS One 2024; 19:e0310017. [PMID: 39264966 PMCID: PMC11392268 DOI: 10.1371/journal.pone.0310017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVES This study aimed to examine the potential correlation between myosteatosis and the prognosis of patients diagnosed with liver cirrhosis by a meta-analysis. METHODS Cohort studies of relevance were acquired through comprehensive searches of the Medline, Web of Science, and Embase databases. To account for heterogeneity, a random-effects model was employed to combine the findings. RESULTS The meta-analysis included 10 retrospective and four prospective cohort studies, encompassing a total of 4287 patients diagnosed with cirrhosis. The pooled findings indicated a notable decline in transplant-free survival (TFS) among individuals with liver cirrhosis and myosteatosis compared to those without this condition (risk ratio: 1.94; 95% confidence interval: 1.61 to 2.34, p < 0.001; I2 = 49%). The predefined subgroup analyses demonstrated consistent findings across various categories, including Asian and non-Asian studies, prospective and retrospective cohort studies, patients with cirrhosis overall and those who underwent transjugular intrahepatic portosystemic shunt, studies with different follow-up durations (< or ≥ 24 months), studies employing univariate and multivariate analyses, and studies with and without an adjustment for sarcopenia (p > 0.05 for all subgroup differences). Additionally, Egger's regression test indicated the presence of significant publication bias (p = 0.044). However, trim-and-fill analysis by including three hypothesized studies showed consistent results. CONCLUSIONS The presence of myosteatosis in individuals diagnosed with liver cirrhosis may potentially be linked to a poor TFS prognosis. Further investigations are required to ascertain whether enhancing myosteatosis could potentially yield a survival advantage for this particular patient population.
Collapse
Affiliation(s)
- Haojie Xue
- Zhoukou Central Hospital Affiliated to Xinxiang Medical University, Zhoukou City, Henan Province, China
| | - Yihan Liu
- Zhoukou Central Hospital Affiliated to Xinxiang Medical University, Zhoukou City, Henan Province, China
| | - Yang Liu
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| | - Han Li
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| | - Qian Liang
- Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| | - Longhui Ma
- Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| | - Junying Liu
- Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| | - Ming Zhao
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou City, Henan Province, China
| |
Collapse
|
229
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
230
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
231
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
232
|
Liu T, Zhang J, Chang F, Sun M, He J, Ai D. Role of endothelial Raptor in abnormal arteriogenesis after lower limb ischaemia in type 2 diabetes. Cardiovasc Res 2024; 120:1218-1234. [PMID: 38722901 DOI: 10.1093/cvr/cvae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Proper arteriogenesis after tissue ischaemia is necessary to rebuild stable blood circulation; nevertheless, this process is impaired in type 2 diabetes mellitus (T2DM). Raptor is a scaffold protein and a component of mammalian target of rapamycin complex 1 (mTORC1). However, the role of the endothelial Raptor in arteriogenesis under the conditions of T2DM remains unknown. This study investigated the role of endothelial Raptor in ischaemia-induced arteriogenesis during T2DM. METHODS AND RESULTS Although endothelial mTORC1 is hyperactive in T2DM, we observed a marked reduction in the expression of endothelial Raptor in two mouse models and in human vessels. Inducible endothelial-specific Raptor knockout severely exacerbated impaired hindlimb perfusion and arteriogenesis after hindlimb ischaemic injury in 12-week high-fat diet fed mice. Additionally, we found that Raptor deficiency dampened vascular endothelial growth factor receptor 2 (VEGFR2) signalling in endothelial cells (ECs) and inhibited VEGF-induced cell migration and tube formation in a PTP1B-dependent manner. Furthermore, mass spectrometry analysis indicated that Raptor interacts with neuropilin 1 (NRP1), the co-receptor of VEGFR2, and mediates VEGFR2 trafficking by facilitating the interaction between NRP1 and Synectin. Finally, we found that EC-specific overexpression of the Raptor mutant (loss of mTOR binding) reversed impaired hindlimb perfusion and arteriogenesis induced by endothelial Raptor knockout in high-fat diet fed mice. CONCLUSION Collectively, our study demonstrated the crucial role of endothelial Raptor in promoting ischaemia-induced arteriogenesis in T2DM by mediating VEGFR2 signalling. Thus, endothelial Raptor is a novel therapeutic target for promoting arteriogenesis and ameliorating perfusion in T2DM.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Jiachen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Fangyuan Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Mengyu Sun
