351
|
Gao S, Meng W, Zhang L, Yue Q, Zheng X, Xu L. Parametarhizium ( Clavicipitaceae) gen. nov. With Two New Species as a Potential Biocontrol Agent Isolated From Forest Litters in Northeast China. Front Microbiol 2021; 12:627744. [PMID: 33679649 PMCID: PMC7933043 DOI: 10.3389/fmicb.2021.627744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
A novel genus Parametarhizium with two new entomopathogenic species, Parametarhizium changbaiense and Parametarhizium hingganense, was introduced based on their morphological characteristics and a multigene phylogenetic analysis, which were isolated from the forest litters collected in Northeast China. To infer their phylogenetic relationships, a six-gene dataset consisting of DNA fragments of [nuclear small subunit rDNA (SSU) + LSU + TUB + TEF + RPB1 + RPB2] was used for phylogenetic analysis, including 105 related fungi. The new genus Parametarhizium formed a monophyletic clade basal to Metarhizium and its related genera (formerly Metarhizium sensu lato). Parametarhizium can be morphologically distinguished from related genera by the combination of the following characteristics: formation of white to yellow colonies on different media, candelabrum-like arrangement of cylindrical or obpyriform phialides, and small subglobose to ellipsoidal conidia. Both P. hingganense and P. changbaiense exhibited anti-insect activities against three farmland pests Monolepta hieroglyphica, Callosobruchus chinensis, and Rhopalosiphum maidis. This is the first report of entomopathogenic fungi exhibiting the anti-insect activity against Mo. hieroglyphica.
Collapse
Affiliation(s)
- Siyu Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xu Zheng
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lijian Xu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
352
|
Liu S, Yin H, Li X, Li X, Fan C, Chen G, Feng M, Chen Y. Short-Term Thinning Influences the Rhizosphere Fungal Community Assembly of Pinus massoniana by Altering the Understory Vegetation Diversity. Front Microbiol 2021; 12:620309. [PMID: 33767676 PMCID: PMC7985072 DOI: 10.3389/fmicb.2021.620309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Thinning can significantly promote forest productivity and ecological function. Rhizosphere fungi play an indispensable role in regulating nutrient cycling between plants and the environment, and their community composition can positively respond to anthropogenic disturbance. However, the initial effects of thinning on rhizosphere fungal community assembly have seldom been reported. In this research, we studied the alterations in the rhizosphere fungal communities of 29-year-old Pinus massoniana in East Sichuan 2 years after three different thinning intensity treatments. In addition, the responses of fungal community and functional group composition to alterations in understory vegetation and soil physiochemical properties were analyzed. Three thinning intensities were set, which were 0 (CK), 25% (LIT), and 50% (HIT), respectively. The results suggested that the richness index and Shannon index of understory vegetation increased significantly with increasing thinning intensity. The alpha diversity indices of rhizosphere fungal community and soil physiochemical properties did not show significant differences among the three treatments. The relative abundances of 17 fungal indicator species varied regularly with increasing thinning intensity, and most of them belong to Hypocreales and Eurotiales, indicating that these two orders were potential indicators for different thinning treatments. Rhizosphere fungal community assembly was determined by deterministic process, and it was driven by the diversity of understory vegetation in the initial stage of thinning. The Simpson index and Pielou index of herbs were useful measures of the main environmental factors driving the differentiation of fungal functional group composition. Based on network analysis, thinning resulted in distinct co-occurrence patterns of rhizosphere fungal functional groups. This research elucidates the initial role of thinning in rhizosphere fungal community assembly of P. massoniana and has practical significance for the functional restoration and protection of local forest ecosystem.
Collapse
Affiliation(s)
- Size Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Yin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiangjun Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of State Forestry Administration for Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of State Forestry Administration for Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of State Forestry Administration for Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Maosong Feng
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of State Forestry Administration for Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuqin Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of State Forestry Administration for Forest Resources Conservation and Ecological Security in Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China
- Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
353
|
Wanasinghe DN, Mortimer PE, Xu J. Insight into the Systematics of Microfungi Colonizing Dead Woody Twigs of Dodonaea viscosa in Honghe (China). J Fungi (Basel) 2021; 7:jof7030180. [PMID: 33802406 PMCID: PMC7999967 DOI: 10.3390/jof7030180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022] Open
Abstract
Members of Dodonaea are broadly distributed across subtropical and tropical areas of southwest and southern China. This host provides multiple substrates that can be richly colonized by numerous undescribed fungal species. There is a severe lack of microfungal studies on Dodonaea in China, and consequently, the diversity, phylogeny and taxonomy of these microorganisms are all largely unknown. This paper presents two new genera and four new species in three orders of Dothideomycetes gathered from dead twigs of Dodonaea viscosa in Honghe, China. All new collections were made within a selected area in Honghe from a single Dodonaea sp. This suggests high fungal diversity in the region and the existence of numerous species awaiting discovery. Multiple gene sequences (non-translated loci and protein-coding regions) were analysed with maximum likelihood and Bayesian analyses. Results from the phylogenetic analyses supported placing Haniomyces dodonaeae gen. et sp. in the Teratosphaeriaceae family. Analysis of Rhytidhysteron sequences resulted in Rhytidhysteron hongheense sp. nov., while analysed Lophiostomataceae sequences revealed Lophiomurispora hongheensis gen. et sp. nov. Finally, phylogeny based on a combined dataset of pyrenochaeta-like sequences demonstrates strong statistical support for placing Quixadomyceshongheensis sp. nov. in Parapyrenochaetaceae. Morphological and updated phylogenetic circumscriptions of the new discoveries are also discussed.
Collapse
Affiliation(s)
- Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Correspondence: (P.E.M.); (J.X.); Tel.: +86-158-8784-3793 (P.E.M.); +86-138-0870-8795 (J.X.)
| | - Jianchu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China;
- World Agroforestry, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, China
- Correspondence: (P.E.M.); (J.X.); Tel.: +86-158-8784-3793 (P.E.M.); +86-138-0870-8795 (J.X.)
| |
Collapse
|
354
|
Bartholomew HP, Bradshaw M, Jurick WM, Fonseca JM. The Good, the Bad, and the Ugly: Mycotoxin Production During Postharvest Decay and Their Influence on Tritrophic Host-Pathogen-Microbe Interactions. Front Microbiol 2021; 12:611881. [PMID: 33643240 PMCID: PMC7907610 DOI: 10.3389/fmicb.2021.611881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Mycotoxins are a prevalent problem for stored fruits, grains, and vegetables. Alternariol, aflatoxin, and patulin, produced by Alternaria spp., Aspergillus spp., and Penicillium spp., are the major mycotoxins that negatively affect human and animal health and reduce fruit and produce quality. Control strategies for these toxins are varied, but one method that is increasing in interest is through host microbiome manipulation, mirroring a biocontrol approach. While the majority of mycotoxins and other secondary metabolites (SM) produced by fungi impact host–fungal interactions, there is also an interplay between the various organisms within the host microbiome. In addition to SMs, these interactions involve compounds such as signaling molecules, plant defense and growth hormones, and metabolites produced by both the plants and microbial community. Therefore, studies to understand the impact of the various toxins impacting the beneficial and harmful microorganisms that reside within the microbiome is warranted, and could lead to identification of safe analogs for antimicrobial activity to reduce fruit decay. Additionally, exploring the composition of the microbial carposphere of host plants is likely to shed light on developing a microbial consortium to maintain quality during storage and abate mycotoxin contamination.
