301
|
Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Front Immunol 2019; 10:1337. [PMID: 31258527 PMCID: PMC6587331 DOI: 10.3389/fimmu.2019.01337] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
With the recent approvals for the application of monoclonal antibodies that target the well-characterized immune checkpoints, immune therapy shows great potential against both solid and hematologic tumors. The use of these therapeutic monoclonal antibodies elicits inspiring clinical results with durable objective responses and improvements in overall survival. Agents targeting programmed cell death protein 1 (PD-1; also known as PDCD1) and its ligand (PD-L1) achieve a great success in immune checkpoints therapy. However, the majority of patients fail to respond to PD-1/PD-L1 axis inhibitors. Expression of PD-L1 on the membrane of tumor and immune cells has been shown to be associated with enhanced objective response rates to PD-1/PD-L1 inhibition. Thus, an improved understanding of how PD-L1 expression is regulated will enable us to better define its role as a predictive marker. In this review, we summarize recent findings in the regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Xiangfeng Shen
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
302
|
Abstract
Cancer immunotherapy (CIT) has transformed cancer treatment. In particular, immunotherapies targeting the programmed death ligand 1 (PD-L1)/programmed death 1 pathway have demonstrated durable clinical benefit in some patients. However, CIT combinations may create a more favorable environment in which to maximize the potential of the immune system to eliminate cancer. Here we describe 3 key mechanisms related to vascular endothelial growth factor (VEGF)-mediated immunosuppression: inhibition of dendritic cell maturation, reduction of T-cell tumor infiltration, and promotion of inhibitory cells in the tumor microenvironment; supporting data are also described. In addition, we discuss immunomodulatory properties observed within tumors following bevacizumab treatment. Combining anti-PD-L1 and anti-VEGF therapies has shown synergy and positive outcomes in phases I to III studies, particularly in settings where high VEGF levels are known to play an important role in tumor growth. We also review data from key studies supporting combination of bevacizumab and CIT, with a focus on PD-L1/programmed death 1 inhibitors.
Collapse
|
303
|
Ribatti D, Annese T, Ruggieri S, Tamma R, Crivellato E. Limitations of Anti-Angiogenic Treatment of Tumors. Transl Oncol 2019; 12:981-986. [PMID: 31121490 PMCID: PMC6529826 DOI: 10.1016/j.tranon.2019.04.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/26/2023] Open
Abstract
Clinical trials using anti-vascular endothelial growth factor /(VEGF) molecules induce a modest improvement in overall survival, measurable in weeks to just a few months, and tumors respond differently to these agents. In this review article, we have exposed some tumor characteristics and processes that may impair the effectiveness of anti-angiogenic approaches, including genotypic changes on endothelial cells, the vascular normalization phenomenon, and the vasculogenic mimicry. The usage of anti-angiogenic molecules leads to hypoxic tumor microenvironment which enhances tumor invasiveness. The role of tumor-infiltrating cells, including tumor associated macrophages and fibroblasts (TAMs and TAFs) in the therapeutic response to anti-angiogenic settings was also highlighted. Finally, among the new therapeutic approaches to target tumor vasculature, anti-PD-1 or anti-PD-L1 therapy sensitizing and prolonging the efficacy of anti-angiogenic therapy, have been discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Enrico Crivellato
- Department of Medicine, Section of Human Anatomy, University of Udine, Italy
| |
Collapse
|
304
|
Datta M, Coussens LM, Nishikawa H, Hodi FS, Jain RK. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2019. [PMID: 31099649 DOI: 10.1200/edbk_237987,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging immunotherapeutic approaches have revolutionized the treatment of multiple malignancies. Immune checkpoint blockers (ICBs) have enabled never-before-seen success rates in durable tumor control and enhanced survival benefit in patients with advanced cancers. However, this effect is not universal, resulting in responder and nonresponder populations not only between, but also within solid tumor types. Although ICBs are thought to be most effective against tumors with more genetic mutations and higher antigen loads, this is not always the case for all cancers or for all patients within a cancer subtype. Furthermore, debilitating and sometimes deadly immune-related adverse events (irAEs) have resulted from aberrant activation of T-cell responses following immunotherapy. Thus, we must identify new ways to overcome resistance to ICB-based immunotherapies and limit irAEs. In fact, preclinical and clinical data have identified abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies such as ICBs. Here, we will discuss how reprogramming various facets of the TME (blood vessels, myeloid cells, and regulatory T cells [Tregs]) may overcome TME-instigated resistance mechanisms to immunotherapy. We will discuss clinical applications of this strategic approach, including the recent successful phase III trial combining bevacizumab with atezolizumab and chemotherapy for metastatic nonsquamous non-small cell lung cancer that led to rapid approval by the U.S. Food and Drug Administration of this regimen for first-line treatment. Given the accelerated testing and approval of ICBs combined with various targeted therapies in larger numbers of patients with cancer, we will discuss how these concepts and approaches can be incorporated into clinical practice to improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Meenal Datta
- 1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa M Coussens
- 2 Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hiroyoshi Nishikawa
- 3 From the Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Japan, Tokyo, Japan
| | - F Stephen Hodi
- 4 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rakesh K Jain
- 1 Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
305
|
Wu DF, He W, Lin S, Han B, Zee CS. Using Real-Time Fusion Imaging Constructed from Contrast-Enhanced Ultrasonography and Magnetic Resonance Imaging for High-Grade Glioma in Neurosurgery. World Neurosurg 2019; 125:e98-e109. [DOI: 10.1016/j.wneu.2018.12.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/20/2023]
|
306
|
Yunus M, Jansson PJ, Kovacevic Z, Kalinowski DS, Richardson DR. Tumor-induced neoangiogenesis and receptor tyrosine kinases - Mechanisms and strategies for acquired resistance. Biochim Biophys Acta Gen Subj 2019; 1863:1217-1225. [PMID: 31029846 DOI: 10.1016/j.bbagen.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Angiogenesis is essential for tumor growth, proliferation and metastasis. Tumor-related angiogenesis is complex and involves multiple signaling pathways. Controlling angiogenesis is a promising strategy for limiting cancer progression. SCOPE OF REVIEW Several receptor tyrosine kinases influence the angiogenic response via multiple signaling molecules and pathways. Understanding the functional interaction of kinases in the angiogenic process and development of resistance to kinase inhibition is essential for future successful therapeutic strategies. MAJOR CONCLUSIONS Strategies that target receptor tyrosine kinases and other tumor microenvironment factors simultaneously, or sequentially, are required for achieving an efficient and robust anti-angiogenic response. GENERAL SIGNIFICANCE Understanding the molecular mechanism of angiogenesis has improved, and has led, to the clinical development and approval of anti-angiogenic drugs. While many patients have benefited from these agents, their limited efficacy and the development of resistance remains a challenge. This review highlights current therapies and challenges associated with targeting angiogenesis in cancer.
