301
|
Baldassi G, Murgia M, Prpic V, Rigutti S, Domijan D, Agostini T, Fantoni C. Large as being on top of the world and small as hitting the roof: a common magnitude representation for the comparison of emotions and numbers. PSYCHOLOGICAL RESEARCH 2020; 85:1272-1291. [PMID: 32166368 DOI: 10.1007/s00426-020-01306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/12/2020] [Indexed: 01/29/2023]
Abstract
Previous work on the direct speed-intensity association (SIA) on comparative judgement tasks involved spatially distributed responses over spatially distributed stimuli with high motivational significance like facial expressions of emotions. This raises the possibility that the inferred stimulus-driven regulation of lateralized motor reactivity described by SIA, which was against the one expected on the basis of a valence-specific lateral bias, was entirely due to attentional capture from motivational significance (beyond numerical cognition). In order to establish the relevance of numerical cognition on the regulation of attentional capture we ran two complementary experiments. These involved the same direct comparison task on stimulus pairs that were fully comparable in terms of their analog representation of intensity but with different representational domain and motivational significance: symbolic magnitudes with low motivational significance in experiment 1 vs. emotions with rather high motivational significance in experiment 2. The results reveal a general SIA and point to a general mechanism regulating comparative judgements. This is based on the way spatial attention is captured toward locations that contain the stimulus which is closest in term of relative intensity to the extremal values of the series, regardless from its representational domain being it symbolic or emotional.
Collapse
Affiliation(s)
- Giulio Baldassi
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Mauro Murgia
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Valter Prpic
- Faculty of Health and Life Sciences, Institute for Psychological Science, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Sara Rigutti
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Dražen Domijan
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, Sveucilisna avenija 4, 51000, Rijeka, Croatia
| | - Tiziano Agostini
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy
| | - Carlo Fantoni
- Department of Life Sciences, Psychology Unit "Gaetano Kanizsa", University of Trieste, Via E. Weiss 21, 34128, Trieste, Italy.
| |
Collapse
|
302
|
Tylén K, Fusaroli R, Rojo S, Heimann K, Fay N, Johannsen NN, Riede F, Lombard M. The evolution of early symbolic behavior in Homo sapiens. Proc Natl Acad Sci U S A 2020; 117:4578-4584. [PMID: 32071236 PMCID: PMC7060673 DOI: 10.1073/pnas.1910880117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
How did human symbolic behavior evolve? Dating up to about 100,000 y ago, the engraved ochre and ostrich eggshell fragments from the South African Blombos Cave and Diepkloof Rock Shelter provide a unique window into presumed early symbolic traditions of Homo sapiens and how they evolved over a period of more than 30,000 y. Using the engravings as stimuli, we report five experiments which suggest that the engravings evolved adaptively, becoming better-suited for human perception and cognition. More specifically, they became more salient, memorable, reproducible, and expressive of style and human intent. However, they did not become more discriminable over time between or within the two archeological sites. Our observations provide support for an account of the Blombos and Diepkloof engravings as decorations and as socially transmitted cultural traditions. By contrast, there was no clear indication that they served as denotational symbolic signs. Our findings have broad implications for our understanding of early symbolic communication and cognition in H. sapiens.
Collapse
Affiliation(s)
- Kristian Tylén
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, 8000 Aarhus C, Denmark;
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Riccardo Fusaroli
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, 8000 Aarhus C, Denmark
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Rojo
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrin Heimann
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Nicolas Fay
- School of Psychological Science, University of Western Australia, Perth, WA 6009, Australia
| | - Niels N Johannsen
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
- Department of Archaeology and Heritage Studies, Aarhus University, 8270 Højbjerg, Denmark
| | - Felix Riede
- Interacting Minds Centre, Aarhus University, 8000 Aarhus C, Denmark
- Department of Archaeology and Heritage Studies, Aarhus University, 8270 Højbjerg, Denmark
| | - Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
303
|
Zeki S, Chén OY. The Bayesian‐Laplacian brain. Eur J Neurosci 2020; 51:1441-1462. [DOI: 10.1111/ejn.14540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Semir Zeki
- Laboratory of Neurobiology University College London London UK
| | - Oliver Y. Chén
- Laboratory of Neurobiology University College London London UK
- Department of Psychology Yale University New Haven CT USA
- Department of Engineering Science University of Oxford Oxford UK
| |
Collapse
|
304
|
Developmental alterations of the numerical processing networks in the brain. Brain Cogn 2020; 141:105551. [PMID: 32088489 DOI: 10.1016/j.bandc.2020.105551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 02/02/2023]
Abstract
Neuroimaging studies revealed that number perception is mainly located in parietal cortex. Although controversial, it was suggested that number is processed in the frontal lobe in childhood and in the parietal cortex in adulthood. The purpose of this study is to investigate developmental differences in the neural correlates of number representation with fMRI. Sixteen healthy young adults (age:21.69 ± 0.79) and 15 healthy children (age:11.87 ± 0.52) performed a numerosity comparison paradigm which consists of two numerical conditions with two difficulty levels. Adults showed broad parietal cortex activation, as well as activation in the inferior parietal lobes, dorsolateral and medial prefrontal cortex, anterior and posterior cingulate cortex, and peristriate cortex (PC) during number processing. Children showed activations in the intraparietal sulcus and PC. Group differences were observed in the posterior insula, fusiform gyrus, and PC whose coordinates correspond to the number form area (NFA). Region of interest analysis was performed for these clusters to get the time series of hemodynamic responses which were estimated with a finite impulse response function. In contrast to the prominent frontoparietal shift theory, no age-related differences were observed in the frontoparietal regions. Overall, the presented study suggests developmental changes in the brain's number processing revolving around the NFA.
Collapse
|
305
|
Testolin A, Zou WY, McClelland JL. Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics. Dev Sci 2020; 23:e12940. [PMID: 31977137 DOI: 10.1111/desc.12940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 01/29/2023]
Abstract
Both humans and non-human animals exhibit sensitivity to the approximate number of items in a visual array, as indexed by their performance in numerosity discrimination tasks, and even neonates can detect changes in numerosity. These findings are often interpreted as evidence for an innate 'number sense'. However, recent simulation work has challenged this view by showing that human-like sensitivity to numerosity can emerge in deep neural networks that build an internal model of the sensory data. This emergentist perspective posits a central role for experience in shaping our number sense and might explain why numerical acuity progressively increases over the course of development. Here we substantiate this hypothesis by introducing a progressive unsupervised deep learning algorithm, which allows us to model the development of numerical acuity through experience. We also investigate how the statistical distribution of numerical and non-numerical features in natural environments affects the emergence of numerosity representations in the computational model. Our simulations show that deep networks can exhibit numerosity sensitivity prior to any training, as well as a progressive developmental refinement that is modulated by the statistical structure of the learning environment. To validate our simulations, we offer a refinement to the quantitative characterization of the developmental patterns observed in human children. Overall, our findings suggest that it may not be necessary to assume that animals are endowed with a dedicated system for processing numerosity, since domain-general learning mechanisms can capture key characteristics others have attributed to an evolutionarily specialized number system.