Collapse
Affiliation(s)
- Holly P Bartholomew
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Michael Bradshaw
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Wayne M Jurick
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jorge M Fonseca
- Food Quality Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
355
|
Baldrian P, Větrovský T, Lepinay C, Kohout P. High-throughput sequencing view on the magnitude of global fungal diversity. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00472-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
356
|
Li H, Tian Y, Menolli N, Ye L, Karunarathna SC, Perez-Moreno J, Rahman MM, Rashid MH, Phengsintham P, Rizal L, Kasuya T, Lim YW, Dutta AK, Khalid AN, Huyen LT, Balolong MP, Baruah G, Madawala S, Thongklang N, Hyde KD, Kirk PM, Xu J, Sheng J, Boa E, Mortimer PE. Reviewing the world's edible mushroom species: A new evidence-based classification system. Compr Rev Food Sci Food Saf 2021; 20:1982-2014. [PMID: 33599116 DOI: 10.1111/1541-4337.12708] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Wild mushrooms are a vital source of income and nutrition for many poor communities and of value to recreational foragers. Literature relating to the edibility of mushroom species continues to expand, driven by an increasing demand for wild mushrooms, a wider interest in foraging, and the study of traditional foods. Although numerous case reports have been published on edible mushrooms, doubt and confusion persist regarding which species are safe and suitable to consume. Case reports often differ, and the evidence supporting the stated properties of mushrooms can be incomplete or ambiguous. The need for greater clarity on edible species is further underlined by increases in mushroom-related poisonings. We propose a system for categorizing mushroom species and assigning a final edibility status. Using this system, we reviewed 2,786 mushroom species from 99 countries, accessing 9,783 case reports, from over 1,100 sources. We identified 2,189 edible species, of which 2,006 can be consumed safely, and a further 183 species which required some form of pretreatment prior to safe consumption or were associated with allergic reactions by some. We identified 471 species of uncertain edibility because of missing or incomplete evidence of consumption, and 76 unconfirmed species because of unresolved, differing opinions on edibility and toxicity. This is the most comprehensive list of edible mushrooms available to date, demonstrating the huge number of mushrooms species consumed. Our review highlights the need for further information on uncertain and clash species, and the need to present evidence in a clear, unambiguous, and consistent manner.
Collapse
Affiliation(s)
- Huili Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nelson Menolli
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil.,Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil
| | - Lei Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Samantha C Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | | | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Leela Rizal
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | - Taiga Kasuya
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, Barasat, West Bengal, India
| | | | - Le Thanh Huyen
- Department of Toxicology and Environmental Monitoring, Faculty of Environment, Hanoi University of Natural Resources and Environment, Tu Liem North District, Hanoi, Vietnam
| | - Marilen Parungao Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines, Manila, the Philippines
| | - Gautam Baruah
- Balipara Tract and Frontier Foundation, Guwahati, Assam, India
| | - Sumedha Madawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand.,Mushroom Research Foundation, Chiang Mai, Thailand
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, UK
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Jun Sheng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Eric Boa
- Institute of Biology, University of Aberdeen, Aberdeen, UK
| | - Peter E Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| |
Collapse
|
357
|
Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep 2021; 11:3645. [PMID: 33574436 PMCID: PMC7878899 DOI: 10.1038/s41598-021-83153-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Plants host diverse microbial communities, but there is little consensus on how we sample these communities, and this has unknown consequences. Using root and leaf tissue from showy milkweed (Asclepias speciosa), we compared two common sampling strategies: (1) homogenizing after subsampling (30 mg), and (2) homogenizing bulk tissue before subsampling (30 mg). We targeted bacteria, arbuscular mycorrhizal (AM) fungi and non-AM fungi in roots, and foliar fungal endophytes (FFE) in leaves. We further extracted DNA from all of the leaf tissue collected to determine the extent of undersampling of FFE, and sampled FFE twice across the season using strategy one to assess temporal dynamics. All microbial groups except AM fungi differed in composition between the two sampling strategies. Community overlap increased when rare taxa were removed, but FFE and bacterial communities still differed between strategies, with largely non-overlapping communities within individual plants. Increasing the extraction mass 10 × increased FFE richness ~ 10 ×, confirming the severe undersampling indicated in the sampling comparisons. Still, seasonal patterns in FFEs were apparent, suggesting that strong drivers are identified despite severe undersampling. Our findings highlight that current sampling practices poorly characterize many microbial groups, and increased sampling intensity is necessary for increase reproducibility and to identify subtler patterns in microbial distributions.
Collapse
Affiliation(s)
- Lorinda S Bullington
- MPG Ranch, Missoula, MT, 59801, USA.
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | | |
Collapse
|
358
|
Gómez-Zapata PA, Haelewaters D, Quijada L, Pfister DH, Aime MC. Notes on Trochila (Ascomycota, Leotiomycetes), with new species and combinations. MycoKeys 2021; 78:21-47. [PMID: 36761369 PMCID: PMC9849072 DOI: 10.3897/mycokeys.78.62046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Studies of Trochila (Leotiomycetes, Helotiales, Cenangiaceae) are scarce. Here, we describe two new species based on molecular phylogenetic data and morphology. Trochilabostonensis was collected at the Boston Harbor Islands National Recreation Area, Massachusetts. It was found on the stem of Asclepiassyriaca, representing the first report of any Trochila species from a plant host in the family Apocynaceae. Trochilaurediniophila is associated with the uredinia of the rust fungus Ceroteliumfici. It was discovered during a survey for rust hyperparasites conducted at the Arthur Fungarium, in a single sample from 1912 collected in Trinidad. Macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses are presented. The two new species are placed in Trochila with high support in both our six-locus (SSU, ITS, LSU, rpb1, rpb2, tef1) and two-locus (ITS, LSU) phylogenetic reconstructions. In addition, two species are combined in Trochila: Trochilacolensoi (formerly placed in Pseudopeziza) and T.xishuangbanna (originally described as the only species in Calycellinopsis). This study reveals new host plant families, a new ecological strategy, and a new country record for the genus Trochila. Finally, our work emphasizes the importance of specimens deposited in biological collections such as fungaria.
Collapse
Affiliation(s)
- Paula Andrea Gómez-Zapata
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
| | - Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
- Faculty of Science, University of South Bohemia, České Budějovice, Czech RepublicUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
| | - Donald H. Pfister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAHarvard UniversityCambridgeUnited States of America
- Farlow Herbarium and Reference Library of Cryptogamic Botany, Harvard University Herbaria, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USAHarvard University HerbariaCambridgeUnited States of America
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USAPurdue UniversityWest LafayetteUnited States of America
| |
Collapse
|
359
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
360
|
Mbareche H, Veillette M, Bilodeau GJ. In Silico Study Suggesting the Bias of Primers Choice in the Molecular Identification of Fungal Aerosols. J Fungi (Basel) 2021; 7:jof7020099. [PMID: 33573216 PMCID: PMC7911573 DOI: 10.3390/jof7020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/04/2022] Open
Abstract
This paper presents an in silico analysis to assess the current state of the fungal UNITE database in terms of the two eukaryote nuclear ribosomal regions, Internal Transcribed Spacers 1 and 2 (ITS1 and ITS2), used in describing fungal diversity. Microbial diversity is often evaluated with amplicon-based high-throughput sequencing approaches, which is a target enrichment method that relies on the amplification of a specific target using particular primers before sequencing. Thus, the results are highly dependent on the quality of the primers used for amplification. The goal of this study is to validate if the mismatches of the primers on the binding sites of the targeted taxa could explain the differences observed when using either ITS1 or ITS2 in describing airborne fungal diversity. Hence, the choice of the pairs of primers for each barcode concur with a study comparing the performance of ITS1 and ITS2 in three occupational environments. The sequence length varied between the amplicons retrieved from the UNITE database using the pair of primers targeting ITS1 and ITS2. However, the database contains an equal number of unidentified taxa from ITS1 and ITS2 regions in the six taxonomic levels employed (phylum, class, order, family, genus, species). The chosen ITS primers showed differences in their ability to amplify fungal sequences from the UNITE database. Eleven taxa consisting of Trichocomaceae, Dothioraceae, Botryosphaeriaceae, Mucorales, Saccharomycetes, Pucciniomycetes, Ophiocordyceps, Microsporidia, Archaeorhizomycetes, Mycenaceae, and Tulasnellaceae showed large variations between the two regions. Note that members of the latter taxa are not all typical fungi found in the air. As no universal method is currently available to cover all the fungal kingdom, continuous work in designing primers, and particularly combining multiple primers targeting the ITS region is the best way to compensate for the biases of each one to get a larger view of the fungal diversity.