Collapse
Affiliation(s)
- Madiha Yunus
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
307
|
HOTNOG CAMELIAMIA, MIHAILA MIRELA, PUIU LILIANA, BOTEZATU ANCA, ROMAN VIVIANA, POPESCU IULIADANA, BOSTAN MARINELA, BRASOVEANU LORELEIIRINA. Modulation of the interplay between p53, ICAM-1 and VEGF in drug-treated LoVo colon cancer cells. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/261.270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
308
|
Wang X, Hua Y, Xu G, Deng S, Yang D, Gao X. Targeting EZH2 for glioma therapy with a novel nanoparticle-siRNA complex. Int J Nanomedicine 2019; 14:2637-2653. [PMID: 31043779 PMCID: PMC6472285 DOI: 10.2147/ijn.s189871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background For the past few years, gene-therapy has recently shown considerable clinical benefit in cancer therapy, and the applications of gene therapies in cancer treatments continue to increase perennially. EZH2, an ideal candidate for tumor gene therapy, plays an important role in the tumorigenesis. Methods In this study, we developed a novel gene delivery system with a self-assembly method by Methoxy polyethylene glycol-polycaprolactone (MPEG-PCL) and DOTAP(DMC). And EZH2si-DMC was used to research anti-glioma both in vitro and in vivo. Results DMC with zeta-potential value of 36.7 mV and size of 35.6 nm showed good performance in the delivery siRNA to glioma cell in vitro with high 98% transfection efficiency. EZH2si-DMC showed good anti-glioma effect in vitro through inducing cell apoptosis and inhibiting cell growth. What’s more, treatment of tumor-bearing mice with DMC-EZH2si complex had significantly inhibited tumor growth at the subcutaneous model in vivo by inhibiting EZH2 protein expression, promoting apoptosis and reducing proliferation. Conclusion The EZH2 siRNA and DMC complex may be used to treat the glioma in clinical as a new drug.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurosurgery, Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China,
| | - Yuanqi Hua
- Department of Neurosurgery, Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China,
| | - Guangya Xu
- Department of Neurosurgery, Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China,
| | - Senyi Deng
- Department of Neurosurgery, Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China,
| | - Daoke Yang
- Tumor Hospital of First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiang Gao
- Department of Neurosurgery, Institute of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China,
| |
Collapse
|
309
|
Abstract
Angiogenesis and inflammation are hallmarks of cancer. Arachidonic acid and other polyunsaturated fatty acids (PUFAs) are primarily metabolized by three distinct enzymatic systems initiated by cyclooxygenases, lipoxygenases, and cytochrome P450 enzymes (CYP) to generate bioactive eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids. As some of the PUFA metabolites playing essential roles in inflammatory processes, these pathways have been widely studied as therapeutic targets of inflammation. Because of their anti-inflammatory effects, these pathways were also proposed as anti-cancer targets. However, although the eicosanoids were linked to endothelial cell proliferation and angiogenesis almost two decades ago, it is only recently PUFA metabolites, especially those generated by CYP enzymes and the soluble epoxide hydrolase (sEH), have been recognized as important signaling mediators in physiological and pathological angiogenesis. Despite the fact that tumor growth and invasion are heavily dependent on inner-tumor angiogenesis and influenced by vascular stability, the role played by PUFA metabolites in tumor angiogenesis and vessel integrity has been largely overlooked. This review highlights current knowledge on the function of PUFA metabolites generated by the CYP/sEH pathway in angiogenesis and vascular stability as well as their potential involvement in cancer development.
Collapse
|
310
|
Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer 2019; 18:60. [PMID: 30925919 PMCID: PMC6441150 DOI: 10.1186/s12943-019-0974-6] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) activates host's anti-tumor immune response by blocking negative regulatory immune signals. A series of clinical trials showed that ICI could effectively induce tumor regression in a subset of advanced cancer patients. In clinical practice, a main concerning for choosing ICI is the low response rate. Even though multiple predictive biomarkers such as PD-L1 expression, mismatch-repair deficiency, and status of tumor infiltrating lymphocytes have been adopted for patient selection, frequent resistance to ICI monotherapy has not been completely resolved. However, some recent studies indicated that ICI resistance could be alleviated by combination therapy with anti-angiogenesis treatment. Actually, anti-angiogenesis therapy not only prunes blood vessel which is essential to cancer growth and metastasis, but also reprograms the tumor immune microenvironment. Preclinical studies demonstrated that the efficacy of combination therapy of ICI and anti-angiogenesis was superior to monotherapy. In mice model, combination therapy could effectively increase the ratio of anti-tumor/pro-tumor immune cell and decrease the expression of multiple immune checkpoints more than PD-1. Based on exciting results from preclinical studies, many clinical trials were deployed to investigate the synergistic effect of the combination therapy and acquired promising outcome. This review summarized the latest understanding of ICI combined anti-angiogenesis therapy and highlighted the advances of relevant clinical trials.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
311
|
Qian Y, Lu X, Li Q, Zhao S, Fang D. The treatment effects and the underlying mechanism of B cell translocation gene 1 on the oncogenesis of brain glioma. J Cell Biochem 2019; 120:13310-13320. [DOI: 10.1002/jcb.28605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Qian
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Xinyu Lu
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Qiaoyu Li
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Su Zhao
- Department of Neurosurgery Jiangsu University Affiliated People's Hospital
| | - Dazhao Fang
- Department of Neurosurgery The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University Huaiyin China
| |
Collapse
|
312
|
Liu S, Qin T, Jia Y, Li K. PD-L1 Expression Is Associated With VEGFA and LADC Patients' Survival. Front Oncol 2019; 9:189. [PMID: 30972298 PMCID: PMC6443993 DOI: 10.3389/fonc.2019.00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/05/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives: To elucidate the relationship between VEGFA and PD-L1 expression in lung adenocarcinoma (LADC). Methods: PD-L1 and VEGFA expression were determined by immunohistochemistry with H-score on formalin-fixed paraffin-embedded resected LADC specimens of 129 cases. Results: High PD-L1 expression in 53 (41.1%) patients, high VEGFA expression in 65 (50.4%), and co-expression in 18 (14.0%) were observed. Inverse correlation between expression of PD-L1 and VEGFA was found (P = 0.002, r = −0.274). VEGFA and PD-L1 expression were not significantly associated with the clinicopathological features. High PD-L1 expression was significantly association with all patients' poor progression-free survival and overall survival in a univariate analysis, but there was no significantly association with high VEGFA expression and prognosis. Co-expression of PD-L1 and VEGFA exhibited a worst overall survival compared to negative groups (P = 0.005). Conclusions: These findings indicate that high PD-L1 expression could impact both poor overall survival and progression-free survival in patients with resected LADC. Co-expression of PD-L1 and VEGFA may be considered as an important prognostic factor for patients with resected lung adenocarcinoma.
Collapse
Affiliation(s)
- Shaochuan Liu
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Jia
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Li
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
313
|
Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T, Takayama K. Tumor Neovascularization and Developments in Therapeutics. Cancers (Basel) 2019; 11:cancers11030316. [PMID: 30845711 PMCID: PMC6468754 DOI: 10.3390/cancers11030316] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Tumors undergo fast neovascularization to support the rapid proliferation of cancer cells. Vasculature in tumors, unlike that in wound healing, is immature and affects the tumor microenvironment, resulting in hypoxia, acidosis, glucose starvation, immune cell infiltration, and decreased activity, all of which promote cancer progression, metastasis, and drug resistance. This innate defect of tumor vasculature can however represent a useful therapeutic target. Angiogenesis inhibitors targeting tumor vascular endothelial cells important for angiogenesis have attracted attention as cancer therapy agents that utilize features of the tumor microenvironment. While angiogenesis inhibitors have the advantage of targeting neovascularization factors common to all cancer types, some limitations to their deployment have emerged. Further understanding of the mechanism of tumor angiogenesis may contribute to the development of new antiangiogenic therapeutic approaches to control tumor invasion and metastasis. This review discusses the mechanism of tumor angiogenesis as well as angiogenesis inhibition therapy with antiangiogenic agents.