Collapse
Affiliation(s)
- Alberto Testolin
- Department of General Psychology, University of Padova, Padova, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Will Y Zou
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
306
|
Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS One 2020; 15:e0228960. [PMID: 32045454 PMCID: PMC7012440 DOI: 10.1371/journal.pone.0228960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/27/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we aimed to compare developmental changes in nonsymbolic and symbolic magnitude representations across the elementary school years. For this aim, we used a four-wave longitudinal study with a one-year interval in schoolchildren in grades 1-4 in Russia and Kyrgyzstan (N = 490, mean age was 7.65 years at grade 1). The results of mixed-effects growth models revealed that growth in the precision of symbolic representation was larger than in the nonsymbolic representation. Moreover, growth in nonsymbolic representation was fully explained by growth in fluid intelligence (FI), visuospatial working memory (VSWM) and processing speed (PS). The analysis demonstrated that growth in nonsymbolic magnitude representation was significant only for pupils with a high level of FI and PS, whereas growth in precision of symbolic representation did not significantly vary across pupils with different levels of FI or VSWM.
Collapse
|
307
|
Steinert-Threlkeld S, Szymanik J. Ease of learning explains semantic universals. Cognition 2020; 195:104076. [DOI: 10.1016/j.cognition.2019.104076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 01/29/2023]
|
308
|
Miletto Petrazzini ME, Pecunioso A, Dadda M, Agrillo C. Searching for the Critical p of Macphail's Null Hypothesis: The Contribution of Numerical Abilities of Fish. Front Psychol 2020; 11:55. [PMID: 32116895 PMCID: PMC7025564 DOI: 10.3389/fpsyg.2020.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
In 1985, Macphail argued that there are no differences among the intellects of non-human vertebrates and that humans display unique cognitive skills because of language. Mathematical abilities represent one of the most sophisticated cognitive skills. While it is unquestionable that humans exhibit impressive mathematical skills associated with language, a large body of experimental evidence suggests that Macphail hypothesis must be refined in this field. In particular, the evidence that also small-brained organisms, such as fish, are capable of processing numerical information challenges the idea that humans display unique cognitive skills. Like humans, fish may take advantage of using continuous quantities (such as the area occupied by the objects) as proxy of number to select the larger/smaller group. Fish and humans also showed interesting similarities in the strategy adopted to learn a numerical rule. Collective intelligence in numerical estimation has been also observed in humans and guppies. However, numerical acuity in humans is considerably higher than that reported in any fish species investigated, suggesting that quantitative but not qualitative differences do exist between humans and fish. Lastly, while it is clear that contextual factors play an important role in the performance of numerical tasks, inter-species variability can be found also when different fish species were tested in comparable conditions, a fact that does not align with the null hypothesis of vertebrate intelligence. Taken together, we believe that the recent evidence of numerical abilities in fish call for a deeper reflection of Macphail's hypothesis.
Collapse
Affiliation(s)
| | | | - Marco Dadda
- Department of General Psychology, University of Padova, Padua, Italy
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
309
|
Gouet C, Carvajal S, Halberda J, Peña M. Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition 2020; 197:104154. [PMID: 31945678 DOI: 10.1016/j.cognition.2019.104154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/29/2023]
Abstract
Our understanding of proportions can be both symbolic, as when doing calculations in school mathematics, or intuitive, as when folding a bed sheet in half. While an understanding of symbolic proportions is crucial for school mathematics, the cognitive foundations of this ability remain unclear. Here we implemented a computerized training game to test a causal link from intuitive (nonsymbolic) to symbolic proportional reasoning and other math abilities in 4th grade children. An experimental group was trained in nonsymbolic proportional reasoning (PR) with continuous extents, and an active control group was trained on a remarkably similar nonsymbolic magnitude comparison. We found that the experimental group improved at nonsymbolic PR across training sessions, showed near transfer to a paper-and-pencil nonsymbolic PR test, transfer to symbolic proportions, and far transfer to geometry. The active control group showed only a predicted far transfer to geometry. In a second experiment, these results were replicated with an independent cohort of children. Overall this study extends previous correlational evidence, suggesting a functional link between nonsymbolic PR on one hand and symbolic PR and geometry on the other.
Collapse
Affiliation(s)
- Camilo Gouet
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - Salvador Carvajal
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Justin Halberda
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Marcela Peña
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
310
|
When one-two-three beats two-one-three: Tracking the acquisition of the verbal number sequence. Psychon Bull Rev 2020; 27:122-129. [PMID: 31900801 DOI: 10.3758/s13423-019-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Learning how to count is a crucial step in cognitive development, which progressively allows for more elaborate numerical processing. The existing body of research consistently reports how children associate the verbal code with exact quantity. However, the early acquisition of this code, when the verbal numbers are encoded in long-term memory as a sequence of words, has rarely been examined. Using an incidental assessment method based on serial recall of number words presented in ordered versus non-ordered sequences (e.g., one-two-three vs. two-one-three), we tracked the progressive acquisition of the verbal number sequence in children aged 3-6 years. Results revealed evidence for verbal number sequence knowledge in the youngest children even before counting is fully mastered. Verbal numerical knowledge thus starts to be organized as a sequence in long-term memory already at the age of 3 years, and this numerical sequence knowledge is assessed in a sensitive manner by incidental rather than explicit measures of number knowledge.
Collapse
|
311
|
Castaldi E, Piazza M, Iuculano T. Learning disabilities: Developmental dyscalculia. HANDBOOK OF CLINICAL NEUROLOGY 2020; 174:61-75. [PMID: 32977896 DOI: 10.1016/b978-0-444-64148-9.00005-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Developmental dyscalculia (DD) is a developmental learning disability that manifests as a persistent difficulty in comprehending even the most basic numeric and arithmetic concepts, despite normal intelligence and schooling opportunities. Given the predominant use of numbers in modern society, this condition can pose major challenges in the sufferer's everyday life, both in personal and professional development. Since, to date, we still lack a universally recognized and psychometrically driven definition of DD, its diagnosis has been applied to a wide variety of cognitive profiles. In this chapter, we review the behavioral and neural characterization of DD as well as the different neurocognitive and etiologic accounts of this neurodevelopmental disorder. We underline the multicomponential nature of this heterogeneous disability: different aspects of mathematical competence can be affected by both the suboptimal recruitment of general cognitive functions supporting mathematical cognition (such as attention, memory, and cognitive control) and specific deficits in mastering numeric concepts and operations. Accordingly, both intervention paradigms focused on core numeric abilities and more comprehensive protocols targeting multiple neurocognitive systems have provided evidence for effective positive outcomes.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy; Cognitive Neuroimaging Unit, CEA DRF/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Teresa Iuculano
- Centre National de la Recherche Scientifique and Université de Paris, La Sorbonne, Paris, France
| |
Collapse
|
312
|
Babai R, Lahav O. Interference in geometry among people who are blind. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103517. [PMID: 31783275 DOI: 10.1016/j.ridd.2019.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Geometry, a central branch of mathematics, is challenging for schoolchildren. Studies have shown that, when comparing perimeters of geometrical shapes, many sighted participants experience interference from the area variable, possibly stemming from the visual differences between the geometrical shapes. Accordingly, we hypothesized that such interference would not be observed in participants who are blind, who use the tactile modality to detect the properties of shapes. METHODS Thirty participants, 15 who are blind and 15 with sight, explored pairs of geometrical shapes tactilely or visually, respectively, and compared areas and perimeters. RESULTS AND CONCLUSIONS Surprisingly, accuracy and response time findings suggested that the two groups had a similar pattern of performance, and hence that area also interferes in comparison of perimeters among people who are blind.