Collapse
Affiliation(s)
- Hamza Mbareche
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S, Canada
- Correspondence: ; Tel.: +1-418-906-7962
| | - Marc Veillette
- Centre de Recherche de L’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada;
| | - Guillaume J. Bilodeau
- Pathogen Identification Research Lab, Canadian Food Inspection Agency (CFIA), Ottawa, ON K2H 8P9, Canada;
| |
Collapse
|
361
|
Perreau M, Haelewaters D, Tafforeau P. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Sci Rep 2021; 11:2672. [PMID: 33514784 PMCID: PMC7846571 DOI: 10.1038/s41598-020-79481-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
The discovery of a new fossil species of the Caribbeo-Mexican genus Proptomaphaginus (Coleoptera, Leiodidae, Cholevinae) from Dominican amber, associated with a new fossil parasitic fungus in the genus Columnomyces (Ascomycota, Laboulbeniales), triggered an investigation of extant species of Proptomaphaginus and revealed the long-enduring parasitic association between these two genera. This effort resulted in the description of the fossil species †Proptomaphaginus alleni sp. nov., and one fossil and two extant species of Columnomyces, selectively associated with species of Proptomaphaginus: †Columnomyces electri sp. nov. associated with the fossil †Proptomaphaginus alleni in Dominican amber, Columnomyces hispaniolensis sp. nov. with the extant Proptomaphaginus hispaniolensis (endemic of Hispaniola), and Columnomyces peckii sp. nov. with the extant Proptomaphaginus puertoricensis (endemic of Puerto Rico). Based on biogeography, our current understanding is that the Caribbean species of Proptomaphaginus and their parasitic species of Columnomyces have coevolved since the Miocene. This is the first occurrence of such a coevolution between a genus of parasitic fungus and a genus of Coleoptera. The phylogenetic relations among Proptomaphaginus species are also addressed based on a parsimony analysis. Fossil specimens were observed by propagation phase-contrast synchrotron X-ray microtomography (PPC-SRμCT) and extant specimens were obtained through the study of preserved dried, pinned insects, attesting for the importance of (i) technological advancement and (ii) natural history collections in the study of microparasitic relationships.
Collapse
Affiliation(s)
| | - Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic. .,Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
362
|
Camarena-Pozos DA, Flores-Núñez VM, López MG, Partida-Martínez LP. Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environ Microbiol 2021; 23:2215-2229. [PMID: 33432727 DOI: 10.1111/1462-2920.15395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Fungi represent a group of eukaryotic microorganisms that are an important part of the plant microbiome. They produce a vast array of metabolites, including fungal volatile organic compounds (fVOCs). However, the diversity and biological activities of fVOCs emitted by the mycobiota of plants native to arid and semi-arid environments remain under-explored. We characterized the chemical diversity of fVOCs produced by 22 representative members of the microbiome of agaves and cacti using SPME-GC-MS. We further tested the effects of pure compounds on the growth and development of Arabidopsis thaliana and host plants. Members of the Sordariomycetes (nine strains), Eurotiomycetes (three), Dothideomycetes (eight), Saccharomycetes (one) and Mucoromycetes (one) were included in our study. We identified 94 fungal organic volatiles classified into nine chemical classes. Terpenes showed the greatest chemical diversity, followed by alcohols and aliphatic compounds. We discovered that camphene and benzyl benzoate, together with the widely distributed and already tested benzyl alcohol, 2-phenylethyl alcohol and 3-methyl-1-butanol, improved plant growth and development of A. thaliana, Agave tequilana and Agave salmiana. Our studies on the fungal VOCs from desert plants underscore an untapped chemical diversity with promising biotechnological applications.
Collapse
Affiliation(s)
- D A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - V M Flores-Núñez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - M G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - L P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| |
Collapse
|
363
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
364
|
Victorino ÍMM, Voyron S, Caser M, Orgiazzi A, Demasi S, Berruti A, Scariot V, Bianciotto V, Lumini E. Metabarcoding of Soil Fungal Communities Associated with Alpine Field-Grown Saffron ( Crocus sativus L.) Inoculated with AM Fungi. J Fungi (Basel) 2021; 7:45. [PMID: 33445528 PMCID: PMC7826872 DOI: 10.3390/jof7010045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
Soil fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiotic associations with plant roots and act as biofertilizers by enhancing plant nutrients and water uptake. Information about the AMF association with Crocus sativus L. (saffron) and their impact on crop performances and spice quality has been increasing in recent years. Instead, there is still little data on the biodiversity of soil microbial communities associated with this crop in the Alpine environments. The aims of this study were to investigate the fungal communities of two Alpine experimental sites cultivated with saffron, and to rank the relative impact of two AMF inocula, applied to soil as single species (R = Rhizophagus intraradices, C. Walker & A. Schüßler) or a mixture of two species (M = R. intraradices and Funneliformis mosseae, C. Walker & A. Schüßler), on the resident fungal communities which might be influenced in their diversity and composition. We used Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region to characterize the fungal communities associated to Crocus sativus cultivation in two fields, located in the municipalities of Saint Christophe (SC) and Morgex (MG), (Aosta Valley, Italy), treated or not with AMF inocula and sampled for two consecutive years (Y1; Y2). Data analyses consistently indicated that Basidiomycota were particularly abundant in both sites and sampling years (Y1 and Y2). Significant differences in the distribution of fungal taxa assemblages at phylum and class levels between the two sites were also found. The main compositional differences consisted in significant abundance changes of OTUs belonging to Dothideomycetes and Leotiomycetes (Ascomycota), Agaricomycetes and Tremellomycetes (Basidiomycota), Mortierellomycetes and Mucoromycetes. Further differences concerned OTUs, of other classes, significantly represented only in the first or second year of sampling. Concerning Glomeromycota, the most represented genus was Claroideoglomus always detected in both sites and years. Other AMF genera such as Funneliformis, Septoglomus and Microdominikia, were retrieved only in MG site. Results highlighted that neither sites nor inoculation significantly impacted Alpine saffron-field fungal communities; instead, the year of sampling had the most appreciable influence on the resident communities.
Collapse
Affiliation(s)
- Íris Marisa Maxaieie Victorino
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
- Biological Science Department, Science Faculty, Eduardo Mondlane University (UEM), Av. Julius Nyerere nr 3453 Campus Principal, Maputo, Mozambique
| | - Samuele Voyron
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125 Torino, Italy
| | - Matteo Caser
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (M.C.); (S.D.)
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra, VA, Italy;
| | - Sonia Demasi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (M.C.); (S.D.)
| | - Andrea Berruti
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
| | - Valentina Scariot
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (M.C.); (S.D.)
