351
|
Li H, Gong M, Zhao M, Wang X, Cheng W, Xia Y. LncRNAs KB-1836B5, LINC00566 and FAM27L are associated with the survival time of patients with ovarian cancer. Oncol Lett 2018; 16:3735-3745. [PMID: 30127984 PMCID: PMC6096172 DOI: 10.3892/ol.2018.9143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OvCa) is the most common gynecological malignancy type in the United States in 2014. Functions of long non-coding RNAs (lncRNAs) in OvCa have attracted increasing attention from researchers. The present study aimed to identify an lncRNA-based signature for survival prediction in patients with OvCa. On the basis of lncRNA expression profiles from The Cancer Genome Atlas data portal, differentially expressed lncRNAs (DELs) were selected from patients with good prognosis and poor prognosis in the training set, from which the prognostic lncRNAs were identified using univariate and multivariate Cox regression analyses and used to construct a risk scoring system. The prognostic power of this lncRNA signature was tested in the training set and validated in validation dataset and entire dataset. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the genes significantly associated with ≥1 prognostic lncRNA, and a total of 112 DELs were identified. LncRNAs KB-1836B5, long intergenic non-protein coding RNA 566 (LINC00566) and family with sequence similarity E5 (FAM27L) were determined to be prognostic lncRNAs. A three-lncRNAs signature-based risk scoring system was developed, which classified the patients from the training set into high-risk and low-risk groups with significantly different overall survival time. Risk stratification capability of the three-lncRNAs signature was validated in the validation and entire set. Multivariate Cox regression and data stratification analyses determined that the three-lncRNAs signature was independent of other clinical variables. GO and KEGG pathway enrichment analyses determined that the three prognostic lncRNAs may be involved in a number of metabolic processes and signaling pathways, including the mechanistic target of rapamycin signaling pathway, ubiquitin-mediated proteolysis, and complement and coagulation cascades pathways. In conclusion, the results of the present study demonstrated that the three-lncRNAs signature may be an independent biomarker for predicting prognosis in patients with OvCa.
Collapse
Affiliation(s)
- Huijian Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Mi Gong
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhao
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
352
|
Hu C, Liu S, Han M, Wang Y, Xu C. Knockdown of lncRNA XIST inhibits retinoblastoma progression by modulating the miR-124/STAT3 axis. Biomed Pharmacother 2018; 107:547-554. [PMID: 30114638 DOI: 10.1016/j.biopha.2018.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) was reportedly to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression, biological function, and action mechanisms of XIST in retinoblastoma (RB) are still unknown. Here, we found that XIST expression was upregulated in RB tissues and cell lines, and that increased XIST expression was positively associated with advanced cTNM stage (III-V) and late differentiation status. We also revealed that knockdown of XIST inhibited RB cell proliferation, promoted cell cycle at G1/G0 phase, and induced cell apoptosis. Mechanistically, XIST directly bound to microRNA (miR)-124 in RB cells. XIST mRNA expression was inversely correlated with miR-124 in RB tissues. Importantly, miR-124 inhibition partially reversed the effect on cell proliferation, cycle arrest and apoptosis by XIST knockdown mediated. In addition, XIST could regulate expression of signal transducer and activator of transcription 3(STAT3), a directly target of miR-124 in RB. These findings implied that XIST promoted RB progression partially by modulating the miR-124/STAT3 axis.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Tumor and Hematology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Shu Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Mei Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Yingxue Wang
- Department of Electrical Diagnosis, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China
| | - Chunling Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, 130041, PR China.
| |
Collapse
|
353
|
Wang Y, Zhang R, Cheng G, Xu R, Han X. Long non-coding RNA HOXA-AS2 promotes migration and invasion by acting as a ceRNA of miR-520c-3p in osteosarcoma cells. Cell Cycle 2018; 17:1637-1648. [PMID: 30081707 PMCID: PMC6133314 DOI: 10.1080/15384101.2018.1489174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Osteosarcoma (OS) is the commonest primary malignant tumour originating from bone. Previous studies demonstrated that long non-coding RNAs (lncRNAs) could participate in both oncogenic and tumor suppressing pathways in various cancer, including OS. The HOXA cluster antisense RNA2 (HOXA-AS2) plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in OS progression remains unknown. The aim of the present study was to evaluate the expression and function of HOXA-AS2 in OS. The qRT-PCR analysis was to investigate the expression pattern of HOXA-AS2 in OS tissues. Then, the effects of HOXA-AS2 on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in OS in vitro. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in OS cells. We observed that HOXA-AS2 was up-regulated in OS tissues. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited OS cells proliferation by promoting apoptosis and causing G1 arrest, whereas HOXA-AS2 overexpression promoted cell proliferation. Further functional assays indicated that HOXA-AS2 significantly promoted OS cell migration and invasion by promoting epithelial-mesenchymal transition (EMT). Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3'-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in OS cells. In conclusion, our study suggests that HOXA-AS2 acts as a functional oncogene in OS.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Orthopaedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Orthopaedics, Renji Hospital Southern Division, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Rui Zhang
- Department of Orthopaedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Orthopaedics, Renji Hospital Southern Division, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Guangqi Cheng
- Department of Orthopaedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Orthopaedics, Renji Hospital Southern Division, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Ruida Xu
- Department of Orthopaedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Orthopaedics, Renji Hospital Southern Division, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Xiaofeng Han
- Department of Orthopaedics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Department of Orthopaedics, Renji Hospital Southern Division, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| |
Collapse
|
354
|
Li J, Cui Z, Li H, Lv X, Gao M, Yang Z, Bi Y, Zhang Z, Wang S, Zhou B, Yin Z. Clinicopathological and prognostic significance of long noncoding RNA MALAT1 in human cancers: a review and meta-analysis. Cancer Cell Int 2018; 18:109. [PMID: 30093838 PMCID: PMC6080354 DOI: 10.1186/s12935-018-0606-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background The aberrant regulation of MALAT1 has been indicated to be involved in various carcinogenic pathways contributing to the tumourigenesis and progression of cancers. The current meta-analysis summarized the research advances of MALAT1 functions and analyzed its prognostic value among multiple types of cancers. Methods Eligible studies were identified through retrieving the PubMed, Web of Science, and CNKI databases, up to Mar 1, 2018. 28 studies of 5436 patients and 36 studies of 3325 patients were enrolled in the meta-analysis to evaluate the association of MALAT1 expression with survival outcomes and clinical parameters. Results The results demonstrated that over-expression of MALAT1 may predict lymph node metastasis (pooled OR = 2.335, 95% CI 1.606–3.395, P = 0.000) and distant metastasis (pooled OR = 2.456, 95% CI 1.407–4.286, P = 0.002). Moreover, MALAT1 was also related with tumour size (pooled OR = 1.875, 95% CI 1.257–2.795, P = 0.002) and TNM stage (pooled OR = 2.034, 95% CI 1.111–3.724, P = 0.021). Additionally, elevated MALAT1 expression could predict poor OS (pooled HR = 2.298, 95% CI 1.953–2.704, P = 0.000), DFS (pooled HR = 2.036, 95% CI 1.240–3.342, P = 0.005), RFS (pooled HR = 2.491, 95% CI 1.505–4.123, P = 0.000), DSS (pooled HR = 2.098, 95% CI 1.372–3.211, P = 0.001) and PFS (pooled HR = 1.842, 95% CI 1.138–2.983, P = 0.013) in multivariate model. Importantly, subgroup analyses disclosed that increased MALAT1 expression had a poor OS among different cancer types (Estrogen-dependent cancer: pooled HR = 2.656, 95% CI 1.560–4.523; urological cancer: pooled HR = 1.952, 95% CI 1.189–3.204; glioma: pooled HR = 2.315, 95% CI 1.643–3.263; digestive cancer: pooled HR = 2.451, 95% CI 1.862–3.227). Conclusions The present findings demonstrated that MALAT1 may be a novel biomarker for predicting survival outcome, lymph node metastasis and distant metastasis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0606-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhigang Cui
- 3School of Nursing, China Medical University, Shenyang, 110122 China
| | - Hang Li
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Xiaoting Lv
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Min Gao
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zitai Yang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Yanhong Bi
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Ziwei Zhang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Shengli Wang
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Baosen Zhou
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| | - Zhihua Yin
- 1Department of Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122 People's Republic of China.,2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122 People's Republic of China
| |
Collapse
|
355
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
356
|
Zhou QZ, Fang SM, Zhang Q, Yu QY, Zhang Z. Identification and comparison of long non-coding RNAs in the silk gland between domestic and wild silkworms. INSECT SCIENCE 2018; 25:604-616. [PMID: 28111905 DOI: 10.1111/1744-7917.12443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/03/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Under long-term artificial selection, the domestic silkworm (Bombyx mori) has increased its silk yield tremendously in comparison with its wild progenitor, Bombyx mandarina. However, the molecular mechanism of silk yield increase is still unknown. Comparative analysis of long non-coding RNAs (lncRNAs) may provide some insights into understanding this phenotypic variation. In this study, using RNA sequencing technology data of silk gland in domestic and wild silkworms, we identified 599 lncRNAs in the silk gland of the silkworm. Compared with protein-coding genes, the silk gland lncRNA genes tend to have fewer exon numbers, shorter transcript length and lower GC-content. Moreover, we found that three lncRNA genes are significantly and differentially expressed between domestic and wild silkworms. The potential targets of two differentially expressed lncRNAs (DELs) (dw4sg_0040 and dw4sg_0483) and the expression-correlated genes with the two DELs are mainly enriched in the related processes of silk protein translation. This implies that these DELs may affect the phenotypic variation in silk yield between the domestic and wild silkworms through the post-transcriptional regulation of silk protein.