Collapse
Affiliation(s)
- Reuven Babai
- Department of Mathematics, Science and Technology Education, The Constantiner School of Education, Tel Aviv University, Tel Aviv, 6997801, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Orly Lahav
- Department of Mathematics, Science and Technology Education, The Constantiner School of Education, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
313
|
Finger Rapid Automatized Naming (RAN) predicts the development of numerical representations better than finger gnosis. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2019.100842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
314
|
Tikhomirova T, Kuzmina Y, Lysenkova I, Malykh S. The Relationship Between Non-symbolic and Symbolic Numerosity Representations in Elementary School: The Role of Intelligence. Front Psychol 2019; 10:2724. [PMID: 31866910 PMCID: PMC6906201 DOI: 10.3389/fpsyg.2019.02724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/18/2019] [Indexed: 01/29/2023] Open
Abstract
This study aimed to estimate the extent to which the development of symbolic numerosity representations relies on pre-existing non-symbolic numerosity representations that refer to the Approximate Number System. To achieve this aim, we estimated the longitudinal relationships between accuracy in the Number Line (NL) test and “blue–yellow dots” test across elementary school children. Data from a four-wave longitudinal study involving schoolchildren in grades 1–4 in Russia and Kyrgyzstan (N = 490, mean age 7.65 years in grade 1) were analyzed. We applied structural equation modeling and tested several competing models. The results revealed that at the start of schooling, the accuracy in the NL test predicted subsequent accuracy in the “blue–yellow dots” test, whereas subsequently, non-symbolic representation in grades 2 and 3 predicted subsequent symbolic representation. These results indicate that the effect of non-symbolic representation on symbolic representation emerges after a child masters the basics of symbolic number knowledge, such as counting in the range of twenty and simple arithmetic. We also examined the extent to which the relationships between non-symbolic and symbolic representations might be explained by fluid intelligence, which was measured by Raven’s Standard Progressive Matrices test. The results revealed that the effect of symbolic representation on non-symbolic representation was explained by fluid intelligence, whereas at the end of elementary school, non-symbolic representation predicted subsequent symbolic representation independently of fluid intelligence.
Collapse
Affiliation(s)
- Tatiana Tikhomirova
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Yulia Kuzmina
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| | - Irina Lysenkova
- Department of Psychology, Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan
| | - Sergey Malykh
- Department of Psychology, Lomonosov Moscow State University, Moscow, Russia.,Psychological Institute of Russian Academy of Education, Moscow, Russia
| |
Collapse
|
315
|
Faye A, Jacquin-Courtois S, Reynaud E, Lesourd M, Besnard J, Osiurak F. Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation and brain-damaged patients studies. NEUROIMAGE-CLINICAL 2019; 24:102053. [PMID: 31795045 PMCID: PMC6978218 DOI: 10.1016/j.nicl.2019.102053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/01/2019] [Accepted: 10/21/2019] [Indexed: 01/29/2023]
Abstract
We review neuroimaging, TMS, and patients studies on numerical cognition. We focused on the predictions derived from the Triple Code Model (TCM). Our findings generally agree with TCM predictions. Our results open avenues for the study of the neural bases of numerical cognition.
This article offers the first comprehensive review examining the neurocognitive bases of numerical cognition from neuroimaging, Transcranial Magnetic Stimulation (TMS) and brain-damaged patients studies. We focused on the predictions derived from the Triple Code Model (TCM), particularly the assumption that the representation of numerical quantities rests on a single format-independent representation (i.e., the analogical code) involving both intraparietal sulci (IPS). To do so, we conducted a meta-analysis based on 28 neuroimaging, 12 TMS and 12 brain-damaged patients studies, including arithmetic and magnitude tasks in symbolic and non-symbolic formats. Our findings generally agree with the TCM predictions indicating that both IPS are engaged in all tasks. Nonetheless, the results of brain-damaged patients studies conflicted with neuroimaging and TMS studies, suggesting a right hemisphere lateralization for non-symbolic formats. Our findings also led us to discuss the involvement of brain regions other than IPS in the processing of the analogical code as well as the neural substrate of other codes underlying numerical cognition (i.e., the auditory-verbal code).
Collapse
Affiliation(s)
- Alexandrine Faye
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France.
| | - Sophie Jacquin-Courtois
- Integrative, Multisensory, Perception, Action, & Cognition Team (INSERM-CNRS-UMR 5292), Université de Lyon, France; Mouvement et Handicap, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France
| | - Mathieu Lesourd
- Aix Marseille Université, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Université, CNRS, Fédération 3C, Marseille, France
| | - Jérémy Besnard
- Laboratoire de Psychologie des Pays de la Loire (EA 4638), Université de Nantes et d'Angers, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, France; Institut Universitaire de France, Paris, France
| |
Collapse
|
316
|
Nieder A. Neural constraints on human number concepts. Curr Opin Neurobiol 2019; 60:28-36. [PMID: 31810008 DOI: 10.1016/j.conb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
True counting and arithmetic abilities are unique to humans and are inextricably linked to symbolic competence. However, our unprecedented numerical skills are deeply rooted in our neuronal heritage as primates and vertebrates. In this article, I argue that numerical competence in humans is the result of three neural constraints. First, I propose that the neuronal mechanisms of quantity estimation are part of our evolutionary heritage and can be witnessed across primate and vertebrate phylogeny. Second, I suggest that a basic understanding of number, what numerical quantity means, is innately wired into the brain and gives rise to an intuitive number sense, or number instinct. Third and finally, I argue that symbolic counting and arithmetic in humans is rooted in an evolutionarily and ontogenetically primeval neural system for non-symbolic number representations. These three neural constraints jointly determine the basic processing of number concepts in the human mind.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
317
|
Investigating Emotion in Malay, Australian and Iranian Individuals with and without Depression. Sci Rep 2019; 9:18344. [PMID: 31797979 PMCID: PMC6892853 DOI: 10.1038/s41598-019-54775-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 01/29/2023] Open
Abstract
This study investigated the influence of culture and depression on (1) emotion priming reactions, (2) the recall of subjective experience of emotion, and (3) emotion meaning. Members of individualistic culture (Australia, n = 42) and collectivistic culture (Iran, n = 32, Malaysia, n = 74) with and without depression completed a biological motion task, subjective experience questionnaire and emotion meaning questionnaire. Those with depression, regardless of cultural group, provided significantly fewer correct responses on the biological motion task than the control group. Second, the collectivistic control groups reported greater social engaging emotion than the Australian control group. However, the three depressed groups did not differ culturally. The Australian depressed group reported significantly greater interpersonally engaging emotion than the Australian control group. Third, the collectivistic groups reported significantly greater social worth, belief changes and sharing of emotion than the individualistic group. Depression did not influence these cultural effects. Instead we found that those with depression, when compared to controls, considered emotions as subjective phenomena, that were qualifying for relationships with others, and associated with greater agency appraisals. The applicability of the biocultural framework of emotion in depression was considered.