Collapse
Affiliation(s)
- Yuki Katayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Junji Uchino
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yusuke Chihara
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Nobuyo Tamiya
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
314
|
Zhou C, Zhang J. Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects. Front Med 2019; 13:12-23. [PMID: 30796606 DOI: 10.1007/s11684-019-0685-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Strategies in comprehensive therapy for gastrointestinal (GI) cancer have been optimized in the last decades to improve patients' outcomes. However, treatment options remain limited for late-stage or refractory diseases. The efficacy of immune checkpoint inhibitors (ICIs) for treatment of refractory GI cancer has been confirmed by randomized clinical trials. In 2017, pembrolizumab was approved by the US Food and Drug Administration as the first agent for treatment of metastatic solid tumors with mismatch repair deficiency, especially for colorectal cancer. Given the different mechanisms, oncologists have focused on determining whether ICIs-based combination strategies could achieve higher efficacy than conventional therapy alone in late-stage or even front-line treatment of GI cancer. This review discusses the current status of combining immune checkpoint inhibitors with molecular targeted therapy, chemotherapy, or radiotherapy in GI cancer in terms of mechanisms, safety, and efficacy to provide basis for future research.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
315
|
McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol 2019; 20:24. [PMID: 30790064 PMCID: PMC6394457 DOI: 10.1007/s11864-019-0619-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT At this time, there are no FDA-approved immune therapies for glioblastoma (GBM) despite many unique therapies currently in clinical trials. GBM is a highly immunosuppressive tumor and there are limitations to a safe immune response in the central nervous system. To date, there have been several failures of phase 3 immune therapy clinical trials in GBM. These trials have targeted single components of an antitumor immune response. Learning from these failures, the future of immunotherapy for GBM appears most hopeful for combination of immune therapies to overcome the profound immunosuppression of this disease. Understanding biomarkers for appropriate patient selection as well as tumor progression are necessary for implementation of immunotherapy for GBM.
Collapse
Affiliation(s)
- Tresa McGranahan
- Department of Neurology, UW Medicine, University of Washington, Seattle, WA USA
| | | | - Sarah Ahmad
- Department of Neurology, Stanford University, Stanford, CA USA
| | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, CA USA
| |
Collapse
|
316
|
Zhao S, Ren S, Jiang T, Zhu B, Li X, Zhao C, Jia Y, Shi J, Zhang L, Liu X, Qiao M, Chen X, Su C, Yu H, Zhou C, Zhang J, Camidge DR, Hirsch FR. Low-Dose Apatinib Optimizes Tumor Microenvironment and Potentiates Antitumor Effect of PD-1/PD-L1 Blockade in Lung Cancer. Cancer Immunol Res 2019; 7:630-643. [PMID: 30755403 DOI: 10.1158/2326-6066.cir-17-0640] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/04/2018] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
The lack of response to treatment in most lung cancer patients suggests the value of broadening the benefit of anti-PD-1/PD-L1 monotherapy. Judicious dosing of antiangiogenic agents such as apatinib (VEGFR2-TKI) can modulate the tumor immunosuppressive microenvironment, which contributes to resistance to anti-PD-1/PD-L1 treatment. We therefore hypothesized that inhibiting angiogenesis could enhance the therapeutic efficacy of PD-1/PD-L1 blockade. Here, using a syngeneic lung cancer mouse model, we demonstrated that low-dose apatinib alleviated hypoxia, increased infiltration of CD8+ T cells, reduced recruitment of tumor-associated macrophages in tumor and decreased TGFβ amounts in both tumor and serum. Combining low-dose apatinib with anti-PD-L1 significantly retarded tumor growth, reduced the number of metastases, and prolonged survival in mouse models. Anticancer activity was evident after coadministration of low-dose apatinib and anti-PD-1 in a small cohort of patients with pretreated advanced non-small cell lung cancer. Overall, our work shows the rationale for the treatment of lung cancer with a combination of PD-1/PD-L1 blockade and low-dose apatinib.
Collapse
Affiliation(s)
- Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Limin Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hui Yu
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China.
| | - Jun Zhang
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Fred R Hirsch
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, Colorado.,Clinical Institute for Lung Cancer, Mount Sinai Cancer, Mount Sinai Health System, Tisch Cancer Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
317
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
318
|
Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies. Proc Natl Acad Sci U S A 2019; 116:2662-2671. [PMID: 30700544 DOI: 10.1073/pnas.1818322116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.
Collapse
|
319
|
Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, Freeman GJ, Alessandrini A, Parangi S. Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer 2019; 144:2266-2278. [PMID: 30515783 DOI: 10.1002/ijc.32041] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Patients with anaplastic thyroid cancer (ATC) have an extremely poor prognosis despite multimodal therapy with surgery and chemoradiation. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, as well as checkpoint inhibitors targeting the programmed cell death pathway, have proven effective in some patients with advanced thyroid cancer. Combination of these therapies is a potential means to boost effectiveness and minimize treatment resistance in ATC. We utilized our novel immunocompetent murine model of orthotopic ATC to demonstrate that lenvatinib led to significant tumor shrinkage and increased survival, while combination therapy led to dramatic improvements in both. Lenvatinib monotherapy increased tumor-infiltrating macrophages, CD8+ T-cells, regulatory T-cells, and most notably, polymorphonuclear myeloid derived suppressor cells (PMN-MDSCs). While both combination therapies led to further increases in CD8+ T-cells, only the lenvatinib and anti-PD-1 combination decreased PMN-MDSCs. PMN-MDSC expansion was also seen in the blood of mice and one patient receiving lenvatinib therapy for ATC. RNA-Seq of the ATC cell line used in our mouse model demonstrated that lenvatinib has multifaceted effects on angiogenesis, response to hypoxia, the epithelial-to-mesenchymal transition, and on multiple pathways implicated in inflammation and host immunity. Combination of lenvatinib with anti-Gr-1 antibody ameliorated lenvatinib's expansion of MDSCs and significantly improved lenvatinib's anti-tumor effect. These data suggest that MDSCs play a negative role in ATC's response to lenvatinib and support future study of their role as a potential biomarker and treatment target.
Collapse
Affiliation(s)
- Viswanath Gunda
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Benjamin Gigliotti
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Tameem Ashry
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Dorothy Ndishabandi
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Michael McCarthy
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Zhiheng Zhou
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Salma Amin
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Kyu Eun Lee
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Tabea Stork
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Lori Wirth
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Gordon J Freeman
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Alessandro Alessandrini
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| | - Sareh Parangi
- Department of Surgery, Division of General and Gastrointestinal Surgery, Harvard Medical School, Massachusetts General Hospital, Wang Ambulatory Care Center, 460, 15 Parkman Street, Boston, MA
| |
Collapse
|
320
|
Datta M, Coussens LM, Nishikawa H, Hodi FS, Jain RK. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies. Am Soc Clin Oncol Educ Book 2019; 39:165-174. [PMID: 31099649 PMCID: PMC6596289 DOI: 10.1200/edbk_237987] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging immunotherapeutic approaches have revolutionized the treatment of multiple malignancies. Immune checkpoint blockers (ICBs) have enabled never-before-seen success rates in durable tumor control and enhanced survival benefit in patients with advanced cancers. However, this effect is not universal, resulting in responder and nonresponder populations not only between, but also within solid tumor types. Although ICBs are thought to be most effective against tumors with more genetic mutations and higher antigen loads, this is not always the case for all cancers or for all patients within a cancer subtype. Furthermore, debilitating and sometimes deadly immune-related adverse events (irAEs) have resulted from aberrant activation of T-cell responses following immunotherapy. Thus, we must identify new ways to overcome resistance to ICB-based immunotherapies and limit irAEs. In fact, preclinical and clinical data have identified abnormalities in the tumor microenvironment (TME) that can thwart the efficacy of immunotherapies such as ICBs. Here, we will discuss how reprogramming various facets of the TME (blood vessels, myeloid cells, and regulatory T cells [Tregs]) may overcome TME-instigated resistance mechanisms to immunotherapy. We will discuss clinical applications of this strategic approach, including the recent successful phase III trial combining bevacizumab with atezolizumab and chemotherapy for metastatic nonsquamous non-small cell lung cancer that led to rapid approval by the U.S. Food and Drug Administration of this regimen for first-line treatment. Given the accelerated testing and approval of ICBs combined with various targeted therapies in larger numbers of patients with cancer, we will discuss how these concepts and approaches can be incorporated into clinical practice to improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Hiroyoshi Nishikawa
- the Division of Cancer Immunology, Research Institute, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Japan, Tokyo, Japan
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Rakesh K. Jain
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
321
|
de Vries MR, Parma L, Peters HAB, Schepers A, Hamming JF, Jukema JW, Goumans MJTH, Guo L, Finn AV, Virmani R, Ozaki CK, Quax PHA. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J Intern Med 2019; 285:59-74. [PMID: 30102798 PMCID: PMC6334526 DOI: 10.1111/joim.12821] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature plaque neovessels are leaky and cause intraplaque haemorrhage. OBJECTIVE Blockade of VEGFR2 normalizes the unbridled process of plaque neovessel formation and induces maturation of nascent vessels resulting in prevention of intraplaque haemorrhage and influx of inflammatory cells into the plaque and subsequently increases plaque stability. METHODS AND RESULTS In human carotid and vein graft atherosclerotic lesions, leaky plaque neovessels and intraplaque haemorrhage co-localize with VEGF/VEGFR2 and angiopoietins. Using hypercholesterolaemic ApoE3*Leiden mice that received a donor caval vein interposition in the carotid artery, we demonstrate that atherosclerotic vein graft lesions at t28 are associated with hypoxia, Hif1α and Sdf1 up-regulation. Local VEGF administration results in increased plaque angiogenesis. VEGFR2 blockade in this model results in a significant 44% decrease in intraplaque haemorrhage and 80% less extravasated erythrocytes compared to controls. VEGFR2 blockade in vivo results in a 32% of reduction in vein graft size and more stable lesions with significantly reduced macrophage content (30%), and increased collagen (54%) and smooth muscle cell content (123%). Significant decreased VEGF, angiopoietin-2 and increased Connexin 40 expression levels demonstrate increased plaque neovessel maturation in the vein grafts. VEGFR2 blockade in an aortic ring assay showed increased pericyte coverage of the capillary sprouts. CONCLUSION Inhibition of intraplaque haemorrhage by controlling neovessels maturation holds promise to improve plaque stability.