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
| | - Erica Lumini
- Institute for Sustainable Plant Protection, National Research Council (CNR), Viale Mattioli 25, 10125 Torino, Italy; (Í.M.M.V.); (S.V.); (A.B.); (V.S.); (V.B.)
| |
Collapse
|
365
|
Haelewaters D, Blackwell M, Pfister DH. Laboulbeniomycetes: Intimate Fungal Associates of Arthropods. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:257-276. [PMID: 32867528 DOI: 10.1146/annurev-ento-013020-013553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Arthropod-fungus interactions involving the Laboulbeniomycetes have been pondered for several hundred years. Early studies of Laboulbeniomycetes faced several uncertainties. Were they parasitic worms, red algal relatives, or fungi? If they were fungi, to which group did they belong? What was the nature of their interactions with their arthropod hosts? The historical misperceptions resulted from the extraordinary morphological features of these oddly constructed ectoparasitic fungi. More recently, molecular phylogenetic studies, in combination with a better understanding of life histories, have clearly placed these fungi among filamentous Ascomycota (subphylum Pezizomycotina). Species discovery and research on the classification of the group continue today as arthropods, and especially insects, are routinely collected and examined for the presence of Laboulbeniomycetes. Newly armed with molecular methods, mycologists are poisedto use Laboulbeniomycetes-insect associations as models for the study of a variety of basic evolutionary and ecological questions involving host-parasite relationships, modes of nutrient intake, population biology, host specificity, biological control, and invasion biology. Collaboration between mycologists and entomologists is essential to successfully advance knowledge of Laboulbeniomycetes and their intimate association with their hosts.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
- Department of Zoology, University of South Bohemia, 37005 České Budejovice, Czech Republic
- Department of Biology, Research Group Mycology, Ghent University, 9000 Ghent, Belgium
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA;
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
366
|
Kumar S, Singh R, Kamal. Global diversity and distribution of distoseptosporic micromycete <em>Corynespora</em> Güssow (Corynesporascaceae): An updated checklist with current status. STUDIES IN FUNGI 2021. [DOI: 10.48130/sif/6/1/1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
367
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
368
|
Cui Y, Wang Y, Zhang Y, Pang L, Zhou Y, Lin H, Tao Y. Oral Mycobiome Differences in Various Spatial Niches With and Without Severe Early Childhood Caries. Front Pediatr 2021; 9:748656. [PMID: 34869106 PMCID: PMC8634708 DOI: 10.3389/fped.2021.748656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: Severe early childhood caries (S-ECC) is a microbe-mediated disease with tooth hard tissue destruction. However, the role of the fungal community in various ecological niches of deciduous dental caries has not been fully elucidated. This study aimed to analyze the differences of mycobiome in diverse spatial niches with and without S-ECC. Method: A total of 48 samples were obtained from 8 S-ECC children (SE group) and 8 caries-free children (CF group) aged 4-5 years. Unstimulated saliva (S), healthy supragingival plaque (FMIX), mixed plaque from decayed teeth (SMIX) and carious lesion (DMIX) samples were collected. The ITS2 region of the fungi was amplified and sequenced using the Ion S5™XL platform. Results: A total of 281 species were identified. Candida albicans showed relatively higher abundance in S-ECC children, while Alternaria alternata and Bipolaris sorokiniana were more enriched in CF group. In this study, the relative abundance of C. albicans in CF.FMIX (0.4%), SE.FMIX (12.5%), SE.SMIX (24.0%), and SE.DMIX (37.2%) increased successively. Significant differences of fungal species richness and diversity were observed between SE.FMIX-SE.SMIX, SE.FMIX-SE.DMIX (P < 0.05). Conclusions: The diversity of fungal communities in S-ECC children showed significant differences in various spatial niches of primary teeth. The richness of C. albicans was closely related to the caries states and depth, suggesting that it may play a crucial role in caries pathogenicity.
Collapse
Affiliation(s)
- Yuqi Cui
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yinuo Wang
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuwen Zhang
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Liangyue Pang
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhou
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huancai Lin
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ye Tao
- Department of Preventive Dentistry, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
369
|
Sánchez-García M, Ryberg M, Khan FK, Varga T, Nagy LG, Hibbett DS. Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi. Proc Natl Acad Sci U S A 2020; 117:32528-32534. [PMID: 33257574 PMCID: PMC7768725 DOI: 10.1073/pnas.1922539117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With ∼36,000 described species, Agaricomycetes are among the most successful groups of Fungi. Agaricomycetes display great diversity in fruiting body forms and nutritional modes. Most have pileate-stipitate fruiting bodies (with a cap and stalk), but the group also contains crust-like resupinate fungi, polypores, coral fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some Agaricomycetes enter into ectomycorrhizal symbioses with plants, while others are decayers (saprotrophs) or pathogens. We constructed a megaphylogeny of 8,400 species and used it to test the following five hypotheses regarding the evolution of morphological and ecological traits in Agaricomycetes and their impact on diversification: 1) resupinate forms are plesiomorphic, 2) pileate-stipitate forms promote diversification, 3) the evolution of gasteroid forms is irreversible, 4) the ectomycorrhizal (ECM) symbiosis promotes diversification, and 5) the evolution of ECM symbiosis is irreversible. The ancestor of Agaricomycetes was a saprotroph with a resupinate fruiting body. There have been 462 transitions in the examined morphologies, including 123 origins of gasteroid forms. Reversals of gasteroid forms are highly unlikely but cannot be rejected. Pileate-stipitate forms are correlated with elevated diversification rates, suggesting that this morphological trait is a key to the success of Agaricomycetes. ECM symbioses have evolved 36 times in Agaricomycetes, with several transformations to parasitism. Across the entire 8,400-species phylogeny, diversification rates of ectomycorrhizal lineages are no greater than those of saprotrophic lineages. However, some ECM lineages have elevated diversification rates compared to their non-ECM sister clades, suggesting that the evolution of symbioses may act as a key innovation at local phylogenetic scales.
Collapse
Affiliation(s)
- Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA 01610
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Faheema Kalsoom Khan
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Torda Varga
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary
| | | |
Collapse
|
370
|
El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, Puel O, Lorber S. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci 2020; 21:E9462. [PMID: 33322713 PMCID: PMC7763326 DOI: 10.3390/ijms21249462] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Collapse
Affiliation(s)
- Christelle El Hajj Assaf
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Institute for Agricultural and Fisheries Research (ILVO), member of Food2Know, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Chrystian Zetina-Serrano
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Nadia Tahtah
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - André El Khoury
- Centre D’analyse et de Recherche, Unité de Recherche Technologies et Valorisations Agro-Alimentaires, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael, Beirut 1104, Lebanon;
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut 1104, Lebanon;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| | - Sophie Lorber
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (C.E.H.A.); (C.Z.-S.); (N.T.); (I.P.O.); (S.L.)