Collapse
|
318
|
Psychophysical laws as reflection of mental space properties. Phys Life Rev 2019; 31:276-303. [DOI: 10.1016/j.plrev.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/21/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
|
319
|
Šetić Beg M, Čičko J, Domijan D. Symbol grounding of number words in the subitization range. PSYCHOLOGICAL RESEARCH 2019; 85:720-733. [PMID: 31722039 DOI: 10.1007/s00426-019-01265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/01/2019] [Indexed: 01/29/2023]
Abstract
In three experiments, we explored whether number words are grounded in a nonsymbolic representation of numerosity. We used a sentence-picture verification task, where participants are required to check whether the concept given in a sentence corresponds to the subsequently presented object. We concurrently manipulated numerical congruency by orthogonally varying the number word attached to the concept and the quantity of objects. The number words and numerosities varied from one to four in Experiment 1 and from six to nine in Experiment 2. In Experiment 3, we employed number words six and eight with the constraint that, in the incongruent condition, a constant number-to-numerosity ratio of 2:1 was used. In Experiment 1, we found that participants were faster and more efficient when concept-object matches were accompanied by numerical congruency relative to incongruency. On the other hand, no such difference was observed in Experiments 2 and 3 for numbers falling outside of the subitization range. The results are consistent with the hypothesis that number words from one to four are grounded in a nonsymbolic representation of the size of small sets.
Collapse
Affiliation(s)
- Mia Šetić Beg
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Jakov Čičko
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Dražen Domijan
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, Sveučilišna avenija 4, 51000, Rijeka, Croatia.
| |
Collapse
|
320
|
Cheng X, Lin C, Lou C, Zhang W, Han Y, Ding X, Fan Z. Small numerosity advantage for sequential enumeration on RSVP stimuli: an object individuation-based account. PSYCHOLOGICAL RESEARCH 2019; 85:734-763. [PMID: 31696296 DOI: 10.1007/s00426-019-01264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/28/2019] [Indexed: 01/29/2023]
Abstract
Although there is a large literature demonstrating rapid and accurate enumeration of small sets of simultaneously presented items (i.e., subitizing), it is unclear whether this small numerosity advantage (SNA) can also manifest in sequential enumeration. The present study thus has two aims: to establish a robust processing advantage for small numerosities during sequential enumeration using a rapid serial visual presentation (RSVP) paradigm, and to examine the underlying mechanism for a SNA in sequential enumeration. The results indicate that a small set of items presented in fast sequences can be enumerated accurately with a high precision and a SOA (stimulus onset asynchrony)-sensitive capacity limit, essentially generalizing the large literature on small numerosity advantage from spatial domain to temporal domain. A resource competition hypothesis was proposed and confirmed in further experiments. Specifically, sequential enumeration and other cognitive process, such as visual working memory (VWM), compete for a shared resource of object individuation by which items are segregated as individual entities. These results implied that the limited resource of object individuation can be allocated within time windows of flexible temporal scales during simultaneous and sequential enumerations. Taken together, the present study calls for attention to the dynamic aspect of the enumeration process and highlights the pivotal role of object individuation in underlying a wide range of mental operations, such as enumeration and VWM.
Collapse
Affiliation(s)
- Xiaorong Cheng
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunyan Lin
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Chunmiao Lou
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Weiwei Zhang
- Department of Psychology, University of California at Riverside, Riverside, CA, 92521, USA
| | - Yaqian Han
- Central China Normal University, School of Psychology, 430079, Wuhan, China
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China
| | - Xianfeng Ding
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| | - Zhao Fan
- Central China Normal University, School of Psychology, 430079, Wuhan, China.
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, 430079, Wuhan, China.
- Key Laboratory of Human Development and Mental Health of Hubei Province, 430079, Wuhan, China.
| |
Collapse
|
321
|
Affiliation(s)
- José Ferreirós
- IMUS and Departamento de Lógica y Filosofía de la Ciencia, Universidad de Sevilla, Sevilla, Spain
| | - Manuel J. García-Pérez
- Departamento de Lógica y Filosofía de la Ciencia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
322
|
Paul A, Sil J. Identification of Differentially Expressed Genes to Establish New Biomarker for Cancer Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1970-1985. [PMID: 29994718 DOI: 10.1109/tcbb.2018.2837095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The goal of the human genome project is to integrate genetic information into different clinical therapies. To achieve this goal, different computational algorithms are devised for identifying the biomarker genes, cause of complex diseases. However, most of the methods developed so far using DNA microarray data lack in interpreting biological findings and are less accurate in disease prediction. In the paper, we propose two parameters risk_factor and confusion_factor to identify the biologically significant genes for cancer development. First, we evaluate risk_factor of each gene and the genes with nonzero risk_factor result misclassification of data, therefore removed. Next, we calculate confusion_factor of the remaining genes which determines confusion of a gene in prediction due to closeness of the samples in the cancer and normal classes. We apply nondominated sorting genetic algorithm (NSGA-II) to select the maximally uncorrelated differentially expressed genes in the cancer class with minimum confusion_factor. The proposed Gene Selection Explore (GSE) algorithm is compared to well established feature selection algorithms using 10 microarray data with respect to sensitivity, specificity, and accuracy. The identified genes appear in KEGG pathway and have several biological importance.
Collapse
|
323
|
Anobile G, Burr DC, Gasperini F, Cicchini GM. Near optimal encoding of numerosity in typical and dyscalculic development. Cortex 2019; 120:498-508. [DOI: 10.1016/j.cortex.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/15/2019] [Accepted: 07/13/2019] [Indexed: 01/29/2023]
|
324
|
Yuan L, Prather R, Mix KS, Smith LB. Number Representations Drive Number-Line Estimates. Child Dev 2019; 91:e952-e967. [PMID: 31657470 DOI: 10.1111/cdev.13333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The number-line task has been extensively used to study the mental representation of numbers in children. However, studies suggest that proportional reasoning provides a better account of children's performance. Ninety 4- to 6-year-olds were given a number-line task with symbolic numbers, with clustered dot arrays that resembled a perceptual scaling task, or with spread-out dot arrays that involved numerical estimation. Children performed well with clustered dot arrays, but poorly with symbolic numbers and spread-out dot arrays. Performances with symbolic numbers and spread-out dot arrays were highly correlated and were related to counting skill; neither was true for clustered dot arrays. Overall, results provide evidence for the role of mental representation of numbers in the symbolic number-line task.