Collapse
Affiliation(s)
- M. R. de Vries
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - L. Parma
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - H. A. B. Peters
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - A. Schepers
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - J. F. Hamming
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - J. W. Jukema
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - M. J. T. H. Goumans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - L. Guo
- CVPath Institute Inc.GaithersburgMDUSA
| | | | | | - C. K. Ozaki
- Department of SurgeryDivision of Vascular and Endovascular SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - P. H. A. Quax
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
322
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
323
|
Lin W, Chen M, Hong L, Zhao H, Chen Q. Crosstalk Between PD-1/PD-L1 Blockade and Its Combinatorial Therapies in Tumor Immune Microenvironment: A Focus on HNSCC. Front Oncol 2018; 8:532. [PMID: 30519541 PMCID: PMC6258806 DOI: 10.3389/fonc.2018.00532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide with a poor prognosis and high mortality. More than two-thirds of HNSCC patients still have no effective control of clinical progression, and the five-year survival rate is < 50%. Moreover, patients with platinum-refractory HNSCC have a median survival of < 6 months. The significant toxicity and low survival rates of current treatment strategies highlight the necessity for new treatment modalities. Recently, a large number of studies have demonstrated that programmed cell death protein-1 (PD-1) and its ligand, programmed cell death protein ligand-1 (PD-L1) play an essential role in tumor initiation and progression. PD-1/PD-L1 blockade has shown a desired and long-lasting therapeutic effect in the treatment of HNSCC and other malignancies. However, only a small number of patients with HNSCC can benefit from PD-1/PD-L1 blockade monotherapy, while the majority of patients do not respond. To overcome the unsatisfactory therapeutic effect of PD-1/PD-L1 blockade monotherapy, combining other treatment options for HNSCC (including chemotherapy, radiotherapy, targeted therapy, and immunotherapy) in the treatment scheme has become a commonly used strategy. Herein, the potential mechanisms underlying the crosstalk between PD-1/PD-L1 blockade and its combinatorial therapies for HNSCC were reviewed, and it is hoped that the improved understanding of the crosstalk process would provide further ideas for the design of a combinatorial regimen with a higher efficiency and response rate for the treatment of HNSCC and other malignancies.
Collapse
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Le Hong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
324
|
Tsukita Y, Okazaki T, Ebihara S, Komatsu R, Nihei M, Kobayashi M, Hirano T, Sugiura H, Tamada T, Tanaka N, Sato Y, Yagita H, Ichinose M. Beneficial effects of sunitinib on tumor microenvironment and immunotherapy targeting death receptor5. Oncoimmunology 2018; 8:e1543526. [PMID: 30713805 DOI: 10.1080/2162402x.2018.1543526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated blood vessels and lymphatics are abnormal and dysfunctional. These are hallmarks of the tumor microenvironment, which has an immunosuppressive nature, such as through hypoxia. Treatment with anti-death receptor5 (DR5) monoclonal antibody MD5-1, which induces tumor cell death, is a potent anti-tumor immunotherapy. Generally, MD5-1 induces cell death mainly via antigen presenting cells (APCs) and generates tumor-specific effector T cells. To date, the effects of a simultaneous functional improvement of abnormal blood vessels and lymphatics on the immune microenvironment are largely unknown. A combination therapy using sunitinib, vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor inhibitor, and MD5-1 substantially inhibited tumor growth. Sunitinib improved pericyte coverage on endothelial cells and the expression levels of regulator of G-protein signaling 5, suggesting blood vessel normalization. Sunitinib also increased lymph flow from tumors to central lymph nodes, suggesting improved lymphatic function. In concordance with improved vasculature functions, sunitinib alleviated the tumor hypoxia, suggesting an improved tumor microenvironment. Indeed, the combination therapy induced strong activation of CD8+ T cells and dendritic cells in draining lymph nodes. The combination therapy reduced the ratio of immune-suppressive T regulatory cells in the tumors and draining lymph nodes. The combination therapy enhanced the numbers and activation of tumor-infiltrating CD8+ T cells. CD4 and/or CD8 depletion, or APC inhibiting experiments showed the contribution of CD8+ T cells and APCs to the combination therapy. These findings suggest that targeting blood vessels and lymphatics may have potential benefits for immunotherapy mediated by CD8+ T cells and APCs.