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jinlong He
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiangtai Rd 22nd, Tianjin 300070, China
| |
Collapse
|
233
|
Su C, Huang L, Tu S, Lu S. Different intensities of aerobic training for patients with type 2 diabetes mellitus and knee osteoarthritis: a randomized controlled trial. Front Endocrinol (Lausanne) 2024; 15:1463587. [PMID: 39286270 PMCID: PMC11402742 DOI: 10.3389/fendo.2024.1463587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE The purpose of this study was to compare different intensities of aerobic exercise for patients with knee osteoarthritis (KOA) and type 2 diabetes mellitus (T2DM) in terms of glycemic control, pain relief, and functional outcomes. METHODS A prospective randomized open-label parallel multicenter clinical trial conducted at two hospitals in Shanghai and Sichuan that included 228 patients with type 2 diabetes mellitus (T2DM) and knee osteoarthritis (KOA). Enrollment occurred between January 2021 and February 2023, and follow-up was completed in September 2023. Participants were randomized to threshold training/high-intensive stationary cycling training (n=76), intensive endurance/moderate-intensive stationary cycling training (n=77), and regular rehabilitation programs (n=75). The primary outcome at the 6-month follow-up was the HbA1c level. Key secondary outcomes included the Knee Injury and Osteoarthritis Outcome Score (KOOS) subscale of pain and quality of life. RESULTS Of 228 patients, 212 (93%) completed the trial. The mean adjusted (sex, baseline BMI, and baseline outcome measures) HbA1c level at the 6-month follow-up decreased significantly in the high-intensive training group compared with other groups (high-intensity group vs. control group; difference, 0.51%, 95% confidence interval, 0.05% to 1.15%). Mean KOOS subscales of pain and quality of life were statistically significantly different between the control group and moderate-intensity or high-intensity groups, but no statistical differences were noted between the different intensities of aerobic exercise. Patients in all groups achieved a greater reduction in BMI but no significant differences were observed between groups. CONCLUSION In KOA and T2DM patients, high-intensity stationary cycling can significantly improve glycemic control compared with moderate-intensity and regular rehabilitation programs. However, high-intensity stationary cycling does not exert a superior effect on pain relief and functional improvement for KOA compared with moderate-intensity and regular rehabilitation programs.
Collapse
Affiliation(s)
- Chi Su
- Department of Orthopedics, Deyang Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Deyang, Sichuan, China
| | - Lihua Huang
- Department of Rehabilitation, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaochen Tu
- Department of Orthopedics, Fuzhou Second General Hospital, Fujian, China
| | - Shengdi Lu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
234
|
Feng H, Ping K, Yang Y, Liu Z, Song Q, Chen S, Meng Y, He Q, Hu Y, Dong J. Quercetin alleviates difenoconazole-induced growth inhibition in carp through intestinal-brain axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106066. [PMID: 39277382 DOI: 10.1016/j.pestbp.2024.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Difenoconazole (DIF) is frequently used for the management of fungal infections in fruit and vegetables and excessive residues in the aquatic environment can have adverse effects on fish such as growth inhibition. A treatment based on the dietary additive quercetin (QUE) is a promising approach to positively regulate the state of fish growth. This study focused on whether and how QUE alleviated DIF-induced growth inhibition in fish. In this study, carp were exposed to DIF (0.3906 mg/L) for consecutive 30 d, which showed growth inhibition. Disruption of the intestinal barrier led to elevated levels of intestinal lipopolysaccharide (LPS) and an inflammatory response. Through the intestinal-brain axis, LPS entered the brain where it disrupted the blood-brain barrier, triggered neuroinflammation, caused brain cell apoptosis, and damaged nerves in addition to other things. The dietary supplementation of QUE (400 mg/kg) reduced the levels of LPS in the intestinal and brain, while reducing inflammation and increasing the expression of appetite factors, thereby reducing growth inhibition in carp. This work provided evidence for QUE from the intestinal-brain axis perspective as a potential candidate for alleviating growth inhibition in fish.
