251
|
Grayev A, Shimakawa A, Cousins J, Turski P, Brittain J, Reeder S. Improved time-of-flight magnetic resonance angiography with IDEAL water-fat separation. J Magn Reson Imaging 2009; 29:1367-74. [PMID: 19472410 DOI: 10.1002/jmri.21780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To implement IDEAL (iterative decomposition of water and fat using echo asymmetry and least squares estimation) water-fat separation with 3D time-of-flight (TOF) magnetic resonance angiography (MRA) of intracranial vessels for improved background suppression by providing uniform and robust separation of fat signal that appears bright on conventional TOF-MRA. MATERIALS AND METHODS IDEAL TOF-MRA and conventional TOF-MRA were performed in volunteers and patients undergoing routine brain MRI/MRA on a 3T magnet. Images were reviewed by two radiologists and graded based on vessel visibility and image quality. RESULTS IDEAL TOF-MRA demonstrated statistically significant improvement in vessel visibility when compared to conventional TOF-MRA in both volunteer and clinical patients using an image quality grading system. Overall image quality was 3.87 (out of 4) for IDEAL versus 3.55 for conventional TOF imaging (P = 0.02). Visualization of the ophthalmic artery was 3.53 for IDEAL versus 1.97 for conventional TOF imaging (P < 0.00005) and visualization of the superficial temporal artery was 3.92 for IDEAL imaging versus 1.97 for conventional TOF imaging (P < 0.00005). CONCLUSION By providing uniform suppression of fat, IDEAL TOF-MRA provides improved background suppression with improved image quality when compared to conventional TOF-MRA methods.
Collapse
Affiliation(s)
- Allison Grayev
- University of Wisconsin, Department of Radiology, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
252
|
Doro LC, Ladd B, Hughes RE, Chenevert TL. Validation of an adapted MRI pulse sequence for quantification of fatty infiltration in muscle. Magn Reson Imaging 2009; 27:823-7. [DOI: 10.1016/j.mri.2009.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 11/07/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
|
253
|
Abstract
OBJECTIVE With recent advances in technology, advanced MRI methods such as diffusion-weighted and perfusion-weighted MRI, MR elastography, chemical shift-based fat-water separation, and MR spectroscopy can now be applied to liver imaging. We will review the respective roles of these techniques for assessment of chronic liver disease. CONCLUSION MRI plays an increasingly important role in assessment of patients with chronic liver disease because of the lack of ionizing radiation and the possibility of performing multiparametric imaging.
Collapse
Affiliation(s)
- Bachir Taouli
- Department of Radiology New York University Medical Center 560 First Avenue New York, NY, 10016
| | - Richard L. Ehman
- Department of Radiology Mayo Clinic 200 First St. SW Rochester, MN, 55905
| | - Scott B. Reeder
- Department of Radiology, Medical Physics and Biomedical Engineering University of Wisconsin 600 Highland Ave, CSC E1/374 Madison, WI 53792-3252
| |
Collapse
|
254
|
Kijowski R, Woods MA, Lee KS, Takimi K, Yu H, Shimakawa A, Brittain JH, Reeder SB. Improved fat suppression using multipeak reconstruction for IDEAL chemical shift fat-water separation: application with fast spin echo imaging. J Magn Reson Imaging 2009; 29:436-42. [PMID: 19161199 DOI: 10.1002/jmri.21664] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To evaluate and quantify improvements in the quality of fat suppression for fast spin-echo imaging of the knee using multipeak fat spectral modeling and IDEAL fat-water separation. MATERIALS AND METHODS T(1)-weighted and T(2)-weighted fast spin-echo sequences with IDEAL fat-water separation and two frequency-selective fat-saturation methods (fat-selective saturation and fat-selective partial inversion) were performed on 10 knees of five asymptomatic volunteers. The IDEAL images were reconstructed using a conventional single-peak method and precalibrated and self-calibrated multipeak methods that more accurately model the NMR spectrum of fat. The signal-to-noise ratio (SNR) was measured in various tissues for all sequences. Student t-tests were used to compare SNR values. RESULTS Precalibrated and self-calibrated multipeak IDEAL had significantly greater suppression of signal (P < 0.05) within subcutaneous fat and bone marrow than fat-selective saturation, fat-selective partial inversion, and single-peak IDEAL for both T(1)-weighted and T(2)-weighted fast spin-echo sequences. For T(1)-weighted fast spin-echo sequences, the improvement in the suppression of signal within subcutaneous fat and bone marrow for multipeak IDEAL ranged between 65% when compared to fat-selective partial inversion to 86% when compared to fat-selectivesaturation. For T2-weighted fast spin-echo sequences, the improvement for multipeak IDEAL ranged between 21% when compared to fat-selective partial inversion to 81% when compared to fat-selective saturation. CONCLUSION Multipeak IDEAL fat-water separation provides improved fat suppression for T(1)-weighted and T(2)-weighted fast spin-echo imaging of the knee when compared to single-peak IDEAL and two widely used frequency-selected fat-saturation methods.