Collapse
|
325
|
Affiliation(s)
- Michael Vlerick
- Tilburg University, Tilburg, The Netherlands
- University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
326
|
Dillon MR, Persichetti AS, Spelke ES, Dilks DD. Places in the Brain: Bridging Layout and Object Geometry in Scene-Selective Cortex. Cereb Cortex 2019. [PMID: 28633321 DOI: 10.1093/cercor/bhx139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Diverse animal species primarily rely on sense (left-right) and egocentric distance (proximal-distal) when navigating the environment. Recent neuroimaging studies with human adults show that this information is represented in 2 scene-selective cortical regions-the occipital place area (OPA) and retrosplenial complex (RSC)-but not in a third scene-selective region-the parahippocampal place area (PPA). What geometric properties, then, does the PPA represent, and what is its role in scene processing? Here we hypothesize that the PPA represents relative length and angle, the geometric properties classically associated with object recognition, but only in the context of large extended surfaces that compose the layout of a scene. Using functional magnetic resonance imaging adaptation, we found that the PPA is indeed sensitive to relative length and angle changes in pictures of scenes, but not pictures of objects that reliably elicited responses to the same geometric changes in object-selective cortical regions. Moreover, we found that the OPA is also sensitive to such changes, while the RSC is tolerant to such changes. Thus, the geometric information typically associated with object recognition is also used during some aspects of scene processing. These findings provide evidence that scene-selective cortex differentially represents the geometric properties guiding navigation versus scene categorization.
Collapse
Affiliation(s)
- Moira R Dillon
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | | | - Daniel D Dilks
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
327
|
Koopman SE, Arre AM, Piantadosi ST, Cantlon JF. One-to-one correspondence without language. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190495. [PMID: 31824689 PMCID: PMC6837223 DOI: 10.1098/rsos.190495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/01/2019] [Indexed: 05/10/2023]
Abstract
A logical rule important in counting and representing exact number is one-to-one correspondence, the understanding that two sets are equal if each item in one set corresponds to exactly one item in the second set. The role of this rule in children's development of counting remains unclear, possibly due to individual differences in the development of language. We report that non-human primates, which do not have language, have at least a partial understanding of this principle. Baboons were given a quantity discrimination task where two caches were baited with different quantities of food. When the quantities were baited in a manner that highlighted the one-to-one relation between those quantities, baboons performed significantly better than when one-to-one correspondence cues were not provided. The implication is that one-to-one correspondence, which requires intuitions about equality and is a possible building block of counting, has a pre-linguistic origin.
Collapse
Affiliation(s)
- Sarah E. Koopman
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
| | | | - Steven T. Piantadosi
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
- Psychology, University of California, Berkeley, CA, USA
| | - Jessica F. Cantlon
- Brain and Cognitive Sciences, University of Rochester, 500 Wilson Boulevard, Rochester, NY, USA
- Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
328
|
Prisms for timing better: A review on application of prism adaptation on temporal domain. Cortex 2019; 119:583-593. [DOI: 10.1016/j.cortex.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/04/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023]
|
329
|
Kao AB, Berdahl AM, Hartnett AT, Lutz MJ, Bak-Coleman JB, Ioannou CC, Giam X, Couzin ID. Counteracting estimation bias and social influence to improve the wisdom of crowds. J R Soc Interface 2019; 15:rsif.2018.0130. [PMID: 29669894 DOI: 10.1098/rsif.2018.0130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/26/2018] [Indexed: 01/29/2023] Open
Abstract
Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.
Collapse
Affiliation(s)
- Albert B Kao
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew M Berdahl
- Santa Fe Institute, Santa Fe, NM, USA.,School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew J Lutz
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany
| | - Joseph B Bak-Coleman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Xingli Giam
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany.,Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
330
|
Wilkey ED, Ansari D. Challenging the neurobiological link between number sense and symbolic numerical abilities. Ann N Y Acad Sci 2019; 1464:76-98. [PMID: 31549430 DOI: 10.1111/nyas.14225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
A significant body of research links individual differences in symbolic numerical abilities, such as arithmetic, to number sense, the neurobiological system used to approximate and manipulate quantities without language or symbols. However, recent findings from cognitive neuroscience challenge this influential theory. Our current review presents an overview of evidence for the number sense account of symbolic numerical abilities and then reviews recent studies that challenge this account, organized around the following four assertions. (1) There is no number sense as traditionally conceived. (2) Neural substrates of number sense are more widely distributed than common consensus asserts, complicating the neurobiological evidence linking number sense to numerical abilities. (3) The most common measures of number sense are confounded by other cognitive demands, which drive key correlations. (4) Number sense and symbolic number systems (Arabic digits, number words, and so on) rely on distinct neural mechanisms and follow independent developmental trajectories. The review follows each assertion with comments on future directions that may bring resolution to these issues.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Daniel Ansari
- Brain and Mind Institute, Western University, London, Ontario, Canada
| |
Collapse
|
331
|
Everett C. Is native quantitative thought concretized in linguistically privileged ways? A look at the global picture. Cogn Neuropsychol 2019; 37:340-354. [PMID: 31539296 DOI: 10.1080/02643294.2019.1668368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work investigates whether reference in speech to certain quantities, namely 1, 2, and 3, is privileged linguistically due to our brain's native quantitative capacities. It is suggested that these small quantities are not privileged in specific ways suggested in the literature. The case that morphology privileges these quantities, apart from 1, is difficult to maintain in light of the cross-linguistic data surveyed. The grammatical expression of 2 is explained without appealing to innate quantitative reasoning and the grammatical expression of 3 is not truly characteristic of speech once language relatedness is considered. The case that 1, 2, and 3 are each privileged lexically is also difficult to maintain in the face of the global linguistic data. While native neurobiological architecture biases humans towards recognizing small quantities in precise ways, these biases do not yield clear patterns in numerical language worldwide.
Collapse
Affiliation(s)
- Caleb Everett
- Department of Anthropology, University of Miami, Coral Gables, FL, USA.,Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
332
|
Guarnera M, Pellerone M, Commodari E, Valenti GD, Buccheri SL. Mental Images and School Learning: A Longitudinal Study on Children. Front Psychol 2019; 10:2034. [PMID: 31620040 PMCID: PMC6760037 DOI: 10.3389/fpsyg.2019.02034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 01/29/2023] Open
Abstract
Recent literature have underlined the connections between children's reading skills and capacity to create and use mental representations or mental images; furthermore data highlighted the involvement of visuospatial abilities both during math learning and during subsequent developmental phases in performing math tasks. The present research adopted a longitudinal design to assess whether the processes of mental imagery in preschoolers (ages 4-5 years) are predictive of mathematics skills, writing and reading, in the early years of primary school (ages 6-7 years). The research lasted for two school years; in the first phase, the general group of participants consisted of 100 children, and although all participants agreed to be part of the research, in the second phase, there was a mortality rate of 30%. In order to measure school learning and mental imagery processes four batteries of tests were used. The mental imagery battery evaluated mental generation, inspection and transformation processes. Data underlined that the different aspects in which mental imagery processes are articulated are differently implied in some skills that constitute school learning. These findings emphasize the potential usefulness of a screening for mental imagery ability for schoolchildren to adopt effective measures to increase their mental imagery abilities.