Collapse
Affiliation(s)
- Huimiao Feng
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Yang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhijun Liu
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qimei Song
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Si Chen
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Meng
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qian He
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxuan Hu
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
235
|
Shah SF, Noorali S, Faizi S, Jabeen A. Patuletin Ameliorates Inflammation and Letrozole-Induced Polycystic Ovarian Syndrome in Rats. Cell Biochem Funct 2024; 42:e4123. [PMID: 39294896 DOI: 10.1002/cbf.4123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Concerns about inflammation-related issues affecting female reproductive health are growing. Chronic low-grade inflammation in women with polycystic ovarian syndrome (PCOS) affects follicular growth, ovulation, and androgen production. The present investigation aimed to elucidate the efficacy of flavonoid patuletin in ameliorating the letrozole-induced PCOS and associated inflammation in rats. Female Wistar rats (32 days old) were divided into five groups (n = 12): Group I, control; Group II, vehicle control; Group III, letrozole oral (1 mg/kg) for 28 days; Group IV and Group V treatment groups, patuletin i.p. (25 mg/kg) and clomiphene citrate + metformin i.p. (50 mg/kg + 300 mg/kg), respectively. Leterozole-induced PCOS and ovarian inflammation were ameliorated by patuletin, as reflected in the improved histopathology, prevention of cyst formation, significant upregulation of growth factors such as growth differentiation factor 9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) expression, and a decrease in the pro-inflammatory cytokines TNF-α, IL-6, and COX-2. Additionally, the plasma levels of reproductive hormones were restored. Upregulation of FSH-R, PR, and CYP19a1, along with downregulation of ERα, LHR, CYP17a1, CYP11a1 and HSDβ17a1, showed the regulation of gonadotropin receptors and steroid biosynthesis genes in ovarian tissues. Patuletin demonstrated a promising protective approach against the biological model of PCOS by increasing the inflammation in ovarian tissues with consequent regulation of growth factors, enzymes, and hormones, and might be used as adjuvant therapy in the treatment of problems related to female reproductive health.
Collapse
Affiliation(s)
- Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samina Noorali
- Molecular Virology Laboratory, Department of Biology, Henry N. Tisdale Molecular Science Research Center, Claflin University, Orangeburg, South Carolina, USA
| | - Shaheen Faizi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
236
|
Ramos CDO, Sant'Ana MR, Gonçalves GR, Rios TDS, Nakandakari SCBR, Burger B, Fernandes LGR, Zollner RDL, de Oliveira AN, Ramos RC, da Silva ASR, Pauli JR, de Moura LP, Ropelle ER, Mansour E, Cintra DE. The Effects of High-Fat Diet and Flaxseed Oil-Enriched Diet on the Lung Parenchyma of Obese Mice. Mol Nutr Food Res 2024; 68:e2300050. [PMID: 39205544 DOI: 10.1002/mnfr.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Omega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity. Subsequently, a part of these animals received HF containing FS oil for another 8 weeks. The HF consumption induced weight gain and hyperglycemia. The lung parenchyma shows a complete fatty acids profile, compared to the control group (CT). In the lung parenchyma, FS increases the ω3 content and, notwithstanding a reduction in the interleukins (IL) IL1β and IL18 contents compared to HF. However, FS promoted increased alveolar spaces, followed by MCP1 (Monocytes Chemoattractant Protein-1) positive cell infiltration and a dramatic reduction in the anti-inflammatory cytokine, IL10. Despite reducing the pulmonary inflammatory response, the consumption of a food source of ω3 was associated with alterations in the lipid profile and histoarchitecture of the lung parenchyma, which can lead to the development of pulmonary complications. This study brings an alert against the indiscriminate use of ω3 supplements, warranting caution.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Giovana Rios Gonçalves
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Thaiane da Silva Rios
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Rodrigo Catharino Ramos
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eli Mansour
- Department of Clinical Medicine, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| |
Collapse
|
237
|
Kale MB, Bhondge HM, Wankhede NL, Shende PV, Thanekaer RP, Aglawe MM, Rahangdale SR, Taksande BG, Pandit SB, Upaganlawar AB, Umekar MJ, Kopalli SR, Koppula S. Navigating the intersection: Diabetes and Alzheimer's intertwined relationship. Ageing Res Rev 2024; 100:102415. [PMID: 39002642 DOI: 10.1016/j.arr.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Rushikesh P Thanekaer