Collapse
Affiliation(s)
- Qiu-Zhong Zhou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Qiang Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
357
|
Wang F, Tian X, Zhou J, Wang G, Yu W, Li Z, Fan Z, Zhang W, Liang A. A three‑lncRNA signature for prognosis prediction of acute myeloid leukemia in patients. Mol Med Rep 2018; 18:1473-1484. [PMID: 29901168 PMCID: PMC6072220 DOI: 10.3892/mmr.2018.9139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/24/2018] [Indexed: 01/31/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts characterized by >200 nucleotides, without validated protein production. Previous studies have demonstrated that certain lncRNAs have a critical role in the initiation and development of acute myeloid leukemia (AML). In the present study, the subtype‑specific lncRNAs in AML was identified. Following the exclusion of the subtype‑specific lncRNAs, the prognostic value of lncRNAs was investigated and a three‑lncRNA expression‑based risk score [long intergenic non‑protein coding RNA 926, family with sequence similarity 30 member A and LRRC75A antisense RNA 1 (LRRC75A‑AS1)] was developed for AML patient prognosis prediction by analyzing the RNA‑seq data of AML patients from Therapeutically Available Research to Generate Effective Treatments (TARGET) and The Cancer Genome Atlas (TCGA) projects. In the training set obtained from TARGET, patients were divided into poor and favorable prognosis groups by the median risk score. The prognostic effectiveness of this lncRNA risk score was confirmed in the validation set obtained from TCGA by the same cut‑off. Furthermore, the lncRNA risk score was identified as an independent prognostic factor in the multivariate analysis. As further verification of the independent prognostic power of the lncRNA risk score, stratified analysis was performed by a cytogenetics risk group and revealed a consistent result. The prognostic predictive ability of the risk score was compared with the cytogenetics risk group by time‑dependent receiver operating characteristic curves analysis. It was revealed that the combination of the lncRNA risk score and cytogenetics risk group provided a higher prognostic value than a single prognostic factor. The present study also performed co‑expression analysis to predict the potential regulatory mechanisms of these lncRNAs in a cis/trans/competing endogenous RNA manner. The results suggested that LRRC75A‑AS1 was highly associated with the target genes of transcription factors tumor protein 53 and ETS variant 6. Overall, these results highlighted the use of the three‑lncRNA expression‑based risk score as a potential molecular biomarker to predict the prognosis in AML patients.
Collapse
MESH Headings
- Atlases as Topic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Karyotyping
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Multivariate Analysis
- Prognosis
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Risk
- Signal Transduction
- Survival Analysis
- Transcriptome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Fangce Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
358
|
Cai W, Li C, Liu S, Zhou C, Yin H, Song J, Zhang Q, Zhang S. Genome Wide Identification of Novel Long Non-coding RNAs and Their Potential Associations With Milk Proteins in Chinese Holstein Cows. Front Genet 2018; 9:281. [PMID: 30105049 PMCID: PMC6077245 DOI: 10.3389/fgene.2018.00281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in various biological processes. However, their role in milk performance is unknown. Here, whole transcriptome RNA sequencing was used to generate the lncRNA transcriptome profiles in mammary tissue samples from 6 Chinese Holstein cows with 3 extremely high and 3 low milk protein percentage phenotypes. In this study, 6,450 lncRNA transcripts were identified through 5 stringent steps and filtration by coding potential. In total, 31 lncRNAs and 18 novel genes were identified to be differentially expressed in high milk protein samples (HP) relative to low milk protein samples (LP), respectively. Differentially expressed lncRNAs were selected to predict target genes through bioinformatics analysis, followed by the integration of differentially expressed mRNA data, gene function, gene ontology (GO) and pathway, genome wide association study (GWAS) and quantitative trait locus (QTL) information, as well as network analysis to further characterize potential interactions. Several lncRNAs were found (such as XLOC_059976) that could be used as candidate markers for milk protein content prediction. This is the first study to perform global expression profiling of lncRNAs and mRNAs related to milk protein traits in dairy cows. These results provide important information and insights into the synthesis of milk proteins, and potential targets for the future improvement of milk quality.
Collapse
Affiliation(s)
- Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
359
|
Chan SN, Low END, Raja Ali RA, Mokhtar NM. Delineating inflammatory bowel disease through transcriptomic studies: current review of progress and evidence. Intest Res 2018; 16:374-383. [PMID: 30090036 PMCID: PMC6077315 DOI: 10.5217/ir.2018.16.3.374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), which comprises of Crohn's disease and ulcerative colitis, is an idiopathic relapsing and remitting disease in which the interplay of different environment, microbial, immunological and genetic factors that attribute to the progression of the disease. Numerous studies have been conducted in multiple aspects including clinical, endoscopy and histopathology for the diagnostics and treatment of IBD. However, the molecular mechanism underlying the aetiology and pathogenesis of IBD is still poorly understood. This review tries to critically assess the scientific evidence at the transcriptomic level as it would help in the discovery of RNA molecules in tissues or serum between the healthy and diseased or different IBD subtypes. These molecular signatures could potentially serve as a reliable diagnostic or prognostic biomarker. Researchers have also embarked on the study of transcriptome to be utilized in targeted therapy. We focus on the evaluation and discussion related to the publications reporting the different approaches and techniques used in investigating the transcriptomic changes in IBD with the intention to offer new perspectives to the landscape of the disease.
Collapse
Affiliation(s)
- Seow-Neng Chan
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Eden Ngah Den Low
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
360
|
Li Y, Yang N, Zhou X, Bian X, Qiu G, Zhang M, Lin H, Li D. LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human thoracic aortic dissection. Mol Med Rep 2018; 18:3167-3176. [PMID: 30066903 PMCID: PMC6102671 DOI: 10.3892/mmr.2018.9308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to determine the potential core genes in the pathogenesis of human thoracic aortic dissection (TAD) by analyzing microarray profiles of long non‑coding (lnc)‑RNAs between TAD and normal thoracic aorta (NTA). The differentially expressed lncRNA profiles of the aorta tissues between TAD patients (TAD group, n=6) and age‑matched donors with aortic diseases (NTA group, n=6) were analyzed by lncRNAs microarray. Gene ontology (GO), pathway and network analyses were used to further investigate candidate lncRNAs and mRNAs. Differentially expressed lncRNAs and mRNAs were validated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In total, the present study identified 765 lncRNAs and 619 mRNAs with differential expression between TAD and NTA (fold change >2.0, P<0.01). GO analysis demonstrated that the differentially upregulated lncRNAs are associated with cell differentiation, homeostasis, cell growth and angiogenesis. Kyoto Encyclopedia of Gene and Genomes pathway analysis demonstrated that the differentially downregulated lncRNAs are mainly associated with arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy and dilated cardiomyopathy. To reduce the lncRNAs for further investigation and to enrich those potentially involved in TAD, a total of 16 candidate lncRNAs with a significant expression (fold change >4, P<0.01) were selected, that were associated with an annotated protein‑coding gene through the GO term and scientific literatures. Then a set of significantly expressed lncRNAs [purinergic receptor P2X7 (P2RX7), hypoxia inducing factor (HIF)‑1A‑AS2, AX746823, RP11‑69I8.3 and RP11‑536K7.5) and the corresponding mRNAs (P2RX7, cyclin dependent kinase inhibitor 2B, HIF‑1A, runt‑related transcription factor 1, connective tissue growth factor and interleukin 2 receptor a chain] were confirmed using RT‑qPCR. The present study revealed that the expression profiles of lncRNAs and mRNAs in aorta tissues from TAD were significantly altered. These results may provide important insights into the pathogenesis of TAD disease.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Nan Yang
- Department of Stomatology, PLA 309th Hospital, Beijing 100091, P.R. China
| | - Xianbao Zhou
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Xuezhi Bian
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Genqiang Qiu
- Department of General Surgery, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Mo Zhang
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Huagang Lin
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| | - Dingfeng Li
- Department of Orthopedics, Beijing Yuho Rehabilitation Hospital of Integrated Chinese and Western Medicine, Beijing 100039, P.R. China
| |
Collapse
|
361
|
Knauss JL, Miao N, Kim SN, Nie Y, Shi Y, Wu T, Pinto HB, Donohoe ME, Sun T. Long noncoding RNA Sox2ot and transcription factor YY1 co-regulate the differentiation of cortical neural progenitors by repressing Sox2. Cell Death Dis 2018; 9:799. [PMID: 30038234 PMCID: PMC6056501 DOI: 10.1038/s41419-018-0840-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key regulators of crucial cellular processes. However, the molecular mechanisms of many lncRNA functions remain uncharacterized. Sox2ot is an evolutionarily conserved lncRNA that transcriptionally overlaps the pluripotency gene Sox2, which maintains the stemness of embryonic stem cells and tissue-specific stem cells. Here, we show that Sox2ot is expressed in the developing mouse cerebral cortex, where it represses neural progenitor (NP) proliferation and promotes neuronal differentiation. Sox2ot negatively regulates self-renewal of neural stem cells, and is predominately expressed in the nucleus and inhibits Sox2 levels. Sox2ot forms a physical interaction with a multifunctional transcriptional regulator YY1, which binds several CpG islands in the Sox2 locus in a Sox2ot-dependent manner. Similar to Sox2ot, YY1 represses NP expansion in vivo. These results demonstrate a regulatory role of Sox2ot in promoting cortical neurogenesis, possibly by repressing Sox2 expression in NPs, through interacting with YY1.