Collapse
Affiliation(s)
- Maria Guarnera
- Faculty of Human and Social Sciences, Kore University of Enna, Enna, Italy
| | - Monica Pellerone
- Faculty of Human and Social Sciences, Kore University of Enna, Enna, Italy
| | - Elena Commodari
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Giusy D. Valenti
- Faculty of Human and Social Sciences, Kore University of Enna, Enna, Italy
| | | |
Collapse
|
333
|
Spontaneous partitioning and proportion estimation in children’s numerical judgments. J Exp Child Psychol 2019; 185:71-94. [DOI: 10.1016/j.jecp.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/29/2023]
|
334
|
Barroso C, Ganley CM, Hart SA, Rogers N, Clendinning JP. The relative importance of math‐ and music‐related cognitive and affective factors in predicting undergraduate music theory achievement. APPLIED COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1002/acp.3518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Connie Barroso
- Department of PsychologyFlorida State University Tallahassee USA
| | - Colleen M. Ganley
- Department of PsychologyFlorida State University Tallahassee USA
- Florida Center for Research in Science, Technology, Engineering, and MathematicsLearning Systems Institute, Florida State University Tallahassee USA
| | - Sara A. Hart
- Department of PsychologyFlorida State University Tallahassee USA
- Florida Center for Reading ResearchFlorida State University Tallahassee USA
| | - Nancy Rogers
- College of MusicFlorida State University Tallahassee USA
| | | |
Collapse
|
335
|
Abstract
The role of language in numerical processing has traditionally been restricted to counting and exact arithmetic. Nevertheless, the impact that each of a bilinguals’ languages may have in core numerical representations has not been questioned until recently. What if the language in which math has been first acquired (LLmath) had a bigger impact in our math processing? Based on previous studies on language switching we hypothesize that balanced bilinguals would behave like unbalanced bilinguals when switching between the two codes for math. In order to address this question, we measured the brain activity with magneto encephalography (MEG) and source estimation analyses of 12 balanced Basque-Spanish speakers performing a task in which participants were unconscious of the switches between the two codes. The results show an asymmetric switch cost between the two codes for math, and that the brain areas responsible for these switches are similar to those thought to belong to a general task switching mechanism. This implies that the dominances for math and language could run separately from the general language dominance.
Collapse
|
336
|
Pantsar M. The Enculturated Move From Proto-Arithmetic to Arithmetic. Front Psychol 2019; 10:1454. [PMID: 31354559 PMCID: PMC6630192 DOI: 10.3389/fpsyg.2019.01454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 01/29/2023] Open
Abstract
The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical ability to arithmetic proper. I argue that enculturation based on neural reuse provides a theoretically sound and fruitful framework for explaining this development. However, I show that a comprehensive explanation must be based on valid theoretical distinctions and involve several stages in the development of arithmetical knowledge. I provide an account that meets these challenges and thus leads to a better understanding of the subject of enculturation.
Collapse
Affiliation(s)
- Markus Pantsar
- Department of Philosophy, History and Art University of Helsinki, Helsinki, Finland
| |
Collapse
|
337
|
Niu H, Zhang Y, Zhao F, Mo S, Cao W, Ye Y, Zhao Y. Reductive stress imaging in the endoplasmic reticulum by using living cells and zebrafish. Chem Commun (Camb) 2019; 55:9629-9632. [PMID: 31353368 DOI: 10.1039/c9cc04711e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Excessive accumulation of reducing agents in the ER leads to a constitutively high UPR. And the co-function of GSH, Cys and HOCl in biological processes is not well understood. To address this, a TP probe, NPCC, was developed for monitoring reductive stress in the ER. It can also distinguish cancer cells from normal cells.
Collapse
Affiliation(s)
- Huawei Niu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongru Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Fangfang Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Saijun Mo
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Cao
- School of Basic Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China. and Ningbo Univ., Inst Drug Discovery Technol, Ningbo 450052, Zhejiang, P. R. China
| |
Collapse
|
338
|
Castaldi E, Piazza M, Dehaene S, Vignaud A, Eger E. Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. eLife 2019; 8:45160. [PMID: 31339490 PMCID: PMC6693892 DOI: 10.7554/elife.45160] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this ‘number sense’, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity. Numbers and the ability to count and calculate are an essential part of human culture. They are part of everyday life, featuring in calendars, computers or the weekly shop, but also in some of humanity’s biggest achievements: without them the pyramids or space travel would not exist. A precursor of sophisticated mathematical skill could reside in a simpler mental ability: the capacity to assess numerical quantities at a glance. This ‘number sense’ appears in humans in early childhood and it is also present in other animals, but it is still poorly understood. Brain imaging techniques have identified the parts of the brain that are active when perceiving numbers or making calculations. As techniques have advanced, it has become possible to resolve fine differences in brain activity that occur when people switch their attention between different visual tasks. But how exactly does the human brain process visual information to make sense of numbers? One theory suggests that humans use visual cues, such as the size of a group of objects or how densely packed objects are, to estimate numbers. On the other hand, it is also possible that humans can sense number directly, without reference to other properties of the group being observed. Castaldi et al. presented twenty adult volunteers with groups of dots and asked them to focus either on the number of dots or on the size of the dots during a brain scan. This approach allowed the separation of brain signals specific to number from signals corresponding to other visual cues, such as size or density of the group. The experiment revealed that brain activity changed depending on the number of dots displayed. The signal related to number became stronger when people focused on the number of dots, while signals related to other properties of the group remained unchanged. Moreover, brain signals for number were observed at the very early stages of visual processing, in the parts of the brain that receive input from the eyes first. These results suggest that the human visual system perceives number directly, and not by processing information about the size or density of a group of objects. This finding provides insights into how human brains encode numbers, which could be important to understand disorders where number sense can be impaired leading to difficulties learning math and operating with numbers.
Collapse
Affiliation(s)
- Elisa Castaldi
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- UNIRS, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
339
|
Hutchison JE, Ansari D, Zheng S, De Jesus S, Lyons IM. The relation between subitizable symbolic and non-symbolic number processing over the kindergarten school year. Dev Sci 2019; 23:e12884. [PMID: 31271687 DOI: 10.1111/desc.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 01/29/2023]
Abstract
A long-standing debate in the field of numerical cognition concerns the degree to which symbolic and non-symbolic processing are related over the course of development. Of particular interest is the possibility that this link depends on the range of quantities in question. Behavioral and neuroimaging research with adults suggests that symbolic and non-symbolic quantities may be processed more similarly within, relative to outside of, the subitizing range. However, it remains unclear whether this unique link exists in young children at the outset of formal education. Further, no study has yet taken numerical size into account when investigating the longitudinal influence of these skills. To address these questions, we investigated the relation between symbolic and non-symbolic processing inside versus outside the subitizing range, both cross-sectionally and longitudinally, in 540 kindergarteners. Cross-sectionally, we found a consistently stronger relation between symbolic and non-symbolic number processing within versus outside the subitizing range at both the beginning and end of kindergarten. We also show evidence for a bidirectional relation over the course of kindergarten between formats within the subitizing range, and a unidirectional relation (symbolic → non-symbolic) for quantities outside of the subitizing range. These findings extend current theories on symbolic and non-symbolic magnitude development by suggesting that non-symbolic processing may in fact play a role in the development of symbolic number abilities, but that this influence may be limited to quantities within the subitizing range.