Collapse
Affiliation(s)
- Richard Kijowski
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | |
Collapse
|
255
|
Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009; 61:196-204. [PMID: 19097205 DOI: 10.1002/mrm.21828] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.
Collapse
Affiliation(s)
- Tian Liu
- Department of Biomedical Engineering, Cornell University, Weill Medical College, New York, New York 10022, USA
| | | | | | | | | |
Collapse
|
256
|
Huo D, Li Z, Aboussouan E, Karis JP, Pipe JG. Turboprop IDEAL: a motion-resistant fat-water separation technique. Magn Reson Med 2009; 61:188-95. [PMID: 19097201 DOI: 10.1002/mrm.21825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.
Collapse
Affiliation(s)
- Donglai Huo
- Keller Center for Imaging Innovation, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
| | | | | | | | | |
Collapse
|
257
|
Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2009; 60:1122-34. [PMID: 18956464 DOI: 10.1002/mrm.21737] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiecho chemical shift-based water-fat separation methods are seeing increasing clinical use due to their ability to estimate and correct for field inhomogeneities. Previous chemical shift-based water-fat separation methods used a relatively simple signal model that assumes both water and fat have a single resonant frequency. However, it is well known that fat has several spectral peaks. This inaccuracy in the signal model results in two undesired effects. First, water and fat are incompletely separated. Second, methods designed to estimate T(2) (*) in the presence of fat incorrectly estimate the T(2) (*) decay in tissues containing fat. In this work, a more accurate multifrequency model of fat is included in the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) water-fat separation and simultaneous T(2) (*) estimation techniques. The fat spectrum can be assumed to be constant in all subjects and measured a priori using MR spectroscopy. Alternatively, the fat spectrum can be estimated directly from the data using novel spectrum self-calibration algorithms. The improvement in water-fat separation and T(2) (*) estimation is demonstrated in a variety of in vivo applications, including knee, ankle, spine, breast, and abdominal scans.
Collapse
Affiliation(s)
- Huanzhou Yu
- Global MR Applied Science Lab, GE Healthcare, Menlo Park, California, USA.
| | | | | | | | | | | |
Collapse
|
258
|
Hu HH, Nayak KS. Quantification of absolute fat mass using an adipose tissue reference signal model. J Magn Reson Imaging 2009; 28:1483-91. [PMID: 19025936 PMCID: PMC2732124 DOI: 10.1002/jmri.21603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To develop a method for quantifying absolute fat mass, and to demonstrate its feasibility in phantoms and in ex vivo swine specimens at 3 Tesla. MATERIALS AND METHODS Chemical-shift-based fat-water decomposition was used to first reconstruct fat-only images. Our proposed model used a reference signal from fat in pure adipose tissue to calibrate and normalize the fat signal intensities from the fat-only images. Fat mass was subsequently computed on a voxel-by-voxel basis and summed across each sample. Feasibility of the model was tested in six ex vivo swine samples containing varying mixtures of fat (adipose) and lean tissues. The samples were imaged using 1.5-mm isotropic voxels and a single-channel birdcage head coil at 3 Tesla. Lipid assay was independently performed to determine fat mass, and served as the comparison standard. RESULTS Absolute fat mass values (in grams) derived by our proposed model were in excellent agreement with lipid assay results, with a 5% to 7% difference (r > 0.99; P < 0.001). CONCLUSION Preliminary results in ex vivo swine samples demonstrated the feasibility of computing absolute fat mass as a quantitative endpoint using chemical-shift fat-water MRI with a signal model based on reference fat from pure adipose tissue.