Collapse
Affiliation(s)
- Jennifer L Knauss
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China, 361021
| | - Seung-Nam Kim
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA
- College of Korean Medicine, Dongguk University, Ilsandonggu, Goyangsi, 10326, Gyeonggido, Korea
| | - Yanzhen Nie
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China, 200240
| | - Yuelin Shi
- School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China, 200240
| | - Tao Wu
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
- Department of Neuroscience, Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Hugo Borges Pinto
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
- Department of Neuroscience, Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
- Department of Neuroscience, Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Tao Sun
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China, 361021.
| |
Collapse
|
362
|
Stojic L, Lun AT, Mangei J, Mascalchi P, Quarantotti V, Barr AR, Bakal C, Marioni JC, Gergely F, Odom DT. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res 2018; 46:5950-5966. [PMID: 29860520 PMCID: PMC6093183 DOI: 10.1093/nar/gky437] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
363
|
A current view on long noncoding RNAs in yeast and filamentous fungi. Appl Microbiol Biotechnol 2018; 102:7319-7331. [PMID: 29974182 PMCID: PMC6097775 DOI: 10.1007/s00253-018-9187-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial players in epigenetic regulation. They were initially discovered in human, yet they emerged as common factors involved in a number of central cellular processes in several eukaryotes. For example, in the past decade, research on lncRNAs in yeast has steadily increased. Several examples of lncRNAs were described in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Also, screenings for lncRNAs in ascomycetes were performed and, just recently, the first full characterization of a lncRNA was performed in the filamentous fungus Trichoderma reesei. In this review, we provide a broad overview about currently known fugal lncRNAs. We make an attempt to categorize them according to their functional context, regulatory strategies or special properties. Moreover, the potential of lncRNAs as a biotechnological tool is discussed.
Collapse
|
364
|
Long non-coding RNA FEZF1-AS1 promotes cell invasion and epithelial-mesenchymal transition through JAK2/STAT3 signaling pathway in human hepatocellular carcinoma. Biomed Pharmacother 2018; 106:134-141. [PMID: 29957463 DOI: 10.1016/j.biopha.2018.05.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as key regulators in the development of hepatocellular carcinoma (HCC). In the present study, we explored the expression profile and biological role of lncRNA FEZF1-AS1 in HCC. We observed remarkable upregulation of FEZF1-AS1 in HCC tissues and cell lines, and high FEZF1-AS1 expression was correlated with aggressive phenotypes and poor prognosis of HCC patients. Furthermore, we found that FEZF1-AS1 knockdown markedly inhibited the proliferation of HCC cells by inducing cell cycle arrest. In addition, FEZF1-AS1 knockdown suppressed HCC tumor growth in vivo. Moreover, FEZF1-AS1 knockdown inhibited the migration and invasion of HCC cells through suppression of JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT). In conclusion, the present study for the first time demonstrated that FEZF1-AS1 serves as an oncogenic lncRNA in human HCC and implicated FEZF1-AS1 as a valuable therapeutic target for HCC treatment.
Collapse
|
365
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
366
|
Vieira AS, Dogini DB, Lopes-Cendes I. Role of non-coding RNAs in non-aging-related neurological disorders. ACTA ACUST UNITED AC 2018; 51:e7566. [PMID: 29898036 PMCID: PMC6002137 DOI: 10.1590/1414-431x20187566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Protein coding sequences represent only 2% of the human genome. Recent advances
have demonstrated that a significant portion of the genome is actively
transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as
key players in the regulation of biological processes, and act as "fine-tuners"
of gene expression. Neurological disorders are caused by a wide range of genetic
mutations, epigenetic and environmental factors, and the exact pathophysiology
of many of these conditions is still unknown. It is currently recognized that
dysregulations in the expression of non-coding RNAs are present in many
neurological disorders and may be relevant in the mechanisms leading to disease.
In addition, circulating non-coding RNAs are emerging as potential biomarkers
with great potential impact in clinical practice. In this review, we discuss
mainly the role of microRNAs and long non-coding RNAs in several neurological
disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia,
spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In
addition, we give information about the conditions where microRNAs have
demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.
Collapse
Affiliation(s)
- A S Vieira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| | - D B Dogini
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| | - I Lopes-Cendes
- Departamento de Genética Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Instituto Brasileiro de Neurociência e Neurotecnologia, Campinas, SP, Brasil
| |
Collapse
|
367
|
Vito D, Smales CM. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions. Biotechnol J 2018; 13:e1800122. [PMID: 29781203 DOI: 10.1002/biot.201800122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The role of non-coding RNAs in determining growth, productivity, and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). The authors have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. The authors report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. The authors demonstrate that the mouse microarray is suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. The authors then further analyzed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. The authors discuss the implications for the publication of this rich dataset and how this may be used by the community.
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
368
|
Nie Y, Li S, Zheng X, Chen W, Li X, Liu Z, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C. Transcriptome Reveals Long Non-coding RNAs and mRNAs Involved in Primary Wool Follicle Induction in Carpet Sheep Fetal Skin. Front Physiol 2018; 9:446. [PMID: 29867522 PMCID: PMC5968378 DOI: 10.3389/fphys.2018.00446] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/10/2018] [Indexed: 11/23/2022] Open
Abstract
Murine primary hair follicle induction is driven by the communication between the mesenchyme and epithelium and mostly governed by signaling pathways including wingless-related integration site (WNT), ectodysplasin A receptor (EDAR), bone morphogenetic protein (BMP), and fibroblast growth factor (FGF), as observed in genetically modified mouse models. Sheep skin may serve as a valuable system for hair research owing to the co-existence of sweat glands with wool follicles in trunk skin and asynchronized wool follicle growth pattern similar to that of human head hair follicles. However, the mechanisms underlying wool follicle development remain largely unknown. To understand how long non-coding RNAs (lncRNAs) and mRNAs function in primary wool follicle induction in carpet wool sheep, we conducted high-throughput RNA sequencing and revealed globally altered lncRNAs (36 upregulated and 26 downregulated), mRNAs (228 elevated and 225 decreased), and 80 differentially expressed novel transcripts. Several key signals in WNT (WNT2B and WNT16), BMP (BMP3, BMP4, and BMP7), EDAR (EDAR and EDARADD), and FGF (FGFR2 and FGF20) pathways, and a series of lncRNAs, including XLOC_539599, XLOC_556463, XLOC_015081, XLOC_1285606, XLOC_297809, and XLOC_764219, were shown to be potentially important for primary wool follicle induction. GO and KEGG analyses of differentially expressed mRNAs and potential targets of altered lncRNAs were both significantly enriched in morphogenesis biological processes and transforming growth factor-β, Hedgehog, and PI3K-Akt signaling, as well as focal adhesion and extracellular matrix-receptor interactions. The prediction of mRNA-mRNA and lncRNA-mRNA interaction networks further revealed transcripts potentially involved in primary wool follicle induction. The expression patterns of mRNAs and lncRNAs of interest were validated by qRT-PCR. The localization of XLOC_297809 and XLOC_764219 both in placodes and dermal condensations was detected by in situ hybridization, indicating important roles of lncRNAs in primary wool follicle induction and skin development. This is the first report elucidating the gene network of lncRNAs and mRNAs associated with primary wool follicle early development in carpet wool sheep and will shed new light on selective wool sheep breeding.
Collapse
Affiliation(s)
- Yangfan Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaomei Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - XinTing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenshuo Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueer Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Haisheng Qiao
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai, China
| | - Quanqing Qi
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Quanbang Pei
- Sanjiaocheng Sheep Breeding Farm, Qinghai, China
| | - Danzhuoma Cai
- Animal Husbandry and Veterinary Station, Qinghai, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyan Mou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
369
|
Targeting the IGF1R Pathway in Breast Cancer Using Antisense lncRNA-Mediated Promoter cis Competition. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:105-117. [PMID: 30195750 PMCID: PMC6023958 DOI: 10.1016/j.omtn.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Aberrant insulin-like growth factor I receptor (IGF1R) signaling pathway serves as a well-established target for cancer drug therapy. The intragenic antisense long noncoding RNA (lncRNA) IRAIN, a putative tumor suppressor, is downregulated in breast cancer cells, while IGF1R is overexpressed, leading to an abnormal IGF1R/IRAIN ratio that promotes tumor growth. To precisely target this pathway, we developed an “antisense lncRNA-mediated intragenic cis competition” (ALIC) approach to therapeutically correct the elevated IGF1R/IRAIN bias in breast cancer cells. We used CRISPR-Cas9 gene editing to target the weak promoter of IRAIN antisense lncRNA and showed that in targeted clones, intragenic activation of the antisense lncRNA potently competed in cis with the promoter of the IGF1R sense mRNA. Notably, the normalization of IGF1R/IRAIN transcription inhibited the IGF1R signaling pathway in breast cancer cells, decreasing cell proliferation, tumor sphere formation, migration, and invasion. Using “nuclear RNA reverse transcription-associated trap” sequencing, we uncovered an IRAIN lncRNA-specific interactome containing gene targets involved in cell metastasis, signaling pathways, and cell immortalization. These data suggest that aberrantly upregulated IGF1R in breast cancer cells can be precisely targeted by cis transcription competition, thus providing a useful strategy to target disease genes in the development of novel precision medicine therapies.
Collapse
|
370
|
Pang W, Lian FZ, Leng X, Wang SM, Li YB, Wang ZY, Li KR, Gao ZX, Jiang YG. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15006-15018. [PMID: 29552716 DOI: 10.1007/s11356-018-1678-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.