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sunil B Pandit
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
238
|
Acun AD, Kantar D. Modulation of oxidative stress and apoptosis by alteration of bioactive lipids in the pancreas, and effect of zinc chelation in a rat model of Alzheimer's disease. J Trace Elem Med Biol 2024; 85:127480. [PMID: 38875759 DOI: 10.1016/j.jtemb.2024.127480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer's disease (AD). It is known that peripheral insulin resistance in the early stages of AD precedes and is a precursor to amyloid-β (Aβ) deposition. Although it is known that improving the CNS insulin sensitivity of AD patients is an important therapeutic goal and that the majority of insulin in the brain comes from the periphery, there has been little attention to the changes that occur in the pancreatic tissue of AD patients. Therefore, it is crucial to elucidate the mechanisms affecting insulin resistance in pancreatic tissue in AD. It is known that zinc (Zn2+) chelation is effective in reducing peripheral insulin resistance, cell apoptosis, cell death, and oxidative stress. OBJECTIVE It was aimed to determine the changes in bioactive lipids, amylin (AIPP), oxidative stress and apoptosis in pancreatic cells in the early stages of Alzheimer's disease. The main aim is to reveal the therapeutic effect of the Cyclo-Z agent on these changes seen in the pancreas due to AD disease. METHODS AD and ADC rats were intracerebroventricular (i.c.v.) Aβ1-42 oligomers. Cyclo-Z gavage was applied to ADC and SHC rats for 21 days. First of all, the effects of AIPP, bioactive ceramides, apoptosis and oxidative stress on the pancreatic tissue of AD group rats were evaluated. Then, the effect of Cyclo-Z treatment on these was examined. ELISA kit was used in biochemical analyses. RESULTS AIPP and ceramide (CER) levels and CER/ sphingosine-1 phosphate (S1P) ratio were increased in the pancreatic tissue of AD rats. It also increased the level of CER kinase (CERK), which is known to increase the concentration of CER 1-phosphate (C1P), which is known to be toxic to cells in the presence of excessive CER concentration. Due to the increase in CER level, it was observed that apoptosis and oxidative stress increased in the pancreatic cells of AD group rats. CONCLUSION Cyclo-Z, which has Zn2+ chelating properties, reduced AD model rats' AIPP level and oxidative stress and could prevent pancreatic apoptosis. Similar therapeutic effects were not observed in the pancreatic tissue of Cyclo-Z administered to the SH group. For this reason, it is thought that Cyclo-Z agent may have a therapeutic effect on the peripheral hyperinsulinemia observed in the early stages of AD disease and the resulting low amount of insulin transported to the brain, by protecting pancreatic cells from apoptosis and oxidative stress by regulating their bioactive metabolites.
Collapse
Affiliation(s)
- Alev Duygu Acun
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey.
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Arapsuyu, Antalya 07070, Turkey
| |
Collapse
|
239
|
Beddows CA, Shi F, Horton AL, Dalal S, Zhang P, Ling CC, Yong VW, Loh K, Cho E, Karagiannis C, Rose AJ, Montgomery MK, Gregorevic P, Watt MJ, Packer NH, Parker BL, Brown RM, Moh ESX, Dodd GT. Pathogenic hypothalamic extracellular matrix promotes metabolic disease. Nature 2024; 633:914-922. [PMID: 39294371 PMCID: PMC11424483 DOI: 10.1038/s41586-024-07922-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Metabolic diseases such as obesity and type 2 diabetes are marked by insulin resistance1,2. Cells within the arcuate nucleus of the hypothalamus (ARC), which are crucial for regulating metabolism, become insulin resistant during the progression of metabolic disease3-8, but these mechanisms are not fully understood. Here we investigated the role of a specialized chondroitin sulfate proteoglycan extracellular matrix, termed a perineuronal net, which surrounds ARC neurons. In metabolic disease, the perineuronal net of the ARC becomes augmented and remodelled, driving insulin resistance and metabolic dysfunction. Disruption of the perineuronal net in obese mice, either enzymatically or with small molecules, improves insulin access to the brain, reversing neuronal insulin resistance and enhancing metabolic health. Our findings identify ARC extracellular matrix remodelling as a fundamental mechanism driving metabolic diseases.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Feiyue Shi
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna L Horton
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagar Dalal
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ping Zhang