Collapse
Affiliation(s)
- Houchun H Hu
- Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089-2564, USA.
| | | |
Collapse
|
259
|
Cowin GJ, Jonsson JR, Bauer JD, Ash S, Ali A, Osland EJ, Purdie DM, Clouston AD, Powell EE, Galloway GJ. Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 2009; 28:937-45. [PMID: 18821619 DOI: 10.1002/jmri.21542] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To compare noninvasive MRI and magnetic resonance spectroscopy (MRS) methods with liver biopsy to quantify liver fat content. MATERIALS AND METHODS Quantification of liver fat was compared by liver biopsy, proton MRS, and MRI using in-phase/out-of-phase (IP/OP) and plus/minus fat saturation (+/-FS) techniques. The reproducibility of each MR measure was also determined. An additional group of overweight patients with steatosis underwent hepatic MRI and MRS before and after a six-month weight-loss program. RESULTS A close correlation was demonstrated between histological assessment of steatosis and measurement of intrahepatocellular lipid (IHCL) by MRS (r(s) = 0.928, P < 0.0001) and MRI (IP/OP r(s) = 0.942, P < 0.0001; FS r(s) = 0.935, P < 0.0001). Following weight reduction, four of five patients with >5% weight loss had a decrease in IHCL of >or=50%. CONCLUSION These findings suggest that standard MRI protocols provide a rapid, safe, and quantitative assessment of hepatic steatosis. This is important because MRS is not available on all clinical MRI systems. This will enable noninvasive monitoring of the effects of interventions such as weight loss or pharmacotherapy in patients with fatty liver diseases.
Collapse
Affiliation(s)
- Gary J Cowin
- Centre for Magnetic Resonance, University of Queensland, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Cassidy FH, Yokoo T, Aganovic L, Hanna RF, Bydder M, Middleton MS, Hamilton G, Chavez AD, Schwimmer JB, Sirlin CB. Fatty Liver Disease: MR Imaging Techniques for the Detection and Quantification of Liver Steatosis. Radiographics 2009; 29:231-60. [DOI: 10.1148/rg.291075123] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
261
|
Abstract
Breast MRI is an area of intense research and is fast becoming an important tool for the diagnosis of breast cancer. This review covers recent advances in breast MRI, MRS, and image post-processing and analysis. Several studies have explored a multi-parametric approach to breast imaging that combines analysis of traditional contrast enhancement patterns and lesion architecture with novel methods such as diffusion, perfusion, and spectroscopy to increase the specificity of breast MRI studies. Diffusion-weighted MRI shows some potential for increasing the specificity of breast lesion diagnosis and is even more promise for monitoring early response to therapy. MRS also has great potential for increasing specificity and for therapeutic monitoring. A limited number of studies have evaluated perfusion imaging based on first-pass contrast bolus tracking, and these clearly identify that vascular indices have great potential to increase specificity. The review also covers the relatively new acquisition technique of MR elastography for breast lesion characterization. A brief survey of image processing algorithms tailored for breast MR, including registration of serial dynamic images, segmentation and extraction of morphological features of breast lesions, and contrast uptake modeling, is also included. Recent advances in MRI, MRS, and automated image analysis have increased the utility of breast MR in diagnosis, screening, management, and therapy monitoring of breast cancer.