Collapse
Affiliation(s)
- Jane E Hutchison
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Daniel Ansari
- Department of Psychology and Brain & Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Samuel Zheng
- Research and Development, Toronto District School Board, North York, Ontario, Canada
| | - Stefanie De Jesus
- Research and Development, Toronto District School Board, North York, Ontario, Canada
| | - Ian M Lyons
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
340
|
Agostino CS, Zana Y, Balci F, Claessens PME. Effect of Presentation Format on Judgment of Long-Range Time Intervals. Front Psychol 2019; 10:1479. [PMID: 31316436 PMCID: PMC6611061 DOI: 10.3389/fpsyg.2019.01479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/11/2019] [Indexed: 01/29/2023] Open
Abstract
Investigations in the temporal estimation domain are quite vast in the range of milliseconds, seconds, and minutes. This study aimed to determine the psychophysical function that best describes long-range time interval estimation and evaluate the effect of numerals in duration presentation on the form of this function. Participants indicated on a line the magnitude of time intervals presented either as a number + time-unit (e.g., “9 months”; Group I), unitless numerals (e.g., “9”; Group II), or tagged future personal events (e.g., “Wedding”; Group III). The horizontal line was labeled rightward (“Very short” = >“Very long”) or leftward (“Very long” = >“Very short”) for Group I and II, but only rightward for Group III. None of the linear, power, logistic or logarithmic functions provided the best fit to the individual participant data in more than 50% of participants for any group. Individual power exponents were different only between the tagged personal events (Group III) and the other two groups. When the same analysis was repeated for the aggregated data, power functions provided a better fit than other tested functions in all groups with a difference in the power function parameters again between the tagged personal events and the other groups. A non-linear mixed effects analysis indicated a difference in the power function exponent between Group III and the other groups, but not between Group I and II. No effect of scale directionality was found in neither of the experiments in which scale direction was included as independent variable. These results suggest that the judgment of intervals in a number + time-unit presentation invoke, at least in part, processing mechanisms other than those used for time-domain. Consequently, we propose the use of event-tagged assessment for characterizing long-range interval representation. We also recommend that analyses in this field should not be restricted to aggregated data given the qualitative variation between participants.
Collapse
Affiliation(s)
- Camila Silveira Agostino
- Department of Biological Psychology, Faculty of Natural Science, Otto von Guericke Universität Magdeburg, Magdeburg, Germany.,Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Yossi Zana
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Fuat Balci
- Department of Psychology, Koç University, Istanbul, Turkey
| | - Peter M E Claessens
- Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
341
|
Lindskog M, Rogell M, Kenward B, Gredebäck G. Discrimination of Small Forms in a Deviant-Detection Paradigm by 10-month-old Infants. Front Psychol 2019; 10:1032. [PMID: 31156498 PMCID: PMC6528582 DOI: 10.3389/fpsyg.2019.01032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/18/2019] [Indexed: 01/29/2023] Open
Abstract
Using eye tracking, we investigated if 10-month-old infants could discriminate between members of a set of small forms based on geometric properties in a deviant-detection paradigm, as suggested by the idea of a core cognitive system for Euclidian geometry. We also investigated the precision of infants' ability to discriminate as well as how the discrimination process unfolds over time. Our results show that infants can discriminate between small forms based on geometrical properties, but only when the difference is sufficiently large. Furthermore, our results also show that it takes infants, on average, <3.5 s to detect a deviant form. Our findings extend previous research in three ways: by showing that infants can make similar discriminative judgments as children and adults with respect to geometric properties; by providing a first crude estimate on the limit of the discriminative abilities in infants, and finally; by providing a first demonstration of how the discrimination process unfolds over time.
Collapse
Affiliation(s)
- Marcus Lindskog
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Maria Rogell
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Ben Kenward
- Department of Psychology, Uppsala University, Uppsala, Sweden
- Department of Psychology, Health and Professional Development, Oxford Brookes University, Oxford, United Kingdom
| | | |
Collapse
|
342
|
Gibson DJ, Gunderson EA, Spaepen E, Levine SC, Goldin-Meadow S. Number gestures predict learning of number words. Dev Sci 2019; 22:e12791. [PMID: 30566755 PMCID: PMC6470030 DOI: 10.1111/desc.12791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Abstract
When asked to explain their solutions to a problem, children often gesture and, at times, these gestures convey information that is different from the information conveyed in speech. Children who produce these gesture-speech "mismatches" on a particular task have been found to profit from instruction on that task. We have recently found that some children produce gesture-speech mismatches when identifying numbers at the cusp of their knowledge, for example, a child incorrectly labels a set of two objects with the word "three" and simultaneously holds up two fingers. These mismatches differ from previously studied mismatches (where the information conveyed in gesture has the potential to be integrated with the information conveyed in speech) in that the gestured response contradicts the spoken response. Here, we ask whether these contradictory number mismatches predict which learners will profit from number-word instruction. We used the Give-a-Number task to measure number knowledge in 47 children (Mage = 4.1 years, SD = 0.58), and used the What's on this Card task to assess whether children produced gesture-speech mismatches above their knower level. Children who were early in their number learning trajectories ("one-knowers" and "two-knowers") were then randomly assigned, within knower level, to one of two training conditions: a Counting condition in which children practiced counting objects; or an Enriched Number Talk condition containing counting, labeling set sizes, spatial alignment of neighboring sets, and comparison of these sets. Controlling for counting ability, we found that children were more likely to learn the meaning of new number words in the Enriched Number Talk condition than in the Counting condition, but only if they had produced gesture-speech mismatches at pretest. The findings suggest that numerical gesture-speech mismatches are a reliable signal that a child is ready to profit from rich number instruction and provide evidence, for the first time, that cardinal number gestures have a role to play in number-learning.
Collapse
Affiliation(s)
- Dominic J Gibson
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | | - Elizabet Spaepen
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Susan C Levine
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
343
|
Lin JFL, Imada T, Kuhl PK. Neuroplasticity, bilingualism, and mental mathematics: A behavior-MEG study. Brain Cogn 2019; 134:122-134. [PMID: 30975509 DOI: 10.1016/j.bandc.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/22/2018] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Bilingual experience alters brain structure and enhances certain cognitive functions. Bilingualism can also affect mathematical processing. Reduced accuracy is commonly reported when arithmetic problems are presented in bilinguals' second (L2) vs. first (L1) language. We used MEG brain imaging during mental addition to characterize spatiotemporal dynamics during mental addition in bilingual adults. Numbers were presented auditorally and sequentially in bilinguals' L1 and L2, and brain and behavioral data were collected simultaneously. Behaviorally, bilinguals showed lower accuracy for two-digit addition in L2 compared to L1. Brain data showed stronger response magnitude in L2 versus L1 prior to calculation, especially when two-digit numbers were involved. Brain and behavioral data were significantly correlated. Taken together, our results suggest that differences between languages emerge prior to mathematical calculation, with implications for the role of language in mathematics.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA; Institute of Linguistics, National Tsing Hua University, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
344
|
Hu Q, Zhang M. The development of symmetry concept in preschool children. Cognition 2019; 189:131-140. [PMID: 30953824 DOI: 10.1016/j.cognition.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Young children are exposed to symmetrical figures frequently before they are taught the concept of symmetry, which is a valuable experience for the development of geometry; however, limited research has explored how this concept develops. This study investigated the developmental sequence of "general symmetry" concept and "specific symmetry" concepts (i.e., bilateral, rotational, and translational symmetry) with 106 4-6-year-old children using a symmetry deviant detection task. The test examined children's conception of general symmetry against asymmetry, specific symmetry against asymmetry, and discrimination of specific symmetries. The results suggested that the concept of symmetry develops as a differentiation process. The concept of general symmetry was acquired first, followed by specific symmetries which were acquired in sequential order.