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kim Loh
- St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Karagiannis
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adam J Rose
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
240
|
Thabet E, Dief AE, Arafa SAF, Yakout D, Ali MA. Antibiotic-induced gut microbe dysbiosis alters neurobehavior in mice through modulation of BDNF and gut integrity. Physiol Behav 2024; 283:114621. [PMID: 38925433 DOI: 10.1016/j.physbeh.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Gut microbiota is essential for intestinal integrity and brain functions. Herein we aimed to investigate the effects of alteration of gut microbiome using broad-spectrum antibiotics on CD 1 male mice (germ-modified group (GM). Moreover, we co-administrated probiotics with or without antibiotics for four weeks and evaluated if probiotics could reverse these behavioral and intestinal effects. GM, co-administered antibiotics and probiotics, and probiotics-only groups were compared to control mice of the same sex, age, and weight that did not receive either drug (n=12 in all groups). Cultivation of aerobic and anaerobic bacteria was evaluated by fecal culture of all groups. We tested exploratory behavior, anxiety, memory, depression-like behavior, and hippocampal and frontal lobe BDNF protein level alterations in response to antibiotics and its downstream effect on the PI3K/Akt1/Bcl2 pathway. Intestinal integrity was evaluated using gene expression analysis of ZO-1, claudin, and occludin genes. Additionally, the inflammatory TLR4 and p-p38 MAPK pathways in the intestines were investigated. Twice-daily administration of oral antibiotics for four weeks significantly reduced total bacterial count and upregulated TLR4 and p-p38.GM mice showed a significant reduction in BDNF(P =0.04), impaired spatial memory, and long-term memory as evidenced by decreased T maze correct alternation trails and shortened retention time in the passive avoidance test in GM(P =0.01). Passive avoidance showed significantly increased latency after probiotics intake. Depressive-like behavior was more pronounced in GM mice as assessed by the tail suspension test (P =0.01). GM showed significant upregulation(p<0.001) of the TLR4 and p-p38 MAPK pathway. Co-administration of probiotics with antibiotics showed an increase in BDNF levels, and upregulation of the cell survival PI3K/Akt1/Bcl2 pathway, significantly higher relative abundance in the firmucutes members, a significant decrease in the Firmicutes/Bacteroidetes ratio and downregulation of TLR4 and p-p38 MAPK. The tight junction proteins ZO-1, claudin and occludin were downregulated by antibiotic administration for four weeks and restored by probiotics. Collectively, the data suggest that long-term use of antibiotics appears to disrupt the intestinal epithelial barrier and alter neurobehavioral qualities specifically, long-term memory and exploratory drive, possibly through the reduction of BDNF, and probiotics partially reverse these effects. Our study emphasizes the effect of prolonged intake of antibiotics on production of dysbiosis as well as the impact of the antibiotic induced intestinal inflammation on neurobehavioral aspects in mice as the memory and anxiety-like behavior. We also reveal that co-administration of probiotics can reverse these changes.
Collapse
Affiliation(s)
- Eman Thabet
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Abeer E Dief
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Shams A-F Arafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dalia Yakout
- Department of Clinical Pharmacology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
241
|
Marafon BB, Pinto AP, de Sousa Neto IV, da Luz CM, Pauli JR, Cintra DE, Ropelle ER, Simabuco FM, Pereira de Moura L, de Freitas EC, Rivas DA, da Silva ASR. The role of interleukin-10 in mitigating endoplasmic reticulum stress in aged mice through exercise. Am J Physiol Endocrinol Metab 2024; 327:E384-E395. [PMID: 39082901 DOI: 10.1152/ajpendo.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
Although unfolded protein response (UPR) is essential for cellular protection, its prolonged activation may induce apoptosis, compromising cellular longevity. The aging process increases the endoplasmic reticulum (ER) stress in skeletal muscle. However, whether combined exercise can prevent age-induced ER stress in skeletal muscle remains unknown. Evidence suggests that ER stress may increase inflammation by counteracting the positive effects of interleukin-10 (IL-10), whereas its administration in cells inhibits ER stress and apoptosis. This study verified the effects of aging and combined exercise on physical performance, ER stress markers, and inflammation in the quadriceps of mice. Moreover, we verified the effects of IL-10 on ER stress