Collapse
Affiliation(s)
- S Sinha
- Department of Radiology, University of California-San Diego, San Diego, CA 92121-0852, USA.
| | | |
Collapse
|
262
|
Abstract
In 1984, Dixon published a first paper on a simple spectroscopic imaging technique for water and fat separation. The technique acquires two separate images with a modified spin echo pulse sequence. One is a conventional spin echo image with water and fat signals in-phase and the other is acquired with the readout gradient slightly shifted so that the water and fat signals are 180 degrees out-of-phase. Dixon showed that from these two images, a water-only image and a fat-only image can be generated. The water-only image by the Dixon's technique can serve the purpose of fat suppression, an important and widely used imaging option for clinical MRI. Additionally, the availability of both the water-only and fat-only images allows direct image-based water and fat quantitation. These applications, as well as the potential that the technique can be made highly insensitive to magnetic field inhomogeneity, have generated substantial research interests and efforts from many investigators. As a result, significant improvement to the original technique has been made in the last 2 decades. The following article reviews the underlying physical principles and describes some major technical aspects in the development of these Dixon techniques.
Collapse
Affiliation(s)
- Jingfei Ma
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
263
|
Kijowski R, Tuite M, Passov L, Shimakawa A, Yu H, Hu H, Reeder SB. Cartilage imaging at 3.0T with gradient refocused acquisition in the steady-state (GRASS) and IDEAL fat-water separation. J Magn Reson Imaging 2008; 28:167-74. [PMID: 18581337 DOI: 10.1002/jmri.21414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of evaluating the articular cartilage of the knee joint at 3.0T using gradient refocused acquisition in the steady-state (GRASS) and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fat-water separation. MATERIALS AND METHODS Bloch equation simulations and a clinical pilot study (n = 10 knees) were performed to determine the influence of flip angle of the IDEAL-GRASS sequence on the signal-to-noise ratio (SNR) of cartilage and synovial fluid and the contrast-to-noise ratio (CNR) between cartilage and synovial fluid at 3.0T. The optimized IDEAL-GRASS sequence was then performed on 30 symptomatic patients as part of the routine 3.0T knee MRI examination at our institution. RESULTS The optimal flip angle was 50 degrees for IDEAL-GRASS cartilage imaging, which maximized contrast between cartilage and synovial fluid. The IDEAL-GRASS sequence consistently produced high-quality fat- and water-separated images of the knee with bright synovial fluid and 0.39 x 0.67 x 1.0 mm resolution in 5 minutes. IDEAL-GRASS images had high cartilage SNR and high contrast between cartilage and adjacent joint structures. The IDEAL-GRASS sequence provided excellent visualization of cartilage lesions in all patients. CONCLUSION The IDEAL-GRASS sequence shows promise for use as a morphologic cartilage imaging sequence at 3.0T.
Collapse
Affiliation(s)
- Richard Kijowski
- Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | | | | | | | |
Collapse
|
264
|
Regatte RR, Schweitzer ME. Novel contrast mechanisms at 3 Tesla and 7 Tesla. Semin Musculoskelet Radiol 2008; 12:266-80. [PMID: 18850506 DOI: 10.1055/s-0028-1083109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal degenerative disease, affecting millions of people. Although OA has been considered primarily a cartilage disorder associated with focal cartilage degeneration, it is accompanied by well-known changes in subchondral and trabecular bone, including sclerosis and osteophyte formation. The exact cause of OA initiation and progression remains under debate, but OA typically first affects weightbearing joints such as the knee. Magnetic resonance imaging (MRI) has been recognized as a potential tool for quantitative assessment of cartilage abnormalities due to its excellent soft tissue contrast. Over the last two decades, several new MR biochemical imaging methods have been developed to characterize the disease process and possibly predict the progression of knee OA. These new MR biochemical methods play an important role not only for diagnosis of disease at an early stage, but also for their potential use in monitoring outcome of various drug therapies (success or failure). Recent advances in multicoil radiofrequency technology and high field systems (3 T and above) significantly improve the sensitivity and specificity of imaging studies for the diagnosis of musculoskeletal disorders. The current state-of-the-art MR imaging methods are briefly reviewed for the quantitative biochemical and functional imaging assessment of musculoskeletal systems.