Collapse
Affiliation(s)
- Wei Pang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Fu-Zhi Lian
- Department of Preventive Medicine, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xue Leng
- Tianjin Institute of Medical Equipment, Tianjin, 300161, China
| | - Shu-Min Wang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Yi-Bo Li
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Zi-Yu Wang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China
| | - Kai-Ren Li
- Tianjin Institute of Medical Equipment, Tianjin, 300161, China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China.
| | - Yu-Gang Jiang
- Institute of Environmental and Operational Medicine, Da Li Dao, Tianjin, 300050, China.
| |
Collapse
|
371
|
Fan Q, Liu B. Comprehensive analysis of a long noncoding RNA-associated competing endogenous RNA network in colorectal cancer. Onco Targets Ther 2018; 11:2453-2466. [PMID: 29760555 PMCID: PMC5937496 DOI: 10.2147/ott.s158309] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose This study was aimed to develop a lncRNA-associated competing endogenous RNA (ceRNA) network to provide further understanding of the ceRNA regulatory mechanism and pathogenesis in colorectal cancer (CRC). Patients and methods Expression profiles of mRNAs, lncRNAs, and miRNAs, and clinical information for CRC patients were obtained from The Cancer Genome Atlas. The differentially expressed mRNAs, lncRNAs, and miRNAs (referred to as “DEmRNAs”, “DElncRNAs”, and “DEmiRNAs”, respectively) were screened out between 539 CRC samples and 11 normal samples. The interactions between DElncRNAs and DEmiRNAs were predicted by miRcode. The DEmRNAs targeted by the DEmiRNAs were retrieved according to TargetScan, miRTar-Base, and miRDB. The lncRNA–miRNA–mRNA ceRNA network was constructed based on the DEmiRNA–DElncRNA and DEmiRNA–DEmRNA interactions. Functional enrichment analysis revealed the biological processes and pathways of DEmRNAs involved in the development of CRC. Key lncRNAs were further analyzed for their associations with overall survival and clinical features of CRC patients. Results A total of 1,767 DEmRNAs, 608 DElncRNAs, and 283 DEmiRNAs were identified as CRC-specific RNAs. Three hundred eighty-two DEmiRNA–DElncRNA interactions and 68 DEmiRNA–DEmRNA interactions were recognized according to the relevant databases. The lncRNA–miRNA–mRNA ceRNA network was constructed using 25 DEmiRNAs, 52 DEmRNAs, and 64 DElncRNAs. Two DElncRNAs, five DEmiRNAs, and six DEmRNAs were demonstrated to be related to the prognosis of CRC patients. Four DElncRNAs were found to be associated with clinical features. Twenty-eight Gene Ontology terms and 10 Kyoto Encyclopedia of Genes and Genomes pathways were found to be significantly enriched by the DEmRNAs in the ceRNA network. Conclusion Our results showed cancer-specific mRNA, lncRNA, and miRNA expression patterns and enabled us to construct an lncRNA-associated ceRNA network that provided new insights into the molecular mechanisms of CRC. Key RNA transcripts related to the overall survival and clinical features were also found with promising potential as biomarkers for diagnosis, survival prediction, and classification of CRC.
Collapse
Affiliation(s)
- Qiaowei Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Bingrong Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
372
|
Biswas S, Thomas AA, Chen S, Aref-Eshghi E, Feng B, Gonder J, Sadikovic B, Chakrabarti S. MALAT1: An Epigenetic Regulator of Inflammation in Diabetic Retinopathy. Sci Rep 2018; 8:6526. [PMID: 29695738 PMCID: PMC5916949 DOI: 10.1038/s41598-018-24907-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Despite possessing limited protein-coding potential, long non-coding RNAs (lncRNAs) have been implicated in a myriad of pathologic conditions. Most well documented in cancer, one prominent intergenic lncRNA known as MALAT1 is notorious for its role in impacting epigenetic mechanisms. In this study, we established a novel epigenetic paradigm for MALAT in diabetic retinopathy (DR) by employing siRNA-mediated MALAT1 knockdown in human retinal endothelial cells (HRECs), a Malat1 knockout animal model, vitreous humor from diabetic patients, pharmacological inhibitors for histone and DNA methylation, RNA immunoprecipitation, western blotting, and a unique DNA methylation array to determine glucose-related alterations in MALAT1. Our findings indicated that MALAT1 is capable of impacting the expressions of inflammatory transcripts through its association with components of the PRC2 complex in diabetes. Furthermore, the vitreous humors from diabetic patients revealed increased expressions of MALAT1, TNF-α, and IL-6. Intriguingly, our DNA methylation array demonstrated that transient high glucose exposure in HRECs does not contribute to significant methylation alterations at CpG sites across the MALAT1 gene. However, global inhibition of DNA methyltransferases induced significant increases in MALAT1 and associated inflammatory transcripts in HRECs. Our findings collectively demonstrate the importance of MALAT1 in inflammation and epigenetic regulation in DR.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Anu Alice Thomas
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - John Gonder
- Department of Ophthalmology, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
373
|
Identification of novel long non-coding RNA biomarkers for prognosis prediction of papillary thyroid cancer. Oncotarget 2018; 8:46136-46144. [PMID: 28545026 PMCID: PMC5542255 DOI: 10.18632/oncotarget.17556] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/28/2017] [Indexed: 01/03/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most frequent type of malignant thyroid tumor. Several lncRNA signatures have been established for prognosis prediction in some cancers. However, the prognostic value of lncRNAs has not been investigated in PTC yet. In this study, we performed genome-wide analysis of lncRNA expression profiles in a large cohort of PTC patients from The Cancer Genome Atlas and identified 111 differentially expressed lncRNAs between tumor and non-tumor samples and between recurrent and recurrence-free samples. From the 111 differentially expressed lncRNAs, four independent lncRNA biomarkers associated with prognosis were identified and were integrated into a four-lncRNA signature which classified the patients of training dataset into the high-risk group and low-risk group with significantly different overall survival (p=0.016, log-rank test). The prognostic value of the four-lncRNA signature was validated in the independent testing dataset. Multivariate analysis indicated that the four-lncRNA signature was an independent prognostic predictor. Moreover, identified four lncRNA biomarkers demonstrates good performance in predicting disease recurrence with AUC of 0.833 using leave one out cross-validation. Our study not only highlighted the potential role for lncRNAs to improve clinical prognosis prediction in patients with PTC and but also provided alternative biomarkers and therapeutic targets for PTC patients.
Collapse
|
374
|
Li S, Mei Z, Hu H, Zhang X. The lncRNA MALAT1 contributes to non‐small cell lung cancer development via modulating miR‐124/STAT3 axis. J Cell Physiol 2018; 233:6679-6688. [DOI: 10.1002/jcp.26325] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Sen Li
- Department of Spinal Surgery, Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zhoufang Mei
- Department of Respiratory, The Fifth People's Hospital of ShanghaiFudan universityShanghaiChina
| | - Hai‐Bo Hu
- Department of Thoracic SurgeryHuai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Xin Zhang
- Department of Medical ImagingThe Fourth People's Hospital of Huai'anHuai'anChina
| |
Collapse
|
375
|
Felley-Bosco E, Rehrauer H. Non-Coding Transcript Heterogeneity in Mesothelioma: Insights from Asbestos-Exposed Mice. Int J Mol Sci 2018; 19:ijms19041163. [PMID: 29641489 PMCID: PMC5979355 DOI: 10.3390/ijms19041163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mesothelioma is an aggressive, rapidly fatal cancer and a better understanding of its molecular heterogeneity may help with making more efficient therapeutic strategies. Non-coding RNAs represent a larger part of the transcriptome but their contribution to diseases is not fully understood yet. We used recently obtained RNA-seq data from asbestos-exposed mice and performed data mining of publicly available datasets in order to evaluate how non-coding RNA contribute to mesothelioma heterogeneity. Nine non-coding RNAs are specifically elevated in mesothelioma tumors and contribute to human mesothelioma heterogeneity. Because some of them have known oncogenic properties, this study supports the concept of non-coding RNAs as cancer progenitor genes.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zürich, Switzerland.
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
376
|
Pan J, Tong S, Tang J. LncRNA expression profiles in HBV-transformed human hepatocellular carcinoma cells treated with a novel inhibitor of human La protein. J Viral Hepat 2018; 25:391-400. [PMID: 29091324 DOI: 10.1111/jvh.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022]
Abstract
We previously identified a novel inhibitor of La protein, H11, which inhibited hepatitis B virus (HBV) replication by inhibiting the interaction between La protein and HBV RNA. However, the other cellular factors involved in this process remain unclear. To investigate the mechanism of H11-mediated inhibition of HBV infection, a lncRNA microarray analysis was performed using H11-treated and untreated stable HBV-expressing human hepatoblastoma HepG2.2.15 cells. The profiles of differentially expressed lncRNAs and mRNAs were generated and analysed using Gene Ontology (GO) and pathway analyses. The microarray data showed that 61 lncRNAs were upregulated, 74 lncRNAs were downregulated, 43 mRNAs were upregulated, and 44 mRNAs were downregulated in H11 treatment group when compared with the control group, and these results were consistent with qRT-PCR expression data. Bioinformatic analysis indicated that the differentially expressed lncRNAs were involved in RNA-mediated post-transcriptional gene silencing, regulation of viral genome replication and Jak-STAT signalling and apoptosis pathways. GO analysis showed that differentially expressed mRNAs were enriched in negative regulation of the Wnt signalling pathway and negative regulation of growth. Pathways analysis indicated that the differentially expressed mRNAs were involved in regulation of nuclear β-catenin signalling and target gene transcription, as direct p53 effectors, and in the peroxisome proliferator-activated receptors signalling and peroxisome pathways. Microarray data and qRT-PCR results indicated that H11 mediates inhibition of HBV replication by regulating the Wnt, β-catenin and PPAR signalling pathways.