| |
Collapse
|
371
|
Manganyi MC, Ateba CN. Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms 2020; 8:microorganisms8121934. [PMID: 33291214 PMCID: PMC7762190 DOI: 10.3390/microorganisms8121934] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Over the last century, endophytic fungi have gained tremendous attention due to their ability to produce novel bioactive compounds exhibiting varied biological properties and are, therefore, utilized for medicinal, pharmaceutical, and agricultural applications. Endophytic fungi reside within the plant tissues without showing any disease symptoms, thus supporting the physiological and ecological attributes of the host plant. Ground breaking lead compounds, such as paclitaxel and penicillin, produced by endophytic fungi have paved the way for exploring novel bioactive compounds for commercial usage. Despite this, limited research has been conducted in this valuable and unique niche area. These bioactive compounds belong to various structural groups, including alkaloids, peptides, steroids, terpenoids, phenols, quinones, phenols, and flavonoids. The current review focuses on the significance of endophytic fungi in producing novel bioactive compounds possessing a variety of biological properties that include antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic, antioxidant, immunosuppressant, and anticancer functions. Taking into consideration the portal of this publication, special emphasis is placed on the antimicrobial and antiviral activities of metabolites produced by endophytes against human pathogens. It also highlights the importance of utilization of these compounds as potential treatment agents for serious life-threatening infectious diseases. This is supported by the fact that several findings have indicated that these bioactive compounds may significantly contribute towards the fight against resistant human and plant pathogens, thus motivating the need enhance the search for new, more efficacious and cost-effective antimicrobial drugs.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Microbiology, North West University Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2134
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, Mmabatho, Mafikeng 2735, South Africa;
| |
Collapse
|
372
|
Niu G, Annamalai T, Wang X, Li S, Munga S, Niu G, Tse-Dinh YC, Li J. A diverse global fungal library for drug discovery. PeerJ 2020; 8:e10392. [PMID: 33312768 PMCID: PMC7703384 DOI: 10.7717/peerj.10392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Secondary fungal metabolites are important sources for new drugs against infectious diseases and cancers. METHODS To obtain a library with enough diversity, we collected about 2,395 soil samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America. The collection areas covered various climate zones in the world. We examined the usability of the global fungal extract library (GFEL) against parasitic malaria transmission, Gram-positive and negative bacterial pathogens, and leukemia cells. RESULTS Nearly ten thousand fungal strains were isolated. Sequences of nuclear ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed that over 80% were unique. Screening GFEL, we found that the fungal extract from Penicillium thomii was able to block Plasmodium falciparum transmission to Anopheles gambiae, and the fungal extract from Tolypocladium album was able to kill myelogenous leukemia cell line K562. We also identified a set of candidate fungal extracts against bacterial pathogens.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
| | - Xiaohong Wang
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
| | - Sheng Li
- School of Public Health, City University of New York, NY, United States of America
| | - Stephen Munga
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guomin Niu
- Department of Hematology, Southern Medical University Affiliated Nanhai Hospital, Foshan, Guangdong, China
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| |
Collapse
|
373
|
Michael PJ, Jones D, White N, Hane JK, Bunce M, Gibberd M. Crop-Zone Weed Mycobiomes of the South-Western Australian Grain Belt. Front Microbiol 2020; 11:581592. [PMID: 33324368 PMCID: PMC7721668 DOI: 10.3389/fmicb.2020.581592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/28/2020] [Indexed: 01/16/2023] Open
Abstract
In the absence of a primary crop host, secondary plant hosts may act as a reservoir for fungal plant pathogens of agricultural crops. Secondary hosts may potentially harbor heteroecious biotrophs (e.g., the stripe rust fungus Puccinia striiformis) or other pathogens with broad host ranges. Agricultural grain production tends toward monoculture or a limited number of crop hosts over large regions, and local weeds are a major source of potential secondary hosts. In this study, the fungal phyllospheres of 12 weed species common in the agricultural regions of Western Australia (WA) were compared through high-throughput DNA sequencing. Amplicons of D2 and ITS were sequenced on an Illumina MiSeq system using previously published primers and BLAST outputs analyzed using MEGAN. A heatmap of cumulative presence-absence for fungal taxa was generated, and variance patterns were investigated using principal components analysis (PCA) and canonical correspondence analysis (CCA). We observed the presence of several major international crop pathogens, including basidiomycete rusts of the Puccinia spp., and ascomycete phytopathogens of the Leptosphaeria and Pyrenophora genera. Unrelated to crop production, several endemic pathogen species including those infecting Eucalyptus trees were also observed, which was consistent with local native flora. We also observed that differences in latitude or climate zones appeared to influence the geographic distributions of plant pathogenic species more than the presence of compatible host species, with the exception of Brassicaceae host family. There was an increased proportion of necrotrophic Ascomycete species in warmer and drier regions of central WA, compared to an increased proportion of biotrophic Basidiomycete species in cooler and wetter regions in southern WA.
Collapse
Affiliation(s)
- Pippa J. Michael
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Darcy Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Nicole White
- TRENDLab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Michael Bunce
- TRENDLab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
374
|
Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
375
|
Yadav SK, Ir R, Jeewon R, Doble M, Hyde KD, Kaliappan I, Jeyaraman R, Reddi RN, Krishnan J, Li M, Durairajan SSK. A Mechanistic Review on Medicinal Mushrooms-Derived Bioactive Compounds: Potential Mycotherapy Candidates for Alleviating Neurological Disorders. PLANTA MEDICA 2020; 86:1161-1175. [PMID: 32663897 DOI: 10.1055/a-1177-4834] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
According to the World Health Organization, neurological and neurodegenerative diseases are highly debilitating and pose the greatest threats to public health. Diseases of the nervous system are caused by a particular pathological process that negatively affects the central and peripheral nervous systems. These diseases also lead to the loss of neuronal cell function, which causes alterations in the nervous system structure, resulting in the degeneration or death of nerve cells throughout the body. This causes problems with movement (ataxia) and mental dysfunction (dementia), both of which are commonly observed symptoms in Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. Medicinal mushrooms are higher fungi with nutraceutical properties and are low in calories and fat. They are also a rich source of nutrients and bioactive compounds such as carbohydrates, proteins, fibers, and vitamins that have been used in the treatment of many ailments. Medicinal mushrooms such as Pleurotus giganteus, Ganoderma lucidium, and Hericium erinaceus are commonly produced worldwide for use as health supplements and medicine. Medicinal mushrooms and their extracts have a large number of bioactive compounds, such as polysaccharide β-glucan, or polysaccharide-protein complexes, like lectins, lactones, terpenoids, alkaloids, antibiotics, and metal-chelating agents. This review will focus on the role of the medicinal properties of different medicinal mushrooms that contain bioactive compounds with a protective effect against neuronal dysfunction. This information will facilitate the development of drugs against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sonu Kumar Yadav
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Reshma Ir
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ilango Kaliappan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ravindrian Jeyaraman
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Rambabu N Reddi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Jayalakshmi Krishnan
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Siva Sundara Kumar Durairajan
- Division of Mycobiology and Neurodegenerative Disease Research, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur, India
| |
Collapse
|
376
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
377
|
Metagenomic data reveal diverse fungal and algal communities associated with the lichen symbiosis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00699-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
378
|
Zhou Y, Zou X, Zhi J, Xie J, Jiang T. Fast Recognition of Lecanicillium spp., and Its Virulence Against Frankliniella occidentalis. Front Microbiol 2020; 11:561381. [PMID: 33193147 PMCID: PMC7642397 DOI: 10.3389/fmicb.2020.561381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/01/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Frankliniella occidentalis (Thysanoptera: Thripidae) is a highly rasping-sucking pest of numerous crops. The entomogenous fungi of Lecanicillium spp. are important pathogens of insect pests, and some species have been developed as commercial biopesticides. To explore Lecanicillium spp. resources in the development of more effective F. occidentalis controls, efficient barcode combinations for strain identification were screened from internal transcribed spacers (ITS), SSU, LSU, TEF, RPB1, and RPB2 genes. RESULTS Six genes were used to reconstruct Lecanicillium genus phylogeny. The results showed that ITS, TEF, RPB1, and RPB2 could be used to identify the strains. All phylogenetic trees reconstructed by free combination of these four genes exhibited almost the same topology. Bioassay studies of a purified conidial suspension further confirmed the infection of second-instar nymphs and adult female F. occidentalis by seven Lecanicillium strains. L. attenuatum strain GZUIFR-lun1405 was the most virulent, killing approximately 91.67% F. occidentalis adults and 76.67% nymphs after a 7-day exposure. L. attenuatum strain GZUIFR-lun1405 and L. cauligalbarum strain GZUIFR-ZHJ01 were selected to compare the fungal effects on the number of eggs laid by F. occidentalis. The number of F. occidentalis nymphs significantly decreased when F. occidentalis adults were treated with L. cauligalbarum strain GZUIFR-ZHJ01. CONCLUSIONS The combination of ITS and RPB1 could be used for fast recognition of Lecanicillium spp. This is the first report of the pathogenicity of L. attenuatum, L. cauligalbarum, L araneogenum, and L. aphanocladii against F. occidentalis. Additionally, L. cauligalbarum strain GZUIFR-ZHJ01 caused high F. occidentalis mortality and inhibited the fecundity of the pest.