Collapse
Affiliation(s)
- Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10003, USA.
| | | |
Collapse
|
265
|
Feasibility of Gadofosveset-Enhanced Steady-State Magnetic Resonance Angiography of the Peripheral Vessels at 3 Tesla With Dixon Fat Saturation. Invest Radiol 2008; 43:635-41. [DOI: 10.1097/rli.0b013e31817ee53a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
266
|
Brodsky EK, Holmes JH, Yu H, Reeder SB. Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging. Magn Reson Med 2008; 59:1151-64. [PMID: 18429018 DOI: 10.1002/mrm.21580] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemical-shift artifacts associated with non-Cartesian imaging are more complex to model and less clinically acceptable than the bulk fat shift that occurs with conventional spin-warp Cartesian imaging. A novel k-space based iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) approach is introduced that decomposes multiple species while simultaneously correcting distortion of off-resonant species. The new signal model accounts for the additional phase accumulated by off-resonant spins at each point in the k-space acquisition trajectory. This phase can then be corrected by adjusting the decomposition matrix for each k-space point during the final IDEAL processing step with little increase in reconstruction time. The technique is demonstrated with water-fat decomposition using projection reconstruction (PR)/radial, spiral, and Cartesian spin-warp imaging of phantoms and human subjects, in each case achieving substantial correction of chemical-shift artifacts. Simulations of the point-spread-function (PSF) for off-resonant spins are examined to show the nature of the chemical-shift distortion for each acquisition. Also introduced is an approach to improve the signal model for species which have multiple resonant peaks. Many chemical species, including fat, have multiple resonant peaks, although such species are often approximated as a single peak. The improved multipeak decomposition is demonstrated with water-fat imaging, showing a substantial improvement in water-fat separation.
Collapse
Affiliation(s)
- Ethan K Brodsky
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
267
|
Positano V, Cusi K, Santarelli MF, Sironi A, Petz R, DeFronzo R, Landini L, Gastaldelli A. Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 2008; 28:403-10. [DOI: 10.1002/jmri.21448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
268
|
Weiss KL, Sun D, Cornelius RS, Weiss JL. Iterative Decomposition of Water and Fat with Echo Asymmetric and Least–-Squares Estimation (IDEAL) (Reeder et al. 2005) Automated Spine Survey Iterative Scan Technique (ASSIST) (Weiss et al. 2006). MAGNETIC RESONANCE INSIGHTS 2008. [DOI: 10.4137/mri.s810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background and Purpose Multi-parametric MRI of the entire spine is technologist-dependent, time consuming, and often limited by inhomogeneous fat suppression. We tested a technique to provide rapid automated total spine MRI screening with improved tissue contrast through optimized fat-water separation. Methods The entire spine was auto-imaged in two contiguous 35 cm field of view (FOV) sagittal stations, utilizing out-of-phase fast gradient echo (FGRE) and T1 and/or T2 weighted fast spin echo (FSE) IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetric and Least-squares Estimation) sequences. 18 subjects were studied, one twice at 3.0T (pre and post contrast) and one at both 1.5 T and 3.0T for a total of 20 spine examinations (8 at 1.5 T and 12 at 3.0T). Images were independently evaluated by two neuroradiologists and run through Automated Spine Survey Iterative Scan Technique (ASSIST) analysis software for automated vertebral numbering. Results In all 20 total spine studies, neuroradiologist and computer ASSIST labeling were concordant. In all cases, IDEAL provided uniform fat and water separation throughout the entire 70 cm FOV imaged. Two subjects demonstrated breast metastases and one had a large presumptive schwannoma. 14 subjects demonstrated degenerative disc disease with associated Modic Type I or II changes at one or more levels. FGRE ASSIST afforded subminute submillimeter in-plane resolution of the entire spine with high contrast between discs and vertebrae at both 1.5 and 3.0T. Marrow signal abnormalities could be particularly well characterized with IDEAL derived images and parametric maps. Conclusion IDEAL ASSIST is a promising MRI technique affording a rapid automated high resolution, high contrast survey of the entire spine with optimized tissue characterization.