Collapse
Affiliation(s)
- J Pan
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Tong
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Tang
- Department of Pharmacy, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
377
|
Bao MH, Li GY, Huang XS, Tang L, Dong LP, Li JM. Long Noncoding RNA LINC00657 Acting as a miR-590-3p Sponge to Facilitate Low Concentration Oxidized Low-Density Lipoprotein-Induced Angiogenesis. Mol Pharmacol 2018; 93:368-375. [PMID: 29436491 DOI: 10.1124/mol.117.110650] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/29/2018] [Indexed: 02/14/2025] Open
Abstract
Angiogenesis in atherosclerotic plaque promotes plaque growth, causes plaque hemorrhage, and violates plaque stability. LINC00657 is a long noncoding RNA highly conserved and abundantly expressed in vascular endothelial cells. The present study was designed to investigate the effects and mechanisms of LINC00675 on low concentrations of oxidized low-density lipoprotein (oxLDL)-induced angiogenesis. Cell proliferation, transwell, wound healing, and tube formation assays were conducted to detect the effects of low concentrations of oxLDL on angiogenesis; the results discovered that oxLDL promoted cell proliferation, migration, and tube formation. oxLDL also upregulated LINC00657 expression. Inhibition of LINC00657 by siRNA significantly suppressed oxLDL-induced endothelial cell proliferation, migration, and tube formation. Bioinformatic assay indicated six binding sites in the LINC00657 sequence to miR-590-3p. The upregulation of LINC00657 was related to the downregulation of miR-590-3p in oxLDL-treated endothelial cells; while downregulation of LINC00657 resulted in upregulation of miR-590-3p. The antiangiogenesis effects of si-LINC00657 were partly abrogated by miR-590-3p inhibitor. Further dual-luciferase assay found miR-590-3p inhibited the expression of hypoxia-inducible factor 1α (HIF-1α) by binding to the position of 689-696 in HIF-1α 3'-untranslated region directly. MiR-590-3p also inhibited the oxLDL-induced upregulation of HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). These results suggested that in oxLDL-treated endothelial cells, LINC00657 acted as a miR-590-3p sponge to attenuate the suppression of miR-590-3p on HIF-1α, and to promote angiogenesis through VEGF, MMP-2, and MMP-9. The present study provided new insight into the roles of LINC00657 and miR-590-3p in preventing oxLDL-induced angiogenesis and may provide a novel strategy for atherosclerosis treatment.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| | - Guang-Yi Li
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| | - Xiao-Shan Huang
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| | - Liang Tang
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| | - Li-Ping Dong
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| | - Jian-Ming Li
- Department of Anatomy, Histology and Embryology, Science Research Center, Institute of Neuroscience (M.-H.B., G.-Y.L., L.T., L.-P.D., J.-M.L.), and Department of Pharmacology (X.-S.H.), Changsha Medical University, Changsha, China
| |
Collapse
|
378
|
Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data. Oncotarget 2018; 7:61215-61228. [PMID: 27542205 PMCID: PMC5308646 DOI: 10.18632/oncotarget.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022] Open
Abstract
Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage-specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development.
Collapse
|
379
|
Harati‐Sadegh M, Kohan L, Teimoori B, Salimi S. The long non‐coding RNA H19 rs217727 polymorphism is associated with PE susceptibility. J Cell Biochem 2018; 119:5473-5480. [DOI: 10.1002/jcb.26708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdiyeh Harati‐Sadegh
- Department of GeneticsFars Science and Research BranchIslamic Azad UniversityMarvdashtIran
- Department of GeneticsMarvdasht BranchIslamic Azad UniversityMarvdashtIran
| | - Leila Kohan
- Department of BiologyArsanjan BranchIslamic Azad UniversityArsanjanIran
| | - Batool Teimoori
- Department of Obstetrics and GynecologySchool of MedicineZahedan University of Medical SciencesZahedanIran
| | - Saeedeh Salimi
- Department of Clinical BiochemistrySchool of MedicineZahedan University of Medical SciencesZahedanIran
- Cellular and Molecular Research CenterZahedan University of Medical SciencesZahedanIran
| |
Collapse
|
380
|
Sun C, Jiang H, Sun Z, Gui Y, Xia H. Identification of long non-coding RNAs biomarkers for early diagnosis of myocardial infarction from the dysregulated coding-non-coding co-expression network. Oncotarget 2018; 7:73541-73551. [PMID: 27634901 PMCID: PMC5341997 DOI: 10.18632/oncotarget.11999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/24/2016] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have recently been shown as novel promising diagnostic or prognostic biomarkers for various cancers. However, lncRNA expression patterns and their predictive value in early diagnosis of myocardial infarction (MI) have not been systematically investigated. In our study, we performed a comprehensive analysis of lncRNA expression profiles in MI and found altered lncRNA expression pattern in MI compared to healthy samples. We then constructed a lncRNA-mRNA dysregulation network (DLMCEN) by integrating aberrant lncRNAs, mRNAs and their co-dysregulation relationships, and found that some of mRNAs were previously reported to be involved in cardiovascular disease, suggesting the functional roles of dysregulated lncRNAs in the pathogenesis of MI. Therefore, using support vector machine (SVM) and leave one out cross-validation (LOOCV), we developed a 9-lncRNA signature (termed 9LncSigAMI) from the discovery cohort which could distinguish MI patients from healthy samples with accuracy of 95.96%, sensitivity of 93.88% and specificity of 98%, and validated its predictive power in early diagnosis of MI in another completely independent cohort. Functional analysis demonstrated that these nine lncRNA biomarkers in the 9LncSigAMI may be involved in myocardial innate immune and inflammatory response, and their deregulation may lead to the dysfunction of the inflammatory and immune system contributing to MI recurrence. With prospective validation, the 9LncSigAMI identified by our work will provide additional diagnostic information beyond other known clinical parameters, and increase the understanding of the molecular mechanism underlying the pathogenesis of MI.
Collapse
Affiliation(s)
- Chaoyu Sun
- Department of cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Jiang
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yifang Gui
- The Clinical laboratory, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, China
| | - Hongyuan Xia
- Department of cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
381
|
Liu X, Wang Y, Sun L, Min J, Liu J, Chen D, Zhang H, Zhang H, Zhang H, Zhou Y, Liu L. Long noncoding RNA BC005927 upregulates EPHB4 and promotes gastric cancer metastasis under hypoxia. Cancer Sci 2018; 109:988-1000. [PMID: 29383777 PMCID: PMC5891181 DOI: 10.1111/cas.13519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Hypoxia plays a critical role in the metastasis of gastric cancer (GC), yet the underlying mechanism remains largely unclear. It is also not known whether long, noncoding RNAs (lncRNAs) are involved in the contribution of hypoxia to GC metastasis. In the present study, we found that lncRNA BC005927 can be induced by hypoxia in GC cells and mediates hypoxia-induced GC cell metastasis. Furthermore, BC005927 is frequently upregulated in GC samples and increased BC005927 expression was correlated with a higher tumor-node-metastasis stage. GC patients with higher BC005927 expression had poorer prognoses than those with lower expression. Additional experiments showed that BC005927 expression is induced by hypoxia inducible factor-1 alpha (HIF-1α); ChIP assay and luciferase reporter assays confirmed that this lncRNA is a direct transcriptional target of HIF-1α. Next, we found that EPHB4, a metastasis-related gene, is regulated by BC005927 and that the expression of EPHB4 was positively correlated with that of BC005927 in the clinical GC samples assessed. Intriguingly, EPHB4 expression was also increased under hypoxia, and its upregulation by BC005927 resulted in hypoxia-induced GC cell metastasis. These results advance the current understanding of the role of BC005927 in the regulation of hypoxia signaling and offer new avenues for the development of therapeutic interventions against cancer progression.
Collapse
Affiliation(s)
- Xiangqiang Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the PLA, Guangzhou, China
| | - Yafang Wang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Sun
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaming Liu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongbo Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Helong Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
382
|
IntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity. Oncotarget 2018; 7:47864-47874. [PMID: 27323856 PMCID: PMC5216984 DOI: 10.18632/oncotarget.10012] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence indicated that long non-coding RNAs (lncRNAs) were involved in various biological processes and complex diseases by communicating with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function of lncRNAs and predict novel lncRNA-disease associations. In this article, we proposed an integrative framework, IntNetLncSim, to infer LFS by modeling the information flow in an integrated network that comprises both lncRNA-related transcriptional and post-transcriptional information. The performance of IntNetLncSim was evaluated by investigating the relationship of LFS with the similarity of lncRNA-related mRNA sets (LmRSets) and miRNA sets (LmiRSets). As a result, LFS by IntNetLncSim was significant positively correlated with the LmRSet (Pearson correlation γ2=0.8424) and LmiRSet (Pearson correlation γ2=0.2601). Particularly, the performance of IntNetLncSim is superior to several previous methods. In the case of applying the LFS to identify novel lncRNA-disease relationships, we achieved an area under the ROC curve (0.7300) in experimentally verified lncRNA-disease associations based on leave-one-out cross-validation. Furthermore, highly-ranked lncRNA-disease associations confirmed by literature mining demonstrated the excellent performance of IntNetLncSim. Finally, a web-accessible system was provided for querying LFS and potential lncRNA-disease relationships: http://www.bio-bigdata.com/IntNetLncSim.