Collapse
Affiliation(s)
- Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Nihei
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Department of Cancer Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
325
|
Deng S, Zhang G, Kuai J, Fan P, Wang X, Zhou P, Yang D, Zheng X, Liu X, Wu Q, Huang Y. Lentinan inhibits tumor angiogenesis via interferon γ and in a T cell independent manner. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:260. [PMID: 30373628 PMCID: PMC6206909 DOI: 10.1186/s13046-018-0932-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Background Antiangiogenic agents are commonly used in lung and colon cancer treatments, however, rapid development of drug resistance limits their efficacy. Methods Lentinan (LNT) is a biologically active compound extracted from Lentinus edodes. The effects of LNT on tumor angiogenesis were evaluated by immunohistochemistry in murine LAP0297 lung and CT26 colorectal tumor models. The impacts of LNT on immune cells and gene expression in tumor tissues were determined by flow cytometry, qPCR, and ELISA. Nude mice and IFNγ blockade were used to investigate the mechanism of LNT affecting on tumor angiogenesis. The data sets were compared using two-tailed student’s t tests or ANOVA. Results We found that LNT inhibited tumor angiogenesis and the growth of lung and colon cancers. LNT treatments elevated the expression of angiostatic factors such as IFNγ and also increased tumor infiltration of IFNγ-expressing T cells and myeloid cells. Interestingly, IFNγ blockade, but not T cell deficiency, reversed the effects of LNT treatments on tumor blood vessels. Moreover, long-lasting LNT administration persistently suppressed tumor angiogenesis and inhibited tumor growth. Conclusions LNT inhibits tumor angiogenesis by increasing IFNγ production and in a T cell-independent manner. Our findings suggest that LNT could be developed as a new antiangiogenic agent for long-term treatment of lung and colon cancers. Electronic supplementary material The online version of this article (10.1186/s13046-018-0932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengming Deng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Guoxi Zhang
- Nanjing Luye Pharmaceutical Co., Ltd, Nanjing, 210061, Jiangsu, China
| | - Jiajie Kuai
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Peng Fan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Xuexiang Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Pei Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Dan Yang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xichen Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaomei Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China
| | - Qunli Wu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
326
|
Holmström TH, Moilanen AM, Ikonen T, Björkman ML, Linnanen T, Wohlfahrt G, Karlsson S, Oksala R, Korjamo T, Samajdar S, Rajagopalan S, Chelur S, Narayanan K, Ramachandra RK, Mani J, Nair R, Gowda N, Anthony T, Dhodheri S, Mukherjee S, Ujjinamatada RK, Srinivas N, Ramachandra M, Kallio PJ. ODM-203, a Selective Inhibitor of FGFR and VEGFR, Shows Strong Antitumor Activity, and Induces Antitumor Immunity. Mol Cancer Ther 2018; 18:28-38. [PMID: 30301864 DOI: 10.1158/1535-7163.mct-18-0204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022]
Abstract
Alterations in the gene encoding for the FGFR and upregulation of the VEGFR are found often in cancer, which correlate with disease progression and unfavorable survival. In addition, FGFR and VEGFR signaling synergistically promote tumor angiogenesis, and activation of FGFR signaling has been described as functional compensatory angiogenic signal following development of resistance to VEGFR inhibition. Several selective small-molecule FGFR kinase inhibitors are currently in clinical development. ODM-203 is a novel, selective, and equipotent inhibitor of the FGFR and VEGFR families. In this report we show that ODM-203 inhibits FGFR and VEGFR family kinases selectively and with equal potency in the low nanomolar range (IC50 6-35 nmol/L) in biochemical assays. In cellular assays, ODM-203 inhibits VEGFR-induced tube formation (IC50 33 nmol/L) with similar potency as it inhibits proliferation in FGFR-dependent cell lines (IC50 50-150 nmol/L). In vivo, ODM-203 shows strong antitumor activity in both FGFR-dependent xenograft models and in an angiogenic xenograft model at similar well-tolerated doses. In addition, ODM-203 inhibits metastatic tumor growth in a highly angiogenesis-dependent kidney capsule syngenic model. Interestingly, potent antitumor activity in the subcutaneous syngenic model correlated well with immune modulation in the tumor microenvironment as indicated by marked decrease in the expression of immune check points PD-1 and PD-L1 on CD8 T cells and NK cells, and increased activation of CD8 T cells. In summary, ODM-203 shows equipotent activity for both FGFR and VEGFR kinase families and antitumor activity in both FGFR and angigogenesis models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiju Mani
- Aurigene Discovery Technologies Limited, India
| | - Rashmi Nair
- Aurigene Discovery Technologies Limited, India
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Eino D, Tsukada Y, Naito H, Kanemura Y, Iba T, Wakabayashi T, Muramatsu F, Kidoya H, Arita H, Kagawa N, Fujimoto Y, Takara K, Kishima H, Takakura N. LPA4-Mediated Vascular Network Formation Increases the Efficacy of Anti-PD-1 Therapy against Brain Tumors. Cancer Res 2018; 78:6607-6620. [PMID: 30301839 DOI: 10.1158/0008-5472.can-18-0498] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022]
Abstract
: The structure and function of tumor blood vessels profoundly affects the tumor microenvironment. Signals mediated through the lysophosphatidic acid receptor 4 (LPA4) promote vascular network formation to restore normal vascular barrier function in subcutaneous tumors and thus improve drug delivery. However, the characteristics of the vasculature vary by organ and tumor types, and how drug delivery and leukocyte trafficking are affected by modification of vascular function by LPA in different cancers is unclear. Here, we show that LPA4 activation promotes the formation of fine vascular structures in brain tumors. RhoA/ROCK signaling contributed to LPA-induced endothelial cell-cell adhesion, and RhoA/ROCK activity following LPA4 stimulation regulated expression of VCAM-1. This resulted in increased lymphocyte infiltration into the tumor. LPA improved delivery of exogenous IgG into brain tumors and enhanced the anticancer effect of anti-programmed cell death-1 antibody therapy. These results indicate the effects of LPA on vascular structure and function apply not only to chemotherapy but also to immunotherapy. SIGNIFICANCE: These findings demonstrate that lysophosphatidic acid, a lipid mediator, promotes development of a fine capillary network in brain tumors by inducing tightening of endothelial cell-to-cell adhesion, facilitating improved drug delivery, and lymphocyte penetration.
Collapse
Affiliation(s)
- Daisuke Eino
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Tsukada
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Takara
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Research Unit/Frontier Therapeutic Sciences Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Aoba-ku, Yokohama, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
328
|
Li W, Quan YY, Li Y, Lu L, Cui M. Monitoring of tumor vascular normalization: the key points from basic research to clinical application. Cancer Manag Res 2018; 10:4163-4172. [PMID: 30323672 PMCID: PMC6175544 DOI: 10.2147/cmar.s174712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumor vascular normalization alleviates hypoxia in the tumor microenvironment, reduces the degree of malignancy, and increases the efficacy of traditional therapy. However, the time window for vascular normalization is narrow; therefore, how to determine the initial and final points of the time window accurately is a key factor in combination therapy. At present, the gold standard for detecting the normalization of tumor blood vessels is histological staining, including tumor perfusion, microvessel density (MVD), vascular morphology, and permeability. However, this detection method is almost unrepeatable in the same individual and does not dynamically monitor the trend of the time window; therefore, finding a relatively simple and specific monitoring index has important clinical significance. Imaging has long been used to assess changes in tumor blood vessels and tumor changes caused by the oxygen environment in clinical practice; some preclinical and clinical research studies demonstrate the feasibility to assess vascular changes, and some new methods were in preclinical research. In this review, we update the most recent insights of evaluating tumor vascular normalization.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ying-Yao Quan
- Department of Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China
| | - Yong Li
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Ligong Lu
- Department of Intervention, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| | - Min Cui
- Department of General Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, People's Republic of China,
| |
Collapse
|
329
|
Johansson-Percival A, He B, Ganss R. Immunomodulation of Tumor Vessels: It Takes Two to Tango. Trends Immunol 2018; 39:801-814. [DOI: 10.1016/j.it.2018.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022]
|
330
|
Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 2018; 288:239-263. [PMID: 30223043 DOI: 10.1016/j.jconrel.2018.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy aimed at boosting cancer-specific immunoresponses to eradicate tumor cells has evolved as a new treatment modality. Nanoparticles incorporating antigens and immunomodulatory agents can activate immune cells and modulate the tumor microenvironment to enhance anti-tumor immunity. The nanotechnology approach has been demonstrated to be superior to standard formulations in in-vivo settings. In this article, we focus on recent advances made within the last 5 years in nanoparticle-based cancer immunotherapy, including peptide- and nucleic acid-based nanovaccines, nanomedicines containing an immunoadjuvant to activate anti-tumor immunity, nanoparticle delivery of immune checkpoint inhibitors and the combination of the above approaches. Encouraging results and new emerging nanotechnologies in drug delivery promise the continuous growth of this field and ultimately clinical translation of enhanced immunotherapy of cancer.
Collapse
|
331
|
Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer 2018; 6:88. [PMID: 30208943 PMCID: PMC6134794 DOI: 10.1186/s40425-018-0401-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Current checkpoint immunotherapy has shown potential to control cancer by restoring or activating the immune system. Nevertheless, multiple mechanisms are involved in immunotherapy resistance which limits the clinical benefit of checkpoint inhibitors. An immunosuppressive microenvironment is an important factor mediating the original resistance of tumors to immunotherapy. A previous report by our group has demonstrated that local angiotensin II (AngII) predominantly exists in a tumor hypoxic microenvironment where hypoxic tumour cells produced AngII by a hypoxia-lactate-chymase-dependent mechanism. Results Here, using 4T1 and CT26 syngeneic mouse tumor models, we found that local AngII in the tumor microenvironment was involved in immune escape of tumour cells and an AngII signaling blockage sensitized tumours to checkpoint immunotherapy. Furthermore, an AngII signaling blockage reversed the tumor immunosuppressive microenvironment, and inhibition of angiotensinogen (AGT, a precursor of AngII) expression strongly triggered an immune-activating cytokine profile in hypoxic mouse cancer cells. More importantly, AGT silencing combined with a checkpoint blockage generated an abscopal effect in resistant tumors. Conclusion Our study demonstrated an important role of local AngII in the formation of a tumor immunosuppressive microenvironment and its blockage may enhance tumor sensitivity to checkpoint immunotherapy. The combination of an AngII signaling blocker and an immune-checkpoint blockage could be a promising strategy to improve tumors responses to current checkpoint immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-018-0401-3) contains supplementary material, which is available to authorized users.