Collapse
Affiliation(s)
- Kenneth L. Weiss
- University of Cincinnati, Department of Radiology, Cincinnati, Ohio, U.S.A
| | - Dongmei Sun
- University of Cincinnati, Department of Radiology, Cincinnati, Ohio, U.S.A
- Beijing Jiaotong University, Institute of Information Science, Beijing, P.R. China
| | | | - Jane L. Weiss
- WestImage, Division of Research, Cincinnati, Ohio, U.S.A
| |
Collapse
|
269
|
|
270
|
Reeder SB, Brittain JH, Grist TM, Yen YF. Least-squares chemical shift separation for (13)C metabolic imaging. J Magn Reson Imaging 2008; 26:1145-52. [PMID: 17896366 DOI: 10.1002/jmri.21089] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To describe a new least-squares chemical shift (LSCSI) method for separation of chemical species with widely spaced peaks in a sparse spectrum. The ability to account for species with multiple peaks is addressed. MATERIALS AND METHODS This method is applied to imaging of (13)C-labeled pyruvate and its metabolites alanine, pyruvate, and lactate. The method relies on a priori knowledge of the resonant frequencies of the different chemical species, as well as the relative signal from the two pyruvate peaks, one of which lies near the alanine peak. With this information a least-squares method was utilized for separation of signal from the three metabolites, facilitating tremendous reductions in the amount of data required to decompose the different chemical species. Optimization of echo spacing for maximum noise performance of the signal separation is also described. RESULTS Imaging an enriched (13)C phantom at 3.0T, the LSCSI method demonstrates excellent metabolite separation, very similar to echo planar spectroscopic imaging (EPSI), while only using 1/16th as much data. CONCLUSION This approach may be advantageous for in vivo hyperpolarized (13)C metabolic applications for reduced scan time compared with EPSI.
Collapse
Affiliation(s)
- Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
271
|
IDEAL Imaging of the Musculoskeletal System: Robust Water–Fat Separation for Uniform Fat Suppression, Marrow Evaluation, and Cartilage Imaging. AJR Am J Roentgenol 2007; 189:W284-91. [DOI: 10.2214/ajr.07.2593] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
272
|
Michaely HJ, Attenberger UI, Kramer H, Nael K, Reiser MF, Schoenberg SO. Abdominal and Pelvic MR Angiography. Magn Reson Imaging Clin N Am 2007; 15:301-14, v-vi. [PMID: 17893051 DOI: 10.1016/j.mric.2007.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, 3T MR scanners hold 10% of the market with rising market share. Angiographic exams in particular benefit directly from the higher field strength. The theoretically doubled signal-to-noise ratio at 3T allows for abdominal magnetic-resonance angiography (MRA) exams with submillimeter spatial resolution with acquisition times of less than 20 seconds. Because of altered longitudinal relaxation times, MRA exams can be performed with a significantly reduced amount of contrast agents. This review describes the current technical concepts and outlines typical sequence parameters for abdominal and pelvic MRA. The choice of contrast agents for abdominal MRA is discussed in detail. This article also provides an outlook to new technical concepts that are already at the horizon of MRA.
Collapse
Affiliation(s)
- Henrik J Michaely
- Institute of Clinical Radiology, University Hospital Mannheim, Medical Faculty Mannheim-University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
273
|
Bernard CP, Liney GP, Manton DJ, Turnbull LW, Langton CM. Comparison of fat quantification methods: A phantom study at 3.0T. J Magn Reson Imaging 2007; 27:192-7. [DOI: 10.1002/jmri.21201] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|