Collapse
|
383
|
Wang Z, Li B, Li Y, Zhai X, Dong Y, Deng M, Zhao Z, Cao Y, Fan G. Identification and characterization of long noncoding RNA in Paulownia tomentosa treated with methyl methane sulfonate. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:325-334. [PMID: 29515326 PMCID: PMC5834995 DOI: 10.1007/s12298-018-0513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Paulownia is a tree native to China, with important ecological and economic value. Long noncoding RNAs (lncRNAs) are known to play important roles in eukaryotic gene regulation. However, no lncRNAs have been reported in Paulownia so far. We performed RNA sequencing of two Paulownia tomentosa lncRNA libraries constructed from the terminal buds of normal untreated seedlings and 60 mg L-1 MMS-treated seedlings, and obtained a total of 2531 putative lncRNAs. The average length of the lncRNA transcripts was much less than the average length of the mRNA transcripts in the P. tomentosa libraries. A few of the Paulownia lncRNAs were conserved among ten species tested. We identified seven lncRNAs as precursors of 13 known miRNAs, 15 lncRNAs may act as target mimics of 19 miRNAs, and 351 unique noncoding sequences belonging to 133 conserved lncRNA families. In addition, we identified 220 lncRNAs responsive to methyl methane sulfonate (MMS), including seven phytohormone-related lncRNAs and one lncRNAs involved in base excision repair. This is the first time that lncRNAs have been explored in Paulownia. The lncRNA data may also provide new insights into the MMS-response in P. tomentosa.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yongsheng Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Xiaoqiao Zhai
- Henan Academy of Forestry, Zhengzhou, Henan People’s Republic of China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan People’s Republic of China
| |
Collapse
|
384
|
Golicz AA, Singh MB, Bhalla PL. The Long Intergenic Noncoding RNA (LincRNA) Landscape of the Soybean Genome. PLANT PHYSIOLOGY 2018; 176:2133-2147. [PMID: 29284742 PMCID: PMC5841726 DOI: 10.1104/pp.17.01657] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/21/2017] [Indexed: 05/08/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are emerging as important regulators of diverse biological processes. However, our understanding of lincRNA abundance and function remains very limited especially for agriculturally important plants. Soybean (Glycine max) is a major legume crop plant providing over a half of global oilseed production. Moreover, soybean can form symbiotic relationships with Rhizobium bacteria to fix atmospheric nitrogen. Soybean has a complex paleopolyploid genome and exhibits many vegetative and floral development complexities. Soybean cultivars have photoperiod requirements restricting its use and productivity. Molecular regulators of these legume-specific developmental processes remain enigmatic. Long noncoding RNAs may play important regulatory roles in soybean growth and development. In this study, over one billion RNA-seq read pairs from 37 samples representing nine tissues were used to discover 6,018 lincRNA loci. The lincRNAs were shorter than protein-coding transcripts and had lower expression levels and more sample specific expression. Few of the loci were found to be conserved in two other legume species (chickpea [Cicer arietinum] and Medicago truncatula), but almost 200 homeologous lincRNAs in the soybean genome were detected. Protein-coding gene-lincRNA coexpression analysis suggested an involvement of lincRNAs in stress response, signal transduction, and developmental processes. Positional analysis of lincRNA loci implicated involvement in transcriptional regulation. lincRNA expression from centromeric regions was observed especially in actively dividing tissues, suggesting possible roles in cell division. Integration of publicly available genome-wide association data with the lincRNA map of the soybean genome uncovered 23 lincRNAs potentially associated with agronomic traits.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
385
|
Bao Z, Zhang W, Dong D. A potential prognostic lncRNA signature for predicting survival in patients with bladder urothelial carcinoma. Oncotarget 2018; 8:10485-10497. [PMID: 28060759 PMCID: PMC5354674 DOI: 10.18632/oncotarget.14441] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/08/2016] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence has highlighted the critical roles of long non-coding RNA (lncRNA) in cancer development and progression. However, the prognostic power of expression-based lncRNA signature for predicting overall survival in patients with Bladder Urothelial Carcinoma (BLCA) has not been investigated. Here, we performed a comprehensive analysis for lncRNA expression profiles and corresponding clinical information of 234 BLCA patients from The Cancer Genome Atlas (TCGA). We established a set of four-lncRNAs that were significantly associated with BLCA patients’ survival. Using the prognostic four-lncRNA signature, we successfully classified the BLCA patients into high-risk and low-risk groups, and the prognostic power of the four-lncRNA signature was further validated in the testing dataset and entire dataset. Multivariate Cox regression and stratified analyses demonstrated that the prognostic power of the four-lncRNA signature was independent of other clinical variables. Functional enrichment analyses suggested the four prognostic lncRNAs may be involved in known BLCA-related biological processes and pathways. Our results demonstrated that the four-lncRNA signature could be novel independent biomarkers for predicting survival in patients with BLCA.
Collapse
Affiliation(s)
- Zhenyu Bao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weitao Zhang
- Urology Surgery Department, Affiliated Hospital of Taishan Medical University, Shandong, China
| | - Dong Dong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
386
|
Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep 2018; 8:2202. [PMID: 29396444 PMCID: PMC5797088 DOI: 10.1038/s41598-018-20727-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Progress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1). These data were validated by RT-qPCR analysis using independent oocytes and CC samples. The functions of the identified lncRNAs were then predicted by constructing lncRNA-mRNA co-expression networks. This analysis suggested that MII oocyte lncRNAs could be involved in chromatin remodeling, cell pluripotency and in driving early embryonic development. CC lncRNAs were co-expressed with genes involved in apoptosis and extracellular matrix-related functions. A bioinformatic analysis of RNA-sequencing data to identify CC lncRNAs that are affected by maternal age showed that lncRNAs with age-related altered expression in CCs are essential for oocyte growth. This comprehensive analysis of lncRNAs expressed in human MII oocytes and CCs could provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
|
387
|
Abstract
Circular RNA (circRNA) is a non-linear form of RNA derived from exonic, intronic, and exon-intron gene regions. circRNAs are characterized by covalent closed loops, highly stable nuclease resistance, and specific expression in species and developmental stages. CircRNA molecules have been identified as playing roles in the regulation of cell transcription, transcriptional expression after translation, interactions with microRNAs, and protein coding. A high stability and tissue- and disease-specific expression allow circRNAs to serve as potential biomarkers both for diseases and prognosis. CircRNAs function in bone remodeling by directly participating in bone-related signaling pathways and by forming the circRNA-miRNA-mRNA axis. Studies have seldom reported on the low incidence of circRNAs in genetic bone disorders. The current study reviews the characteristics of circRNAs and recent research on their role in rare hereditary bone diseases.
Collapse
Affiliation(s)
- Naixiang Zhai
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanzhou Wang
- Department of Paediatric Surgery, Shandong Provincial Hospital, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062 China. E-mail:
| |
Collapse
|
388
|
Shang M, Wang X, Zhang Y, Gao Z, Wang T, Liu R. LincRNA-ROR promotes metastasis and invasion of esophageal squamous cell carcinoma by regulating miR-145/FSCN1. Onco Targets Ther 2018; 11:639-649. [PMID: 29430188 PMCID: PMC5797470 DOI: 10.2147/ott.s157638] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background and objective In an attempt to discover a new biomarker for early diagnosis and prognosis of esophageal squamous cell carcinoma (ESCC), the regulation mechanism of large intergenic non-coding RNA–regulator of reprogramming (lincRNA-ROR) as a microRNA (miRNA) sponge was studied. Patients and methods ROR expression in 91 pairs of ESCC tissue samples and matched adjacent tissues was quantified with real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). The ROR–miRNA–mRNA regulatory network was built with 161 esophageal cancer (EC) tissues and 11 adjacent tumor tissues from The Cancer Genome Atlas (TCGA) database. A total of 96 cases of ESCC from TCGA database were collected for analysis on survival rates. The regulatory relationship between ROR, miR-145 and FSCN1 was verified in ESCC cells via qRT-PCR, dual luciferase reporter (DLR) assay, RNA immunoprecipitation (RIP) and Western blotting. The transwell method was used to detect cell migration and invasion. Results ROR expression in ESCC tumor tissues was significantly higher than in the adjacent tissues, p<0.001. The survival rate of ESCC patients with high ROR expression levels was lower than that of patients with low ROR expression levels (p<0.001). ROR overexpression could downregulate miR-145 by up to 50% was proven by RIP, DLR assay, and qRT-PCR. Two effective binding sites of ROR to miR-145 were verified by DLR assay. One of the sites has never been cited in the literature. The Western blotting results showed that FSCN1 was a downstream target of ROR/miR-145 (p<0.05). Transwell assays were used to show that overexpression of ROR enhanced migration and invasion behavior of ESCC and miR-145 hindered these effects. Conclusion ROR acted as a competitive endogenous RNA (ceRNA) of miR-145 in ESCC. A novel, effective miR-145 binding site of ROR was discovered. The ROR/miR-145/FSCN1 pathway was shown to take part in the metastasis of ESCC. ROR is likely an oncogene biomarker for ESCC early diagnosis and prognosis.