Collapse
|
332
|
Wang RX, Chen S, Huang L, Zhou Y, Shao ZM. Monitoring Serum VEGF in Neoadjuvant Chemotherapy for Patients with Triple-Negative Breast Cancer: A New Strategy for Early Prediction of Treatment Response and Patient Survival. Oncologist 2018; 24:753-761. [PMID: 30126858 DOI: 10.1634/theoncologist.2017-0602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND This study aimed to investigate the clinical utility of serum biomarker changes during neoadjuvant chemotherapy (NAC) for triple-negative breast cancer (TNBC). METHODS A total of 303 patients with TNBC were included in this study. Serum samples were taken at three time points during NAC: baseline, prior to the third cycle, and prior to surgery. Luminex multibiomarker panel for 29 serum biomarkers was used to detect their correlation with NAC response. The predictive and prognostic value of each selected biomarker was then studied. RESULTS Vascular endothelial growth factor (VEGF) was the only biomarker that correlated with treatment response, with a decreasing trend in pCR patients relative to non-pCR patients (p < .001). Univariable and multivariable analyses revealed that the relative change in VEGF prior to the third cycle of NAC had a remarkable predictive value for both pCR and pathological nonresponse with high sensitivity and specificity. VEGF was also independently correlated with disease-free survival. CONCLUSION Our findings indicate that monitoring serum VEGF could help identify patients with different responses at an early time point of NAC and at varying risk of disease relapse. Serum VEGF may also serve as an alternative to traditional response-evaluating methodologies in tailoring and modifying the NAC strategy for both operable and advanced TNBCs. IMPLICATIONS FOR PRACTICE Neoadjuvant chemotherapy (NAC) followed by definitive surgery is a standard of care for locally advanced breast cancer. The identification of sensitive responders to neoadjuvant therapy is highly significant for breast cancer, especially triple-negative breast cancer (TNBC). Results of this study indicate that the monitoring of serum vascular endothelial growth factor (VEGF) could identify patients with favorable or poor responses at an early time point of NAC. Furthermore, the prediction power of VEGF was better than traditional response-evaluating methods. VEGF might serve as a complement or alternative to traditional imaging-based response-evaluating methodologies in tailoring systemic treatment strategies for both operable and advanced TNBCs.
Collapse
Affiliation(s)
- Ruo-Xi Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Liang Huang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ying Zhou
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center/Cancer Institute, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Institutes of Biomedical Science, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
333
|
Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol 2018; 140:317-328. [DOI: 10.1007/s11060-018-2955-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
|
334
|
Theek B, Baues M, Gremse F, Pola R, Pechar M, Negwer I, Koynov K, Weber B, Barz M, Jahnen-Dechent W, Storm G, Kiessling F, Lammers T. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J Control Release 2018; 282:25-34. [PMID: 29730154 PMCID: PMC6130770 DOI: 10.1016/j.jconrel.2018.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
Abstract
Tumors are characterized by leaky blood vessels, and by an abnormal and heterogeneous vascular network. These pathophysiological characteristics contribute to the enhanced permeability and retention (EPR) effect, which is one of the key rationales for developing tumor-targeted drug delivery systems. Vessel abnormality and heterogeneity, however, which typically result from excessive pro-angiogenic signaling, can also hinder efficient drug delivery to and into tumors. Using histidine-rich glycoprotein (HRG) knockout and wild type mice, and HRG-overexpressing and normal t241 fibrosarcoma cells, we evaluated the effect of genetically induced and macrophage-mediated vascular normalization on the tumor accumulation and penetration of 10-20 nm-sized polymeric drug carriers based on poly(N-(2-hydroxypropyl)methacrylamide). Multimodal and multiscale optical imaging was employed to show that normalizing the tumor vasculature improves the accumulation of fluorophore-labeled polymers in tumors, and promotes their penetration out of tumor blood vessels deep into the interstitium.
Collapse
Affiliation(s)
- Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany; Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands
| | - Maike Baues
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Inka Negwer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany; Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
335
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
336
|
Zuazo-Gaztelu I, Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front Oncol 2018; 8:248. [PMID: 30013950 PMCID: PMC6036108 DOI: 10.3389/fonc.2018.00248] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of the tumor and stromal cell-driven angiogenic program is one of the first requirements in the tumor ecosystem for growth and dissemination. The understanding of the dynamic angiogenic tumor ecosystem has rapidly evolved over the last decades. Beginning with the canonical sprouting angiogenesis, followed by vasculogenesis and intussusception, and finishing with vasculogenic mimicry, the need for different neovascularization mechanisms is further explored. In addition, an overview of the orchestration of angiogenesis within the tumor ecosystem cellular and molecular components is provided. Clinical evidence has demonstrated the effectiveness of traditional vessel-directed antiangiogenics, stressing on the important role of angiogenesis in tumor establishment, dissemination, and growth. Particular focus is placed on the interaction between tumor cells and their surrounding ecosystem, which is now regarded as a promising target for the development of new antiangiogenics.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
337
|
Flynn M, Pickering L, Larkin J, Turajlic S. Immune-checkpoint inhibitors in melanoma and kidney cancer: from sequencing to rational selection. Ther Adv Med Oncol 2018; 10:1758835918777427. [PMID: 29977349 PMCID: PMC6024333 DOI: 10.1177/1758835918777427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Immune-checkpoint inhibitors (ICPIs), including antibodies against cytotoxic T-lymphocyte associated antigen 4 and programmed cell death protein 1, have been shown to induce durable complete responses in a proportion of patients in the first-line and refractory setting in advanced melanoma and renal cell carcinoma. In fact, there are several lines of both targeted agents and ICPI that are now feasible treatment options. However, survival in the metastatic setting continues to be poor and there remains a need for improved therapeutic approaches. In order to enhance patient selection for the most appropriate next line of therapy, better predictive biomarkers of responsiveness will need to be developed in tandem with technologies to identify mechanisms of ICPI resistance. Adaptive, biomarker-driven trials will drive this evolution. The combination of ICPI with specific chemotherapies, targeted therapies and other immuno-oncology (IO) drugs in order to circumvent ICPI resistance and enhance efficacy is discussed. Recent data support the role for both targeted therapies and ICPI in the adjuvant setting of melanoma and targeted therapies in the adjuvant setting for renal cell carcinoma, which may influence the consideration of treatment on subsequent relapse. Approaches to select the optimal treatment sequences for these patients will need to be refined.