Collapse
Affiliation(s)
- Yeming Zhou
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, China
| | - Xiao Zou
- Institute of Fungus Resources, Guizhou University, Guiyang, China
| | - Junrui Zhi
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, China
| | - Jiqin Xie
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, China
| | - Tao Jiang
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Guiyang, China
| |
Collapse
|
379
|
Madhani HD. Unbelievable but True: Epigenetics and Chromatin in Fungi. Trends Genet 2020; 37:12-20. [PMID: 33092902 DOI: 10.1016/j.tig.2020.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022]
Abstract
Evolutionary innovations in chromatin biology have been recently discovered through the study of fungi. In Saccharomyces cerevisiae, a prion form of a deacetylase complex assembles over subtelomeric domains that produces a heritable gene expression state that enables resistance to stress. In Candida albicans, stress triggers adaptive chromosome destabilization via erasure a centromeric histone H3, CENP-A; a process that cooperates with a newly evolved H2A variant lacking a mitotic phosphorylation site. Finally, in Cryptococcus neoformans, the loss of a cytosine DNA methyltransferase at least 50 million years ago has enabled the Darwinian evolution of methylation patterns over geological timescales. These studies reveal a remarkable genetic and epigenetic evolutionary plasticity of the chromatin fiber, despite the highly conserved structure of the nucleosome.
Collapse
Affiliation(s)
- Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
380
|
Caceres DH, Mohd Tap R, Alastruey-Izquierdo A, Hagen F. Detection and Control of Fungal Outbreaks. Mycopathologia 2020; 185:741-745. [PMID: 33037965 PMCID: PMC7588372 DOI: 10.1007/s11046-020-00494-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Diego H Caceres
- Mycotic Diseases Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd. NE, Atlanta, GA, 30329, USA.
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| | - Ratna Mohd Tap
- Mycology Laboratory, Institute for Medical Research, National Institute of Health, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China.
| |
Collapse
|
381
|
Mycoenterolobium aquadictyosporium sp. nov. (Pleosporomycetidae, Dothideomycetes) from a freshwater habitat in Thailand. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01609-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
382
|
Wang X, Jia L, Wang M, Yang H, Chen M, Li X, Liu H, Li Q, Liu N. The complete mitochondrial genome of medicinal fungus Taiwanofungus camphoratus reveals gene rearrangements and intron dynamics of Polyporales. Sci Rep 2020; 10:16500. [PMID: 33020532 PMCID: PMC7536210 DOI: 10.1038/s41598-020-73461-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Taiwanofungus camphoratus is a highly valued medicinal mushroom that is endemic to Taiwan, China. In the present study, the mitogenome of T. camphoratus was assembled and compared with other published Polyporales mitogenomes. The T. camphoratus mitogenome was composed of circular DNA molecules, with a total size of 114,922 bp. Genome collinearity analysis revealed large-scale gene rearrangements between the mitogenomes of Polyporales, and T. camphoratus contained a unique gene order. The number and classes of introns were highly variable in 12 Polyporales species we examined, which proved that numerous intron loss or gain events occurred in the evolution of Polyporales. The Ka/Ks values for most core protein coding genes in Polyporales species were less than 1, indicating that these genes were subject to purifying selection. However, the rps3 gene was found under positive or relaxed selection between some Polyporales species. Phylogenetic analysis based on the combined mitochondrial gene set obtained a well-supported topology, and T. camphoratus was identified as a sister species to Laetiporus sulphureus. This study served as the first report on the mitogenome in the Taiwanofungus genus, which will provide a basis for understanding the phylogeny and evolution of this important fungus.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Lihua Jia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingdao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hao Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mingyue Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hanyu Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Na Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
383
|
Cai F, Gao R, Zhao Z, Ding M, Jiang S, Yagtu C, Zhu H, Zhang J, Ebner T, Mayrhofer-Reinhartshuber M, Kainz P, Chenthamara K, Akcapinar GB, Shen Q, Druzhinina IS. Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. THE ISME JOURNAL 2020; 14:2610-2624. [PMID: 32632264 PMCID: PMC7490268 DOI: 10.1038/s41396-020-0709-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Fungal evolutionary biology is impeded by the scarcity of fossils, irregular life cycles, immortality, and frequent asexual reproduction. Simple and diminutive bodies of fungi develop inside a substrate and have exceptional metabolic and ecological plasticity, which hinders species delimitation. However, the unique fungal traits can shed light on evolutionary forces that shape the environmental adaptations of these taxa. Higher filamentous fungi that disperse through aerial spores produce amphiphilic and highly surface-active proteins called hydrophobins (HFBs), which coat spores and mediate environmental interactions. We exploited a library of HFB-deficient mutants for two cryptic species of mycoparasitic and saprotrophic fungi from the genus Trichoderma (Hypocreales) and estimated fungal development, reproductive potential, and stress resistance. HFB4 and HFB10 were found to be relevant for Trichoderma fitness because they could impact the spore-mediated dispersal processes and control other fitness traits. An analysis in silico revealed purifying selection for all cases except for HFB4 from T. harzianum, which evolved under strong positive selection pressure. Interestingly, the deletion of the hfb4 gene in T. harzianum considerably increased its fitness-related traits. Conversely, the deletion of hfb4 in T. guizhouense led to the characteristic phenotypes associated with relatively low fitness. The net contribution of the hfb4 gene to fitness was found to result from evolutionary tradeoffs between individual traits. Our analysis of HFB-dependent fitness traits has provided an evolutionary snapshot of the selective pressures and speciation process in closely related fungal species.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Civan Yagtu
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Hong Zhu
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jian Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Irina S Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria.
| |
Collapse
|
384
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
385
|
Goldman GH. New Opportunities for Modern Fungal Biology. FRONTIERS IN FUNGAL BIOLOGY 2020; 1:596090. [PMID: 37743875 PMCID: PMC10512242 DOI: 10.3389/ffunb.2020.596090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 09/26/2023]
Affiliation(s)
- Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
386
|
Shuhada SN, Salim S, Nobilly F, Lechner AM, Azhar B. Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
387
|
Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S. The numbers of fungi: is the descriptive curve flattening? FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00458-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
388
|
Kramer GJ, Pimentel-Elardo S, Nodwell JR. Dual-PKS Cluster for Biosynthesis of a Light-Induced Secondary Metabolite Found from Genome Sequencing of Hyphodiscus hymeniophilus Fungus. Chembiochem 2020; 21:2116-2120. [PMID: 32314858 PMCID: PMC7496686 DOI: 10.1002/cbic.201900689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/17/2020] [Indexed: 11/15/2022]
Abstract
Filamentous fungi are known producers of important secondary metabolites. In spite of this, the majority of these organisms have not been studied at the genome level, leaving many of the bioactive molecules they produce undiscovered. In this study, we explore the secondary metabolite potential of an understudied fungus, Hyphodiscus hymeniophilus. By sequencing and assembling the first genome from this genus, we show that this fungus has genes for at least 20 natural products and that many of these products are likely novel. One of these metabolites is identified: a new, red-pigmented member of the azaphilone class, hyphodiscorubrin. We show that this metabolite is only produced when the fungus is grown in the light. Furthermore, the biosynthetic gene cluster of hyphodiscorubrin is identified though homology to other known azaphilone producing clusters.