markers. C57BL/6 mice were distributed into young (Y, 6 mo old), old sedentary (OS, sedentary, 24 mo old), and old trained group (OT, submitted to short-term combined exercise, 24 mo old). To clarify the role of IL-10 in UPR pathways, knockout mice lacking IL-10 were used. The OS mice presented worse physical performance and higher ER stress-related proteins, such as C/EBP homologous protein (CHOP) and phospho-eukaryotic translation initiation factor 2 alpha (p-eIF2α/eIF2α). The exercise protocol increased muscle strength and IL-10 protein levels in OT while inducing the downregulation of CHOP protein levels compared with OS. Furthermore, mice lacking IL-10 increased BiP, CHOP, and p-eIF2α/eIF2α protein levels, indicating this cytokine can regulate the ER stress response in skeletal muscle. Bioinformatics analysis showed that endurance and resistance training downregulated DNA damage inducible transcript 3 (DDIT3) and XBP1 gene expression in the vastus lateralis of older people, reinforcing our findings. Thus, combined exercise is a potential therapeutic intervention for promoting adjustments in ER stress markers in aged skeletal muscle.NEW & NOTEWORTHY Aging elevates endoplasmic reticulum (ER) stress in skeletal muscle, potentially heightening inflammation by opposing interleukin-10 (IL-10) effects. This study found that short-term combined exercise boosted strength and IL-10 protein levels while reducing CHOP protein levels in older mice. In addition, IL-10-deficient mice exhibited increased ER stress markers, highlighting IL-10's role in regulating ER stress in skeletal muscle. Consequently, combined exercise emerges as a therapeutic intervention to elevate IL-10 and adjust ER stress markers in aging.
Collapse
Affiliation(s)
- Bruno Brieda Marafon
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Ivo Vieira de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Caroline Mantovani da Luz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - José Rodrigo Pauli
- School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Dennys Esper Cintra
- School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Department of Health Science, Ribeirao Preto, Medical School, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Donato Americo Rivas
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
242
|
Chen Y, Wang L, Chen N, Tang G. Metformin induces tumor immunogenic cell death in ovarian cancer by activating AMPK pathway. Transl Oncol 2024; 47:102052. [PMID: 38981246 PMCID: PMC11292496 DOI: 10.1016/j.tranon.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Inducing immunogenic cell death (ICD) process may be an important antitumor strategy in ovarian cancer (OC). Metformin (Met) has been shown to have antitumor effects in OC, but whether it mediates the ICD to inhibit OC process is unclear. Human OC cell lines (SKOV3 and A2780) were treated with Met. Dendritic cell (DC) and CD8+T cells were isolated from the peripheral blood mononuclear cells of volunteers. Cell counting kit 8 assay was used to measure cell viability, and immunofluorescence staining was performed to detect the percentages of membrane and intracellular calreticulin (CRT). CRT level, DC maturation and effector cell activation were evaluated by flow cytometry. The levels of IL-10 and IFN-γ, as well as the releasements of HMGB1 and ATP, were detected using corresponding kits. The protein levels of heat shock protein 70/90 (HSP70/90) and AMPKα were tested by western blot analysis, and the mRNA levels of CD80, CD86, IL-10, and IFN-γ were measured by quantitative real-time PCR. Colony formation assay was utilized for assessing cell cytotoxicity. Mice transplanted tumor model was constructed to assess the effect of Met on OC tumor growth, and immunohistochemistry staining was used to analyze CD80+ and CD86+ cells in mice tumor tissues. Our data showed that Met inhibited OC cell viability and induced CRT exposure. Besides, Met could promote the release of HMGB1 and ATP, as well as induce DC maturation. In vivo experiments suggested that Met restrained OC tumor growth via activating antitumor immune response. Moreover, Met activated AMPK pathway, and silenced AMPK pathway reversed the promoting effect of Met on CRT exposure and the releasements of HMGB1 and ATP in OC cells. In conclusion, Met induced ICD-mediated immune destruction in OC via activating AMPK pathway, indicating that Met might be used in the immunotherapy of OC.
Collapse
Affiliation(s)
- Yixiong Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430022, Hubei Province, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430022, Hubei Province, PR China
| | - Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430022, Hubei Province, PR China
| | - Guiju Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City 430022, Hubei Province, PR China.