Collapse
Affiliation(s)
| | | | | | - Samra Turajlic
- Department of Medicine, Skin and Renal Units, Royal Marsden Hospital, 203 Fulham Road, Chelsea, London SW3 6JJ, UK
| |
Collapse
|
338
|
Greening GJ, Miller KP, Spainhour CR, Cato MD, Muldoon TJ. Effects of isoflurane anesthesia on physiological parameters in murine subcutaneous tumor allografts measured via diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2871-2886. [PMID: 30258696 PMCID: PMC6154201 DOI: 10.1364/boe.9.002871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) has been used in murine studies to quantify tumor perfusion and therapeutic response. These studies frequently use inhaled isoflurane anesthesia, which depresses the respiration rate and results in the desaturation of arterial oxygen saturation, potentially affecting tissue physiological parameters. However, there have been no controlled studies quantifying the effect of isoflurane anesthesia on DRS-derived physiological parameters of murine tissue. The goal of this study was to perform DRS on Balb/c mouse (n = 10) tissue under various anesthesia conditions to quantify effects on tissue physiological parameters, including total hemoglobin concentration, tissue oxygen saturation, oxyhemoglobin and reduced scattering coefficient. Two independent variables were manipulated including metabolic gas type (pure oxygen vs. medical air) and isoflurane concentration (1.5 to 4.0%). The 1.5% isoflurane and 1 L/min oxygen condition most closely mimicked a no-anesthesia condition with oxyhemoglobin concentration within 89% ± 19% of control. The time-dependent effects of isoflurane anesthesia were tested, revealing that anesthetic induction with 4.0% isoflurane can affect DRS-derived physiological parameters up to 20 minutes post-induction. Finally, spectroscopy with and without isoflurane anesthesia was compared for colon tumor Balb/c-CT26 allografts (n = 5) as a representative model of subcutaneous murine tumor allografts. Overall, isoflurane anesthesia yielded experimentally-induced depressed oxyhemoglobin, and this depression was both concentration and time dependent. Investigators should understand the dynamic effects of isoflurane on tissue physiological parameters measured by DRS. These results may guide investigators in eliminating, limiting, or managing anesthesia-induced physiological changes in DRS studies in mouse models.
Collapse
Affiliation(s)
- Gage J. Greening
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kathryn P. Miller
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Caroline R. Spainhour
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mattison D. Cato
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
339
|
Yu XY, Qiu WY, Long F, Yang XP, Zhang C, Xu L, Chang HY, Du P, Hou XJ, Yu YZ, Zeng DD, Wang S, Sun ZW. A novel fully human anti-CD47 antibody as a potential therapy for human neoplasms with good safety. Biochimie 2018; 151:54-66. [PMID: 29864508 DOI: 10.1016/j.biochi.2018.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
Strategies for targeting CD47 are becoming a hot spot of cancer immunotherapy. However the ubiquitous expression of CD47, especially on the RBC, makes the targeted therapy facing safety risk issues. So, how to balance the safety and efficacy during CD47 inhibition is currently a major question. We had reported an anti-CD47 antibody ZF1 with potent anti-tumor effect. In this study, we further developed and assessed a novel fully human anti-CD47 antibody, AMMS4-G4, derived from ZF1 using affinity maturation. AMMS4-G4 exhibited equivalent anticancer effects with Hu5F9-G4, a humanized anti-CD47 antibody in clinical trial, on the potential of inducing significant phagocytosis of tumor cells in vitro and prolonging the survival of leukemia xenografted mice. Additionally, AMMS4-G4 significantly inhibited the growth of grafted solid tumors by enhancing macrophage infiltration and modestly enhanced the anti-tumor activity of opsonizing antibody and antiangiogenic therapy. In cynomolgus monkeys, AMMS4-G4 was safely administered, was well tolerated at doses of 30 and 60 mg/kg, and did not produce serious adverse events, except for the reversible anemia, which was observed after 3 days and started to recover from 9 days later. Remarkably, it was proved by in vitro assay that Hu5F9-G4 induced RBC hemagglutination which wasn't observed in AMMS4-G4. On the whole, AMMS4-G4 was demonstrated to be a promising candidate with great potential and safe profile for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiao-Yan Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei-Yi Qiu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Feng Long
- Department of Pharmacy, Maternal and Child Health Care Hospital of Zaozhuang, 25 Wenhua East Road, Zaozhuang, 277100, China.
| | - Xiao-Peng Yang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Chang Zhang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Lei Xu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Hong-Yan Chang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Peng Du
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Xiao-Juan Hou
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Yun-Zhou Yu
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Da-di Zeng
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Shuang Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhi-Wei Sun
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
340
|
Anari F, Ramamurthy C, Zibelman M. Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer. Future Oncol 2018; 14:1409-1421. [PMID: 29848096 DOI: 10.2217/fon-2017-0585] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in cancer growth and progression. Paradoxically, the TME is capable of acting as both a potential barrier and facilitator of tumor proliferation by affecting various processes including local growth resistance, immune system interactions, and the formation of distant metastases. This important interaction between cancer cells and their local environment, composed of immune cells, angiogenic cells, lymphatic endothelial cells and cancer-associated fibroblasts is paramount to determine a cancer cell's ability to grow and ultimately metastasize. It is essential to understand this complex interplay in order to define treatment modalities to target the TME as part of anti-cancer therapy.
Collapse
Affiliation(s)
- Fern Anari
- Fox Chase Cancer Center Temple Health, Philadelphia, PA, USA
| | | | | |
Collapse
|
341
|
Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci Transl Med 2018; 9:9/410/eaan5616. [PMID: 28978752 PMCID: PMC5928511 DOI: 10.1126/scitranslmed.aan5616] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
Renin-angiotensin system (RAS) inhibitors (RASi)-widely prescribed for the treatment of cardiovascular diseases-have considerable potential in oncology. The RAS plays a crucial role in cancer biology and affects tumor growth and dissemination directly and indirectly by remodeling the tumor microenvironment. We review clinical data on the benefit of RASi in primary and metastatic tumors and propose that, by activating immunostimulatory pathways, these inhibitors can enhance immunotherapy of cancer.
Collapse
Affiliation(s)
- Matthias Pinter
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.,Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, A-1090, Austria
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
342
|
Increased efficacy of stereotactic ablative radiation therapy after bevacizumab in lung oligometastases from colon cancer. TUMORI JOURNAL 2018; 104:423-428. [DOI: 10.5301/tj.5000701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim: Metastases from colorectal cancer are poorly responsive to stereotactic ablative radiation therapy (SABR) due to intratumoral hypoxia. Intratumoral oxygenation is improved by administration of angiogenesis inhibitors. Thus, there could be a clinical synergistic effect of SABR with bevacizumab on metastases from colorectal cancer. The aim of this study was to evaluate the feasibility and efficacy of SABR after bevacizumab in lung oligometastases from colon cancer. Methods: The data of patients with lung metastases from colon cancer who underwent SABR were retrospectively evaluated according to the following inclusion criteria: number of metastases ≤3; lung oligometastases from colon cancer in patients who underwent SABR; patients receiving previous chemotherapy alone or in combination with bevacizumab; Karnofsky performance status >80; life expectancy >6 months; at least 6 months’ follow-up after SABR; presence of KRAS mutation. The results were compared with those of a similar cohort of patients with irradiated lung lesions from colorectal cancer in whom bevacizumab was not previously administered. Results: A total of 40 lung metastases were analyzed. The complete response rate after SABR was higher in patients who had received bevacizumab than in those who had not (p = 0.04). Additionally, in the bevacizumab group, a higher rate of post-SABR complete response was observed in case of oligopersistent versus oligorecurrent metastases (p = 0.001). Conclusions: In the setting of lung oligometastases from colon cancer the present study attested the higher efficacy of SABR after bevacizumab administration. Further studies in this field of research are strongly advocated.
Collapse
|
343
|
Qiao M, Jiang T, Zhou C. Shining light on advanced NSCLC in 2017: combining immune checkpoint inhibitors. J Thorac Dis 2018; 10:S1534-S1546. [PMID: 29951304 PMCID: PMC5994489 DOI: 10.21037/jtd.2018.04.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
The treatment landscape has changed since the immune checkpoint inhibitors were approved in the treatment of non-small cell lung cancer (NSCLC). Although the promising clinical benefit from programmed death-1/programmed death ligand-1 (PD-1/PD-L1) inhibitors was observed in the second or subsequent line treatment of patients who progressed on chemotherapy, it has a long way for single PD-1/PD-L1 inhibitor to move forward to the frontline without a predictive biomarker. Tumor response is far from satisfactory without selection and primary or acquired resistance to PD-1/PD-L1 inhibitors hampered their utility. Therefore, it is crucial to determine a strategy that can optimize the application of immune checkpoint inhibitors and increase the numbers of the responders. Multiple combination approaches based on PD-1/PD-L1 inhibitors are designed and aimed to boost anti-tumor response and benefit a broader population. In this review, we will integrate the updated clinical data to highlight the four most promising combination strategies in advance NSCLC: combination of checkpoint inhibition with chemotherapy, anti-angiogenesis, immunotherapy and radiotherapy. We further discuss the issues needed to be addressed and perspectives in the context of "combination era".