Collapse
Affiliation(s)
- Muhe Shang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xianghu Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Zhikui Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Tian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
389
|
Li Y, Wang Z, Wang Y, Zhao Z, Zhang J, Lu J, Xu J, Li X. Identification and characterization of lncRNA mediated transcriptional dysregulation dictates lncRNA roles in glioblastoma. Oncotarget 2018; 7:45027-45041. [PMID: 26943771 PMCID: PMC5216703 DOI: 10.18632/oncotarget.7801] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) modulate gene expression, and lncRNA misregulation is associated with cancer. However, precise functional roles in biological and disease processes have been described for only a few lncRNAs. Identification of genome-wide lncRNA-mediated transcriptional dysregulations may improve cancer treatments. In the present study, we used a computational framework that combined lncRNA and gene expression profiles with transcription factor (TF)-target relationships to comprehensively identify dysregulatory lncRNA-TF-gene triplets. In glioblastoma (GBM), we found that most lncRNAs affect multiple targets and primarily affect TF activity in trans. Six different classes of lncRNA-mediated transcriptional dysregulations were identified, with most lncRNAs either enhancing or attenuating target gene expression. Functional analysis of lncRNAs via their dysregulated targets implicated lncRNA modulators in some hallmarks of cancer, providing a new way to predict lncRNA function. Finally, we identified several lncRNA-TF-gene triplets (including HOTAIR-MXI1-CD58/PRKCE and HOTAIR-ATF5-NCAM1) that are associated with glioblastoma prognosis. The integration of lncRNA modulators into transcriptional regulatory networks will further enhance our understanding of lncRNA functions in cancer.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Yuan Wang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Zheng Zhao
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
390
|
Simonian M, Sharifi M, Nedaeinia R, Mosallaie M, Khosravi S, Avan A, Ghayour-Mobarhan M, Bagheri H, Salehi R. Evaluation of miR-21 Inhibition and its Impact on Cancer Susceptibility Candidate 2 Long Noncoding RNA in Colorectal Cancer Cell Line. Adv Biomed Res 2018; 7:14. [PMID: 29456985 PMCID: PMC5812095 DOI: 10.4103/abr.abr_214_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Both microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have been shown to have a critical role in the regulation of cellular processes such as cell growth and apoptosis, as well as cancer progression and metastasis. lncRNAs are aberrantly expressed in many diseases including cancer. Although it is well known that miRNAs can target a large number of protein-coding genes, little is known whether miRNAs can also target lncRNAs. In the present study, we determine whether miR-21 can regulate lncRNA cancer susceptibility candidate 2 (CASC2) in colorectal cancer. Materials and Methods: LS174T cells were transfected with locked nucleic acid (LNA)-anti-miR-21 and scrambled LNA for 24, 48 and 72 h. The expression of miR-21 and lncCASC2 was evaluated by quantitative reverse transcriptase polymerase chain reaction. Results: However, contrary to what we expected and reported by others, lncCASC2 quantity was significantly reduced in LNA treated LS174T cells compared to the scrambled treated and normal untreated cells (P < 0.05). Conclusion: The interaction of miRNA and lncRNA are not as simple as suggested by other reports. Moreover, it could be complex molecular mechanisms underlying the communication of various noncoding RNA elements.
Collapse
Affiliation(s)
- Miganoosh Simonian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Mosallaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bagheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science and Research Institute, Isfahan, Iran
| |
Collapse
|
391
|
Comprehensive analysis of lncRNA expression profiles reveals a novel lncRNA signature to discriminate nonequivalent outcomes in patients with ovarian cancer. Oncotarget 2018; 7:32433-48. [PMID: 27074572 PMCID: PMC5078024 DOI: 10.18632/oncotarget.8653] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/28/2016] [Indexed: 02/01/2023] Open
Abstract
There is growing evidence of dysregulated long non-coding RNAs (lncRNAs) serving as potential biomarkers for cancer prognosis. However, systematic efforts of searching for an expression-based lncRNA signature for prognosis prediction in ovarian cancer (OvCa) have not been made yet. Here, we performed comprehensive analysis for lncRNA expression profiles and clinical data of 544 OvCa patients from The Cancer Genome Atlas (TCGA), and identified an eight-lncRNA signature with ability to classify patients of the training cohort into high-risk group showing poor outcome and low-risk group showing significantly improved outcome, which was further validated in the validation cohort and entire TCGA cohort. Multivariate Cox regression analysis and stratified analysis demonstrated that the prognostic value of this signature was independent of other clinicopathological factors. Associating the outcome prediction with BRCA1 and/or BRCA2 mutation revealed a superior prognosis performance both in BRCA1/2-mutated and BRCA1/2 wild-type tumors. Finally, a significantly correlation was found between the lncRNA signature and the complete response rate of chemotherapy, suggesting that this eight-lncRNA signature may be a measure to predict chemotherapy response and identify platinum-resistant patients who might benefit from other more efficacious therapies. With further prospective validation, this eight-lncRNA signature may have important implications for outcome prediction and therapy decisions.
Collapse
|
392
|
Deng F, Zhang X, Wang W, Yuan R, Shen F. Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC PLANT BIOLOGY 2018; 18:23. [PMID: 29370759 PMCID: PMC5785843 DOI: 10.1186/s12870-018-1238-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/17/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) represent a class of riboregulators that either directly act in long form or are processed into shorter microRNAs (miRNAs) and small interfering RNAs. Long noncoding RNAs (lncRNAs) are arbitrarily defined as RNA genes larger than 200 nt in length that have no apparent coding potential. lncRNAs have emerged as playing important roles in various biological regulatory processes and are expressed in a more tissue-specific manner than mRNA. Emerging evidence shows that lncRNAs participate in stress-responsive regulation. RESULTS In this study, in order to develop a comprehensive catalogue of lncRNAs in upland cotton under salt stress, we performed whole-transcriptome strand-specific RNA sequencing for three-leaf stage cotton seedlings treated with salt stress (S_NaCl) and controls (S_CK). In total we identified 1117 unique lncRNAs in this study and 44 differentially expressed RNAs were identified as potential non-coding RNAs. For the differentially expressed lncRNAs that were identified as intergenic lncRNAs (lincRNA), we analysed the gene ontology enrichment of cis targets and found that cis target protein-coding genes were mainly enriched in stress-related categories. Real-time quantitative PCR confirmed that all selected lincRNAs responsive to salt stress. We found lnc_388 was likely as regulator of Gh_A09G1182. And lnc_883 may participate in regulating tolerance to salt stress by modulating the expression of Gh_D03G0339 MS_channel. We then predicted the target mimics for miRNA in Gossypium. six miRNAs were identified, and the result of RT-qPCR with lncRNA and miRNA suggested that lnc_973 and lnc_253 may regulate the expression of ghr-miR399 and ghr-156e as a target mimic under salt stress. CONCLUSIONS We identified 44 lincRNAs that were differentially expressed under salt stress. These lincRNAs may target protein-coding genes via cis-acting regulation. We also discovered that specifically-expressed lincRNAs under salt stress may act as endogenous target mimics for conserved miRNAs. These findings extend the current view on lincRNAs as ubiquitous regulators under stress stress.
Collapse
Affiliation(s)
- Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Rui Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
393
|
Neumann P, Jaé N, Knau A, Glaser SF, Fouani Y, Rossbach O, Krüger M, John D, Bindereif A, Grote P, Boon RA, Dimmeler S. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun 2018; 9:237. [PMID: 29339785 PMCID: PMC5770451 DOI: 10.1038/s41467-017-02431-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here, we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulate endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is upregulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-β2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.
Collapse
Affiliation(s)
- Philipp Neumann
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Nicolas Jaé
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Andrea Knau
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Simone F Glaser
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Youssef Fouani
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
| | - Marcus Krüger
- Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim, 61231, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
| | - Phillip Grote
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany.,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany. .,German Center of Cardiovascular Research (DZHK), Frankfurt am Main, 60590, Germany.