| |
Collapse
|
243
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
244
|
da Silva LE, Abel JS, Tartari G, da Silva MR, de Oliveira MP, Vedova LMD, Mendes TF, Mendes RL, Soares HJ, Vernke CN, Zaccaron RP, Lemos IS, Petronilho F, Silveira PCL, Streck EL, de Ávila RAM, de Mello AH, Rezin GT. Combination of Gold Nanoparticles with Carnitine Attenuates Brain Damage in an Obesity Animal Model. Mol Neurobiol 2024; 61:6366-6382. [PMID: 38296901 DOI: 10.1007/s12035-024-03984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Obesity causes inflammation in the adipose tissue and can affect the central nervous system, leading to oxidative stress and mitochondrial dysfunction. Therefore, it becomes necessary to seek new therapeutic alternatives. Gold nanoparticles (GNPs) could take carnitine to the adipose tissue, thus increasing fatty acid oxidation, reducing inflammation, and, consequently, restoring brain homeostasis. The objective of this study was to investigate the effects of GNPs associated with carnitine on the neurochemical parameters of obesity-induced mice. Eighty male Swiss mice that received a normal lipid diet (control group) or a high-fat diet (obese group) for 10 weeks were used. At the end of the sixth week, the groups were divided for daily treatment with saline, GNPs (70 µg/kg), carnitine (500 mg/kg), or GNPs associated with carnitine, respectively. Body weight was monitored weekly. At the end of the tenth week, the animals were euthanized and the mesenteric fat removed and weighed; the brain structures were separated for biochemical analysis. It was found that obesity caused oxidative damage and mitochondrial dysfunction in brain structures. Treatment with GNPs isolated reduced oxidative stress in the hippocampus. Carnitine isolated decreased the accumulation of mesenteric fat and oxidative stress in the hippocampus. The combination of treatments reduced the accumulation of mesenteric fat and mitochondrial dysfunction in the striatum. Therefore, these treatments in isolation, become a promising option for the treatment of obesity.
Collapse
Affiliation(s)
- Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil.
| | - Jessica Silva Abel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Gisele Tartari
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Larissa Marques Dela Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Rayane Luiz Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Hevylin Jacintho Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Camila Nandi Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| | - Isabela Silva Lemos
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Pathophysiology Laboratory, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Emilio Luiz Streck
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Ricardo Andrez Machado de Ávila
- Pathophysiology Laboratory, Graduate Program in Health Sciences, Universidade Do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | - Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Universidade Do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, SC, 88704-900, Brazil
| |
Collapse
|
245
|
Duan Y, Lu G. A Randomized Controlled Trial to Determine the Impact of Resistance Training versus Aerobic Training on the Management of FGF-21 and Related Physiological Variables in Obese Men with Type 2 Diabetes Mellitus. J Sports Sci Med 2024; 23:495-503. [PMID: 39228768 PMCID: PMC11366843 DOI: 10.52082/jssm.2024.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 09/05/2024]
Abstract
Fibroblast growth factor 21 (FGF-21) has been suggested as a potential therapeutic target for insulin resistance in health-related metabolic disorders such as type 2 diabetes. Despite the metabolic effects of resistance (RT) and aerobic training (AT) on diabetes symptoms, uncertainty exists regarding the superiority of effects manifested through these training approaches on FGF-21 and biochemical and physiological variables associated with metabolic disorders in men diagnosed with type 2 diabetes. This study aimed to investigate the impact of a 12-week RT and AT on FGF-21 levels and symptoms associated with metabolic disorders in male individuals diagnosed with type 2 diabetes. Thirty-six sedentary obese diabetic men (40 to 45 years old) were matched based on the level of FGF-1. They and were randomly divided into two training groups (RT, n = 12 and AT, n = 12) performing three days per week of moderate-intensity RT or AT for 12 weeks and an inactive control group (n = 12). Both training interventions significantly improved FGF-21, glucose metabolism, lipid profile, hormonal changes, strength, and aerobic capacity. Subgroup analysis revealed that RT had greater adaptive responses (p < 0.01) in fasting blood sugar (ES = -0.52), HOMA-IR (ES = -0.87), testosterone (ES = 0.52), cortisol (ES = -0.82), FGF-21 (ES = 0.61), and maximal strength (ES = 1.19) compared to AT. Conversely, AT showed greater changes (p < 0.01) in cholesterol (ES = -0.28), triglyceride (ES = -0.64), HDL (ES = 0.46), LDL (ES = -0.73), and aerobic capacity (ES = 1.18) compared to RT. Overall, both RT and AT interventions yielded significant moderate to large ES in FGF-21 levels and enhanced the management of biochemical variables. RT is an effective method for controlling FGF-21 levels and glucose balance, as well as for inducing hormonal changes. On the other hand, AT is more suitable for improving lipid profiles in overweight men with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yimei Duan