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
344
|
Ameratunga M, Coleman N, Welsh L, Saran F, Lopez J. CNS cancer immunity cycle and strategies to target this for glioblastoma. Oncotarget 2018; 9:22802-22816. [PMID: 29854316 PMCID: PMC5978266 DOI: 10.18632/oncotarget.24896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapeutics have revolutionized the management of solid malignancies over the last few years. Nevertheless, despite relative successes of checkpoint inhibitors in numerous solid tumour types, success in tumours of the central nervous system (CNS) has been lacking. There are several possible reasons for the relative lack of success of immunotherapeutics in this setting, including the immune microenvironment of glioblastoma, lymphocyte tracking through the blood-brain barrier (BBB) into the central nervous system and impairment of drug delivery into the CNS through the BBB. This review utilizes the cancer-immunity cycle as a conceptual framework through which the specific challenges associated with the development of immunotherapeutics for CNS malignancies can be viewed.
Collapse
Affiliation(s)
- Malaka Ameratunga
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Niamh Coleman
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Liam Welsh
- Department of Neuro-Oncology, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Frank Saran
- Department of Neuro-Oncology, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| | - Juanita Lopez
- Drug Development Unit, Royal Marsden Hospital and The Institute of Cancer Research, Sutton SM2 5PT, UK
| |
Collapse
|
345
|
Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis. PLoS Pathog 2018; 14:e1006974. [PMID: 29698476 PMCID: PMC5919409 DOI: 10.1371/journal.ppat.1006974] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a grave threat to world health with emerging drug resistant strains. One prominent feature of Mtb infection is the extensive reprogramming of host tissue at the site of infection. Here we report that inhibition of matrix metalloproteinase (MMP) activity by a panel of small molecule inhibitors enhances the in vivo potency of the frontline TB drugs isoniazid (INH) and rifampicin (RIF). Inhibition of MMP activity leads to an increase in pericyte-covered blood vessel numbers and appears to stabilize the integrity of the infected lung tissue. In treated mice, we observe an increased delivery and/or retention of frontline TB drugs in the infected lungs, resulting in enhanced drug efficacy. These findings indicate that targeting Mtb-induced host tissue remodeling can increase therapeutic efficacy and could enhance the effectiveness of current drug regimens. Mycobacterium tuberculosis (Mtb) continues to be the leading cause of death from a single infectious agent worldwide, leading to 1.8 million deaths in 2015. The long treatment required (6–9 months), with all of its incumbent problems, can promote the emergence of multidrug-resistant (MDR) TB strains, so strategies to shorten the treatment duration are in dire need. Mtb’s success as a pathogen hinges on its ability to remodel the host tissue, characterized by extracellular matrix (ECM) deposition and leaky vascularization. Here we report that inhibition of matrix metalloproteinases (MMPs) significantly enhances the potency of frontline TB antibiotics. These MMP inhibitors increase the relative proportion of healthy blood vessels versus leaky dysfunctional vessels at the infection site, and enhance drug delivery and/or retention. Our study highlights the potential of targeting Mtb-induced host tissue remodeling to enhance the efficacy of current frontline antibiotics. It also suggests an alternative therapeutic strategy to repair the leaky blood vessels in TB granulomas to enhance drug delivery. Repurposing of MMP inhibitors may hold the key to shortening TB treatments and combating the emergence of MDR strains.
Collapse
|
346
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
347
|
Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, Zhang C, Yin R, Hu H, Chen X, Han Y, Zhao Y, Lin SH, Qin S, Wang X, Kim BY, Zhou P, Jiang W, Wu Q, Huang Y. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest 2018; 128:2104-2115. [PMID: 29664018 DOI: 10.1172/jci96582] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti-cytotoxic T lymphocyte-associated protein 4 or anti-programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.
Collapse
Affiliation(s)
- Xichen Zheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Zhaoxu Fang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Xiaomei Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Shengming Deng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Pei Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Xuexiang Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Chenglin Zhang
- School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Rongping Yin
- School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Haitian Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Xiaolan Chen
- Institute of Pediatric Research, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yijie Han
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Steven H Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xiaohua Wang
- First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Betty Ys Kim
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| | - Yuhui Huang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, and
| |
Collapse
|
348
|
Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol 2018; 9:527. [PMID: 29675018 PMCID: PMC5895776 DOI: 10.3389/fimmu.2018.00527] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs) and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF) and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
349
|
Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018; 4:292-319. [PMID: 29606314 PMCID: PMC5930008 DOI: 10.1016/j.trecan.2018.02.005] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Physical forces have a crucial role in tumor progression and cancer treatment. The application of principles of engineering and physical sciences to oncology has provided powerful insights into the mechanisms by which these forces affect tumor progression and confer resistance to delivery and efficacy of molecular, nano-, cellular, and immuno-medicines. Here, we discuss the mechanics of the solid and fluid components of a tumor, with a focus on how they impede the transport of therapeutic agents and create an abnormal tumor microenvironment (TME) that fuels tumor progression and treatment resistance. We also present strategies to reengineer the TME by normalizing the tumor vasculature and the extracellular matrix (ECM) to improve cancer treatment. Finally, we summarize various mathematical models that have provided insights into the physical barriers to cancer treatment and revealed new strategies to overcome these barriers.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
350
|
Bagaria SP, Gatalica Z, Maney T, Serie D, Parasramka M, Attia S, Krishna M, Joseph RW. Association Between Programmed Death-Ligand 1 Expression and the Vascular Endothelial Growth Factor Pathway in Angiosarcoma. Front Oncol 2018; 8:71. [PMID: 29623256 PMCID: PMC5874284 DOI: 10.3389/fonc.2018.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/01/2018] [Indexed: 12/13/2022] Open
Abstract
Angiosarcoma is a vascular malignancy associated with a poor prognosis and chemotherapy resistance. The tumor immune microenvironment of angiosarcoma has not been characterized. We investigated the expression of programmed death-ligand 1 (PD-L1) and programmed death 1 (PD-1) in angiosarcoma and correlated these findings with vascular endothelial growth factor (VEGF)-related gene expression and survival. Using archived formalin-fixed paraffin-embedded tissues of primary and metastatic angiosarcoma specimens, we characterized the immunohistochemical (IHC) expression of PD-L1 and PD-1. In addition, we extracted RNA from each tumor and quantified the expression of VEGF-related genes, and then tested if these genes were associated with PD-L1 and PD-1 expression and clinical outcomes. Retrospective review identified 27 angiosarcoma specimens collected between 1994 and 2012. IHC expression of tumor PD-L1, tumor-infiltrating immune cell PD-L1, and tumor-infiltrating immune cell PD-1 expression was identified in 5 (19%), 9 (33%), and 1 (4%) specimens, respectively. Expression of PD-L1 and PD-1 was not associated with VEGF-related gene expression or survival. PD-L1 tumor and tumor-infiltrating immune cells expression was identified in a large proportion of patients. Though neither was associated with VEGF-related gene expression or prognosis, targeting PD-1/PD-L1 may be of benefit for a significant proportion of angiosarcomas that do not respond to surgery, chemotherapy, or radiation.
Collapse
Affiliation(s)
- Sanjay P Bagaria
- Department of Surgery, Division of General Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Todd Maney
- Caris Life Sciences, Phoenix, AZ, United States
| | - Daniel Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, United States
| | - Mansi Parasramka
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Steven Attia
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Murli Krishna
- Department of Pathology, Mayo Clinic, Jacksonville, FL, United States
| | - Richard W Joseph
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|