Collapse
Affiliation(s)
- Qingfen Hu
- Institute of Developmental Psychology, Beijing Normal University, China.
| | - Meng Zhang
- Institute of Developmental Psychology, Beijing Normal University, China
| |
Collapse
|
345
|
Buijsman S, Tirado C. Spatial-numerical associations: Shared symbolic and non-symbolic numerical representations. Q J Exp Psychol (Hove) 2019; 72:2423-2436. [PMID: 30931820 DOI: 10.1177/1747021819844503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the last decades, there have been a large number of studies into the number-related abilities of humans. As a result, we know that humans and non-human animals have a system known as the approximate number system that allows them to distinguish between collections based on their number of items, separately from any counting procedures. Dehaene and others have argued for a model on which this system uses representations for numbers that are spatial in nature and are shared by our symbolic and non-symbolic processing of numbers. However, there is a conflicting theoretical perspective in which there are no representations of numbers underlying the approximate number system, but only quantity-related representations. This perspective would then suggest that there are no shared representations between symbolic and non-symbolic processing. We review the evidence on spatial biases resulting from the activation of numerical representations, for both non-symbolic and symbolic tests. These biases may help decide between the theoretical differences; shared representations are expected to lead to similar biases regardless of the format, whereas different representations more naturally explain differences in biases, and thus behaviour. The evidence is not yet decisive, as the behavioural evidence is split: we expect bisection tasks to eventually favour shared representations, whereas studies on the spatial-numerical association of response codes (SNARC) effect currently favour different representations. We discuss how this impasse may be resolved, in particular, by combining these behavioural studies with relevant neuroimaging data. If this approach is carried forward, then it may help decide which of these two theoretical perspectives on number representations is correct.
Collapse
Affiliation(s)
| | - Carlos Tirado
- 2 Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
346
|
Al Roumi F, Dotan D, Yang T, Wang L, Dehaene S. Acquisition and processing of an artificial mini-language combining semantic and syntactic elements. Cognition 2019; 185:49-61. [DOI: 10.1016/j.cognition.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023]
|
347
|
Zhang Y, Liu T, Chen C, Zhou X. Visual form perception supports approximate number system acuity and arithmetic fluency. LEARNING AND INDIVIDUAL DIFFERENCES 2019. [DOI: 10.1016/j.lindif.2019.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
348
|
A distinct cortical network for mathematical knowledge in the human brain. Neuroimage 2019; 189:19-31. [DOI: 10.1016/j.neuroimage.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/29/2023] Open
|
349
|
Lee K, Cho S. Visuo-spatial (but not verbal) executive working memory capacity modulates susceptibility to non-numerical visual magnitudes during numerosity comparison. PLoS One 2019; 14:e0214270. [PMID: 30917158 PMCID: PMC6436736 DOI: 10.1371/journal.pone.0214270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
The present study tested whether visuo-spatial vs. verbal executive working memory capacity (hereafter EWM) modulates the degree to which non-numerical visual magnitudes influence numerosity comparison using pairs of dot arrays. We hypothesized that visuo-spatial (rather than verbal) EWM capacity would influence one’s ability to selectively focus on numerical as opposed to non-numerical visual properties (such as dot size, cumulative area, density) of the dot arrays during numerosity comparison. Participants’ performance was better on trials in which non-numerical visual magnitudes were negatively (vs. positively) correlated with numerosity (i.e., reverse congruency effect). The Low visuo-spatial EWM group manifested greater reverse congruency effect compared to the High visuo-spatial EWM group. A trial-based hierarchical regression on the accuracy of each trial using the ratio of (numerical and non-numerical) visual magnitudes as predictors revealed that the ratio of numerical vs. non-numerical visual magnitudes explained the greatest variance in the performance of the High vs. Low visuo-spatial EWM groups, respectively. In contrast, there was no difference between the High vs. Low verbal EWM groups from the same analysis. These results reveal differential susceptibility to numerical vs. non-numerical visual information depending on the capacity of visuo-spatial (but not verbal) EWM. Taken together, numerosity comparison performance measured with the dot comparison paradigm seems to reflect not only one’s acuity for numerosity discrimination but also visuo-spatial EWM capacity likely required during integration of visual magnitudes during numerosity comparison.
Collapse
Affiliation(s)
- Kyungmin Lee
- Department of Psychology, Chung-Ang University, Seoul, South Korea
| | - Soohyun Cho
- Department of Psychology, Chung-Ang University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
350
|
Tikhomirova T, Kuzmina Y, Lysenkova I, Malykh S. Development of approximate number sense across the elementary school years: A cross-cultural longitudinal study. Dev Sci 2019; 22:e12823. [PMID: 30811762 DOI: 10.1111/desc.12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 01/29/2023]
Abstract
In recent years, there has been growing interest among researchers in exploring approximate number sense (ANS)-the ability to estimate and discriminate quantities without the use of symbols. Despite the growing number of studies on ANS, there have been no cross-cultural longitudinal studies to estimate both the development of ANS and the cross-cultural differences in ANS growth trajectories. In this study, we aimed to estimate the developmental trajectories of ANS from the beginning of formal education to the end of elementary school in two countries, Russia and Kyrgyzstan, which have similar organization of their educational systems but differences in socioeconomic status (SES) and in the results of large-scale educational assessments. To assess the developmental trajectories of ANS, we used a four-wave longitudinal study with 416 participants from two countries and applied the mixed effect growth approach and the latent class growth approach. Our analysis revealed that the rate of growth in ANS accuracy was higher for the Russian sample than for the Kyrgyz sample and that this difference remained significant even after controlling for fluid intelligence. We identified two latent classes of growth trajectories: the first class had a significant growth in ANS, whereas the second class had no growth. Comparing the distribution of latent classes within the two countries revealed that there was a significantly larger proportion of schoolchildren from the second class in Kyrgyzstan than in Russia.
Collapse
Affiliation(s)
- Tatiana Tikhomirova
- Department of Psychology, Psychological Institute of Russian Academy of Education, Lomonosov Moscow State University, Moscow, Russia
| | - Yulia Kuzmina
- Department of Psychology, Psychological Institute of Russian Academy of Education, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Lysenkova
- Department of Psychology, Kyrgyz-Russian Slavic University, Bishkek, Kyrgyzstan
| | - Sergey Malykh
- Department of Psychology, Psychological Institute of Russian Academy of Education, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|