- College of Physical Education, Sichuan Normal University, Chengdu, Sichuan, China
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, Sichuan, China
| | - Guotian Lu
- College of Physical Education, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
246
|
Yang T, Zhang P, Hu J, Xu W, Jiang W, Feng R, Lou Y, Jin X, Qian Z, Gao F, Gao K, Liu R, Yang Y. Exploring the neural correlates of fat taste perception and discrimination: Insights from electroencephalogram analysis. Food Chem 2024; 450:139353. [PMID: 38636376 DOI: 10.1016/j.foodchem.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peng Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Wei Xu
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wei Jiang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Yajun Lou
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
247
|
Jinadasa AGRG, Akalanka HMK, Wageesha NDA, Ekanayake S. Metformin as a Potential In Vitro Anticancer Modulator of Adenosine Monophosphate Kinase: A Review. Int J Breast Cancer 2024; 2024:1094274. [PMID: 39246697 PMCID: PMC11380709 DOI: 10.1155/2024/1094274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 09/10/2024] Open
Abstract
Metformin (MET) is the commonly prescribed hypoglycemic agent used in the treatment of type 2 diabetes mellitus (DM). Pleiotropic effects of MET are emerging as a medication for other diseases including breast cancer (BC). Therefore, a literature review was conducted to investigate whether the anticancer effects of MET are mediated through adenosine monophosphate kinase (AMPK). This review assessed published data focusing on studies where BC cell lines were treated with MET to explore its potential anticancer effects via AMPK on BC cells. The published data reveals that activated AMPK induces anticancer effects primarily by suppressing cell proliferation, induction of apoptosis, and cell cycle arrest, inhibition of metastasis and invasion, alteration of tumor microenvironment, and downregulation of tumorigenesis. In addition, MET was observed to induce AMPK-mediated effects when combined with other drugs. Further studies on assessing the potential use of MET alone or in combination with other drugs would pave the way to design new treatment strategies for BC.
Collapse
Affiliation(s)
- A G R Greshamali Jinadasa
- Department of Basic Sciences Faculty of Allied Health Sciences University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - H M Kasuni Akalanka
- Rural Health Research Institute Charles Sturt University Orange, Orange, NSW 2800, Australia
| | - N D Amal Wageesha
- Department of Biochemistry Faculty of Medicine Sabaragamuwa University of Sri Lanka, PO Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Sagarika Ekanayake
- Department of Biochemistry Faculty of Medical Science University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
248
|
Sirtori CR, Castiglione S, Pavanello C. METFORMIN: FROM DIABETES TO CANCER TO PROLONGATION OF LIFE. Pharmacol Res 2024; 208:107367. [PMID: 39191336 DOI: 10.1016/j.phrs.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The metformin molecule dates back to over a century, but its clinical use started in the '50s. Since then, its use in diabetics has grown constantly, with over 150 million users today. The therapeutic profile also expanded, with improved understanding of novel mechanisms. Metformin has a major activity on insulin resistance, by acting on the insulin receptors and mitochondria, most likely by activation of the adenosine monophosphate-activated kinase. These and associated mechanisms lead to significant lipid lowering and body weight loss. An anti-cancer action has come up in recent years, with mechanisms partly dependent on the mitochondrial activity and also on phosphatidylinositol 3-kinase resistance occurring in some malignant tumors. The potential of metformin to raise life-length is the object of large ongoing studies and of several basic and clinical investigations. The present review article will attempt to investigate the basic mechanisms behind these diverse activities and the potential clinical benefits. Metformin may act on transcriptional activity by histone modification, DNA methylation and miRNAs. An activity on age-associated inflammation (inflammaging) may occur via activation of the nuclear factor erythroid 2 related factor and changes in gut microbiota. A senolytic activity, leading to reduction of cells with the senescent associated secretory phenotype, may be crucial in lifespan prolongation as well as in ancillary properties in age-associated diseases, such as Parkinson's disease. Telomere prolongation may be related to the activity on mitochondrial respiratory factor 1 and on peroxisome gamma proliferator coactivator 1-alpha. Very recent observations on the potential to act on the most severe neurological disorders, such as amyotrophic lateral sclerosis and frontotemporal dementia, have raised considerable hope.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Sofia Castiglione
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Center of Dyslipidemias, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Centro E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
249
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
250
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|