| |
Collapse
|
394
|
Zhou M, Diao Z, Yue X, Chen Y, Zhao H, Cheng L, Sun J. Construction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget 2018; 7:56383-56394. [PMID: 27487139 PMCID: PMC5302921 DOI: 10.18632/oncotarget.10891] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022] Open
Abstract
It is increasing evidence that ceRNA activity of long non-coding RNAs (lncRNAs) played critical roles in both normal physiology and tumorigenesis. However, functional roles and regulatory mechanisms of lncRNAs as ceRNAs in pancreatic ductal adenocarcinoma (PDAC), and their potential implications for early diagnosis remain unclear. In this study, we performed a genome-wide analysis to investigate potential lncRNA-mediated ceRNA interplay based on "ceRNA hypothesis". A dysregulated lncRNA-associated ceRNA network (DLCN) was constructed by utilizing sample-matched miRNA, lncRNA and mRNA expression profiles in PDAC and normal samples in combination with miRNA regulatory network. The results of network analysis uncovered seven novel lncRNAs as functional ceRNAs whose aberrant expression will result in the extensive variation in tumorigenic or tumor-suppressive gene expression through DLCN at the post-transcriptional level contributing to PDAC. Therefore, we developed a 7-lncRNA signature (termed LncRisk-7) based on the expression data of seven lncRNAs and SVM algorithm as a novel diagnostic tool to improve early diagnosis of PDAC. The LncRisk-7 achieved high performance in distinguishing PDAC patients from nonmalignant pancreas samples in the discovery cohort and was further confirmed in another two independent validation cohorts. Functional analysis demonstrated that seven lncRNA biomarkers act as ceRNAs involving the regulation of cell death, cell adhesion and cell cycle. This study will help to improve our understanding of the lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of PDAC and provide novel lncRNAs as candidate diagnostic biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Zhiyong Diao
- Department of Plastic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Xiaolong Yue
- Medical Oncology Department, Affiliated Tumor Hospital, Harbin Medical University, Harbin, 150001, PR China
| | - Yang Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, PR China
| |
Collapse
|
395
|
Chen L, Dzakah EE, Shan G. Targetable long non-coding RNAs in cancer treatments. Cancer Lett 2018; 418:119-124. [PMID: 29341880 DOI: 10.1016/j.canlet.2018.01.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 02/09/2023]
Abstract
Aberrant expression of many long non-coding RNAs has been observed in various types of cancer, implicating their crucial roles in tumorigenesis and cancer progression. Emerging knowledge with regard to the critical physiological and pathological roles of long non-coding RNAs in cancers makes them potential targets in cancer treatments. In this review, we present a summary of the relatively well studied long non-coding RNAs that are involved in oncogenesis and outline their functions and functional mechanisms. Recent findings that may be utilized in therapeutic intervention are also highlighted. With the fast development in nucleic acid-based therapeutic reagents that can target disease associated RNAs, lncRNAs should be explored as potential targets in cancer treatments.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| | - Emmanuel Enoch Dzakah
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| |
Collapse
|
396
|
Fan Q, Liu B. Discovery of a novel six‐long non‐coding RNA signature predicting survival of colorectal cancer patients. J Cell Biochem 2018; 119:3574-3585. [PMID: 29227531 DOI: 10.1002/jcb.26548] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Qiaowei Fan
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP.R. China
- Translational Medicine Research and Cooperation Center of Northern ChinaHeilongjiang Academy of Medical SciencesHarbinHeilongjiangP.R. China
| | - Bingrong Liu
- Department of Gastroenterology and HepatologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangP.R. China
| |
Collapse
|
397
|
Ding J, Wang F, Xiang T, Qiao M. Expression and Function of Long Noncoding RNA NONHSAT129183 in Papillary Thyroid Cancer. Oncol Res 2018; 26:1047-1053. [PMID: 29321094 PMCID: PMC7844757 DOI: 10.3727/096504018x15152037713570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) is implicated in cancer development and progression. This study was aimed to investigate the expression and clinical significance of lncRNA NONHSAT129183 in papillary thyroid cancer (PTC), and to explore its roles in PTC cell proliferation, migration, and invasion. Our results demonstrate that lncRNA NONHSAT129183 is upregulated in human PTC tissues when compared with that in adjacent noncancerous thyroid tissue. Moreover, its expression is correlated with tumor size, lymph node metastasis, and TNM stage in PTC patients. lncRNA NONHSAT129183 silencing also significantly suppressed cell proliferation, migration, and invasion in PTC cell lines. In conclusion, our results suggest that lncRNA NONHSAT129183 plays a critical role in the regulation of PTC cell proliferation, migration, and invasion, providing new insights into PTC pathogenesis.
Collapse
Affiliation(s)
- Jian Ding
- Department of General Surgery, The Fourth People's Hospital of Ji'nan, Ji'nan, Shandong Province, P.R. China
| | - Fuqing Wang
- Department of Burn and Plastic Surgery, Binzhou People's Hospital, Binzhou, Shandong Province, P.R. China
| | - Tiangang Xiang
- Department of General Surgery, The Second People's Hospital of Dongying, Dongying, Shandong Province, P.R. China
| | - Meng Qiao
- Department of Dermatology, Qilu Hospital of Shandong University, Ji'nan, Shandong Province, P.R. China
| |
Collapse
|
398
|
Zhou M, Zhang Z, Zhao H, Bao S, Sun J. A novel lncRNA-focus expression signature for survival prediction in endometrial carcinoma. BMC Cancer 2018; 18:39. [PMID: 29304762 PMCID: PMC5756389 DOI: 10.1186/s12885-017-3983-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/26/2017] [Indexed: 12/05/2022] Open
Abstract
Background Endometrial cancer (UCEC) is a complex malignant tumor characterized by both genetic level and clinical trial. Patients with UCEC exhibit the similar clinical features, however, they have distinct outcomes due to molecular heterogeneity. The aim of this study was to access the prognostic value of long non-coding RNAs (lncRNAs) in UCEC patients and to identify potential lncRNA signature for predicting patients’ survival and improving patient-tailored treatment. Methods We performed a comprehensive genome-wide analysis of lncRNA expression profiles and clinical data in a large cohort of 301 UCEC patients. UCEC patients were randomly divided into the discovery cohort (n = 150) and validation cohort (n = 151). A novel lncRNA-focus expression signature was identified in the discovery cohort, and independently accessed in the validation cohort. Additionally, the lncRNA signature was evaluated by multivariable Cox regression and stratification analysis as well as functional enrichment analysis. Results We detected a novel lncRNA-focus expression signature (LFES) consisting of 11 lncRNAs that were associated with survival based on risk scoring strategy in UCEC. The risk score based on the LFES was able to separate patients of discovery cohort into high-risk and low-risk groups with significantly different overall survival and progression-free survival, and has been successfully confirmed in the validation cohort. Furthermore, the LFES is an independent prognostic predictor of survival and demonstrates superior prognostic performance compared with the clinical covariates for predicting 5-year survival (AUC = 0.887). Functional analysis has linked the expression of prognostic lncRNAs to well-known tumor suppressor or ontogenetic pathways in endometrial carcinogenesis. Conclusions Our study revealed a novel 11-lncRNA signature to predict survival of UCEC patient. This lncRNA signature may be a valuable and alternative marker for risk evaluation to aid patient-tailored treatment and improve the outcome of patients with UCEC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3983-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zhaoyue Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Siqi Bao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
399
|
Li J, Li Q, Chen L, Gao Y, Zhou B, Li J. Competitive endogenous RNA networks: integrated analysis of non-coding RNA and mRNA expression profiles in infantile hemangioma. Oncotarget 2018; 9:11948-11963. [PMID: 29552284 PMCID: PMC5844720 DOI: 10.18632/oncotarget.23946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/30/2017] [Indexed: 01/04/2023] Open
Abstract
Infantile hemangioma (IH) is the most common vascular tumour in infants. The pathogenesis of IH is complex and poorly understood. Therefore, achieving a deeper understanding of IH pathogenesis is of great importance. Here, we used the Ribo-Zero RNA-Seq and HiSeq methods to examine the global expression profiles of protein-coding transcripts and non-coding RNAs, including miRNAs and lncRNAs, in IH and matched normal skin controls. Bioinformatics assessments including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Of the 16370 identified coding transcripts, only 144 were differentially expressed (fold change ≥ 2, P ≤ 0.05), including 84 up-regulated and 60 down-regulated transcripts in the IH samples compared with the matched normal skin controls. Gene ontology analysis of these differentially expressed transcripts revealed 60 genes involved in immune system processes, 62 genes involved in extracellular region regulation, and 35 genes involved in carbohydrate derivative binding. In addition, 256 lncRNAs and 142 miRNAs were found to be differentially expressed. Of these, 177 lncRNAs and 42 miRNAs were up-regulated in IH, whereas 79 lncRNAs and 100 miRNAs were down-regulated. By analysing the Ribo-Zero RNA-Seq data in combination with the matched miRNA profiles, we identified 1256 sponge modulators that participate in 87 miRNA-mediated, 70 lncRNA-mediated and 58 mRNA-mediated interactions. In conclusion, our study uncovered a competitive endogenous RNA (ceRNA) network that could further the understanding of the mechanisms underlying IH development and supply new targets for investigation.
Collapse
Affiliation(s)
- Jun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Qian Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yanli Gao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Bei Zhou
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jingyun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| |
Collapse
|
400
|
Gai YP, Yuan SS, Zhao YN, Zhao HN, Zhang HL, Ji XL. A Novel LncRNA, MuLnc1, Associated With Environmental Stress in Mulberry ( Morus multicaulis). FRONTIERS IN PLANT SCIENCE 2018; 9:669. [PMID: 29896205 PMCID: PMC5987159 DOI: 10.3389/fpls.2018.00669] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/02/2018] [Indexed: 05/08/2023]
Abstract
Environmental stresses are major constraints that limit the leaf productivity and quality of mulberry. LncRNAs have emerged as important regulators in response to biotic and abiotic stresses in plants. However, the functions and mechanisms of most lncRNAs remain largely unknown. A novel lncRNA designated as MuLnc1 was found to be cleaved by mul-miR3954 and produce secondary siRNAs in a 21 nt phase in mulberry. It was demonstrated that one of the siRNAs produced, si161579, can silence the expression of the calmodulin-like protein gene CML27 of mulberry (MuCML27). When MuCML27 was heterologously expressed in Arabidopsis, the transgenic plants exhibited enhanced resistance to Botrytis cinerea and Pseudomonas syringae pv tomato DC3000. In addition, the transgenic MuCML27-overexpressing Arabidopsis plants are more tolerant to salt and drought stresses. Furthermore, the network of mul-miR3954-MuLnc1-siRNAs-mRNAs was modeled to elucidate the interaction between lncRNAs and sRNAs with mRNAs. All of these, taken together, suggest that MuLnc1 was associated with environmental stress in mulberry and may be considered as a potential genetic improvement target gene of mulberry. The information provided may shed light on the complicated gene expression regulatory mechanisms in mulberry stress responses.
Collapse
Affiliation(s)
- Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Shuo-Shuo Yuan
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ya-Nan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Huai-Ning Zhao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Hua-Liang Zhang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Xian-Ling Ji
- College of Forestry, Shandong Agricultural University, Tai’an, China
- *Correspondence: Xian-Ling Ji,
| |
Collapse
|