Collapse
Affiliation(s)
- Glenna J Kramer
- Department of Biochemistry, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Sheila Pimentel-Elardo
- Department of Biochemistry, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, MaRS Centre, West Tower, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
389
|
Corlett RT. Safeguarding our future by protecting biodiversity. PLANT DIVERSITY 2020; 42:221-228. [PMID: 32837768 PMCID: PMC7239009 DOI: 10.1016/j.pld.2020.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 06/01/2023]
Abstract
The Anthropocene is marked by twin crises: climate change and biodiversity loss. Climate change has tended to dominate the headlines, reflecting, in part, the greater complexity of the biodiversity crisis. Biodiversity itself is a difficult concept. Land plants dominate the global biomass and terrestrial arthropods probably dominate in terms of numbers of species, but most of the Tree of Life consists of single-celled eukaryotes, bacteria, and archaea. Wild plants provide a huge variety of products and services to people, ranging from those that are species-specific, such as food, medicine, and genetic resources, to many which are partly interchangeable, such as timber and forage for domestic animals, and others which depend on the whole community, but not on individual species, such as regulation of water supply and carbon sequestration. The use of information from remote sensing has encouraged a simplified view of the values of nature's contributions to people, but this does not match the way most people value nature. We can currently estimate the proportion of species threatened by human impacts only for a few well-assessed groups, for which it ranges from 14% (birds) to 63% (cycads). Less than 8% of land plants have been assessed, but it has been estimated that 30-44% are threatened, although there are still few (0.2%) well-documented extinctions. Priorities for improving protection of biodiversity include: improving the inventory, with surveys focused on geographical areas and taxonomic groups which are under-collected; expanding the protected area system and its representativeness; controlling overexploitation; managing invasive species; conserving threatened species ex situ; restoring degraded ecosystems; and controlling climate change. The Convention on Biological Diversity (CBD) COP15 and the United Nations Framework Convention on Climate Change (UNFCCC) COP26 meetings, both postponed to 2021, will provide an opportunity to address both crises, but success will require high ambition from all participants.
Collapse
Affiliation(s)
- Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
390
|
Zanne AE, Powell JR, Flores-Moreno H, Kiers ET, van 't Padje A, Cornwell WK. Finding fungal ecological strategies: Is recycling an option? FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
391
|
Haelewaters D, Kesel AD. Checklist of thallus-forming Laboulbeniomycetes from Belgium and the Netherlands, including Hesperomyces halyziae and Laboulbenia quarantenae spp. nov. MycoKeys 2020; 71:23-86. [PMID: 32831551 PMCID: PMC7410850 DOI: 10.3897/mycokeys.71.53421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 01/14/2023] Open
Abstract
In this paper we present an updated checklist of thallus-forming Laboulbeniomycetes (Ascomycota, Pezizomycotina), that is, the orders Herpomycetales and Laboulbeniales, from Belgium and the Netherlands. Two species are newly described based on morphology, molecular data (ITS, LSU ribosomal DNA) and ecology (host association). These are Hesperomyceshalyziae on Halyziasedecimguttata (Coleoptera, Coccinellidae) from both countries and Laboulbeniaquarantenae on Bembidionbiguttatum (Coleoptera, Carabidae) from Belgium. In addition, nine new country records are presented. For Belgium: Laboulbeniaaubryi on Amaraaranea (Coleoptera, Carabidae) and Rhachomycesspinosus on Syntomusfoveatus (Coleoptera, Carabidae). For the Netherlands: Chitonomycesmelanurus on Laccophilusminutus (Coleoptera, Dytiscidae), Euphoriomycesagathidii on Agathidiumlaevigatum (Coleoptera, Leiodidae), Laboulbeniafasciculata on Omophronlimbatum (Coleoptera, Carabidae), Laboulbeniametableti on Syntomusfoveatus and S.truncatellus (Coleoptera, Carabidae), Laboulbeniapseudomasei on Pterostichusmelanarius (Coleoptera, Carabidae), Rhachomycescanariensis on Trechusobtusus (Coleoptera, Carabidae), and Stigmatomyceshydrelliae on Hydrelliaalbilabris (Diptera, Ephydridae). Finally, an identification key to 140 species of thallus-forming Laboulbeniomycetes in Belgium and the Netherlands is provided. Based on the combined data, we are able to identify mutual gaps that need to be filled as well as weigh the impact of chosen strategies (fieldwork, museum collections) and techniques in these neighboring countries. The aim of this work is to serve as a reference for studying Laboulbeniomycetes fungi in Europe.
Collapse
Affiliation(s)
- Danny Haelewaters
- Purdue University, West Lafayette, Indiana, United States of America Purdue University West Lafayette United States of America.,University of South Bohemia, České Budějovice, Czech Republic University of South Bohemia Budějovice Czech Republic.,Ghent University, Ghent, Belgium Ghent University Ghent Belgium
| | - André De Kesel
- Meise Botanic Garden, Meise, Belgium Meise Botanic Garden Meise Belgium
| |
Collapse
|
392
|
Vu D, Groenewald M, Verkley G. Convolutional neural networks improve fungal classification. Sci Rep 2020; 10:12628. [PMID: 32724224 PMCID: PMC7387343 DOI: 10.1038/s41598-020-69245-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sequence classification plays an important role in metagenomics studies. We assess the deep neural network approach for fungal sequence classification as it has emerged as a successful paradigm for big data classification and clustering. Two deep learning-based classifiers, a convolutional neural network (CNN) and a deep belief network (DBN) were trained using our recently released barcode datasets. Experimental results show that CNN outperformed the traditional BLAST classification and the most accurate machine learning based Ribosomal Database Project (RDP) classifier on datasets that had many of the labels present in the training datasets. When classifying an independent dataset namely the "Top 50 Most Wanted Fungi", CNN and DBN assigned less sequences than BLAST. However, they could assign much more sequences than the RDP classifier. In terms of efficiency, it took the machine learning classifiers up to two seconds to classify a test dataset while it was 53 s for BLAST. The result of the current study will enable us to speed up the taxonomic assignments for the fungal barcode sequences generated at our institute as ~ 70% of them still need to be validated for public release. In addition, it will help to quickly provide a taxonomic profile for metagenomics samples.
Collapse
Affiliation(s)
- Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Gerard Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| |
Collapse
|
393
|
Abstract
Diversity within the fungal kingdom is evident from the wide range of morphologies fungi display as well as the various ecological roles and industrial purposes they serve. Technological advances, particularly in long-read sequencing, coupled with the increasing efficiency and decreasing costs across sequencing platforms have enabled robust characterization of fungal genomes. These sequencing efforts continue to reveal the rampant diversity in fungi at the genome level. Here, we discuss studies that have furthered our understanding of fungal genetic diversity and genomic evolution. These studies revealed the presence of both small-scale and large-scale genomic changes. In fungi, research has recently focused on many small-scale changes, such as how hypermutation and allelic transmission impact genome evolution as well as how and why a few specific genomic regions are more susceptible to rapid evolution than others. High-throughput sequencing of a diverse set of fungal genomes has also illuminated the frequency, mechanisms, and impacts of large-scale changes, which include chromosome structural variation and changes in chromosome number, such as aneuploidy, polyploidy, and the presence of supernumerary chromosomes. The studies discussed herein have provided great insight into how the architecture of the fungal genome varies within species and across the kingdom and how modern fungi may have evolved from the last common fungal ancestor and might also pave the way for understanding how genomic diversity has evolved in all domains of life.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| |
Collapse
|
394
|
|
395
|
Kim SH, Liu C, Zhou Y, Zhang YK, McGregor C, Steere L, Frederick BH, Liu CT, Whitesell L, Cowen LE. Inhibiting Protein Prenylation with Benzoxaboroles to Target Fungal Plant Pathogens. ACS Chem Biol 2020; 15:1930-1941. [PMID: 32573189 DOI: 10.1021/acschembio.0c00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal pathogens pose an increasing threat to global food security through devastating effects on staple crops and contamination of food supplies with carcinogenic toxins. Widespread deployment of agricultural fungicides has increased crop yields but is driving increasingly frequent resistance to available agents and creating environmental reservoirs of drug-resistant fungi that can also infect susceptible human populations. To uncover non-cross-resistant modes of antifungal action, we leveraged the unique chemical properties of boron chemistry to synthesize novel 6-thiocarbamate benzoxaboroles with broad spectrum activity against diverse fungal plant pathogens. Through whole genome sequencing of Saccharomyces cerevisiae isolates selected for stable resistance to these compounds, we identified mutations in the protein prenylation-related genes, CDC43 and ERG20. Allele-swapping experiments confirmed that point mutations in CDC43, which encodes an essential catalytic subunit within geranylgeranyl transferase I (GGTase I) complex, were sufficient to confer resistance to the benzoxaboroles. Mutations in ERG20, which encodes an upstream farnesyl pyrophosphate synthase in the geranylgeranylation pathway, also conferred resistance. Consistent with impairment of protein prenylation, the compounds disrupted membrane localization of the classical geranylgeranylation substrate Cdc42. Guided by molecular docking predictions, which favored Cdc43 as the most likely direct target, we overexpressed and purified functional GGTase I complex to demonstrate direct binding of benzoxaboroles to it and concentration-dependent inhibition of its transferase activity. Further development of the boron-containing scaffold described here offers a promising path to the development of GGTase I inhibitors as a mechanistically distinct broad spectrum fungicide class with reduced potential for cross-resistance to antifungals in current use.
Collapse
Affiliation(s)
- Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Chunliang Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Yasheen Zhou
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Yong-Kang Zhang
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Cari McGregor
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Luke Steere
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Brittany H. Frederick
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - C. Tony Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
396
|
Abstract
In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA;
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science and Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA;
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| |
Collapse
|
397
|
Piepenbring M, Maciá-Vicente JG, Codjia JEI, Glatthorn C, Kirk P, Meswaet Y, Minter D, Olou BA, Reschke K, Schmidt M, Yorou NS. Mapping mycological ignorance - checklists and diversity patterns of fungi known for West Africa. IMA Fungus 2020; 11:13. [PMID: 32699745 PMCID: PMC7341642 DOI: 10.1186/s43008-020-00034-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Scientific information about biodiversity distribution is indispensable for nature conservation and sustainable management of natural resources. For several groups of animals and plants, such data are available, but for fungi, especially in tropical regions like West Africa, they are mostly missing. Here, information for West African countries about species diversity of fungi and fungus-like organisms (other organisms traditionally studied by mycologists) is compiled from literature and analysed in its historical context for the first time. More than 16,000 records of fungi representing 4843 species and infraspecific taxa were found in 860 publications relating to West Africa. Records from the Global Biodiversity Information Facility (GBIF) database (2395 species), and that of the former International Mycological Institute fungal reference collection (IMI) (2526 species) were also considered. The compilation based on literature is more comprehensive than the GBIF and IMI data, although they include 914 and 679 species names, respectively, which are not present in the checklist based on literature. According to data available in literature, knowledge on fungal richness ranges from 19 species (Guinea Bissau) to 1595 (Sierra Leone). In estimating existing species diversity, richness estimators and the Hawksworth 6:1 fungus to plant species ratio were used. Based on the Hawksworth ratio, known fungal diversity in West Africa represents 11.4% of the expected diversity. For six West African countries, however, known fungal species diversity is less than 2%. Incomplete knowledge of fungal diversity is also evident by species accumulation curves not reaching saturation, by 45.3% of the fungal species in the checklist being cited only once for West Africa, and by 66.5% of the fungal species in the checklist reported only for a single country. The documentation of different systematic groups of fungi is very heterogeneous because historically investigations have been sporadic. Recent opportunistic sampling activities in Benin showed that it is not difficult to find specimens representing new country records. Investigation of fungi in West Africa started just over two centuries ago and it is still in an early pioneer phase. To promote proper exploration, the present checklist is provided as a tool to facilitate fungal identification in this region and to aid conceptualisation and justification of future research projects. Documentation of fungal diversity is urgently needed because natural habitats are being lost on a large scale through altered land use and climate change.
Collapse
Affiliation(s)
- Meike Piepenbring
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Jose G. Maciá-Vicente
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Jean Evans I. Codjia
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Carola Glatthorn
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Paul Kirk
- Royal Botanic Garden, Kew, Richmond, Surrey UK
| | - Yalemwork Meswaet
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - David Minter
- CABI International, Bakeham Lane, Egham, Surrey TW20 9TY UK
| | - Boris Armel Olou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
- Department of Ecology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, Germany
| | - Kai Reschke
- Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Marco Schmidt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Palmengarten der Stadt Frankfurt am Main, Siesmayerstr. 61, 60323 Frankfurt am Main, Germany
| | - Nourou Soulemane Yorou
- Research Unit Tropical Mycology and Plant-Soil Fungi Interactions, Faculty of Agronomy, University of Parakou, BP 123 Parakou, Benin
| |
Collapse
|
398
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
399
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
400
|
Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci Rep 2020; 10:9279. [PMID: 32518251 PMCID: PMC7283317 DOI: 10.1038/s41598-020-66127-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Honey bees are large-scale monitoring tools due to their extensive environmental exploration. In their activities and from the hive ecosystem complex, they get in close contact with many organisms whose traces can be transferred into the honey, which can represent an interesting reservoir of environmental DNA (eDNA) signatures and information useful to analyse the honey bee hologenome complexity. In this study, we tested a deep shotgun sequencing approach of honey DNA coupled with a specifically adapted bioinformatic pipeline. This methodology was applied to a few honey samples pointing out DNA sequences from 191 organisms spanning different kingdoms or phyla (viruses, bacteria, plants, fungi, protozoans, arthropods, mammals). Bacteria included the largest number of species. These multi-kingdom signatures listed common hive and honey bee gut microorganisms, honey bee pathogens, parasites and pests, which resembled a complex interplay that might provide a general picture of the honey bee pathosphere. Based on the Apis mellifera filamentous virus genome diversity (the most abundant detected DNA source) we obtained information that could define the origin of the honey at the apiary level. Mining Apis mellifera sequences made it possible to identify the honey bee subspecies both at the mitochondrial and nuclear genome levels.
Collapse
|