1
|
Chen Y, Chen Y, Xu H, Liu J, Wang Y, Zeng Y, Chen H, Cao Y, Sun C, Ge X, Zhang T, Shi X, Cao X, Liu Y, Ren B, Wang T, Lu J. GSH-Responsive Heterodimeric Dual-Targeted Nanomedicine Modulates EMT to Conquer Paclitaxel-Induced Invasive Breast Cancer Metastasis. Bioconjug Chem 2025. [PMID: 40233417 DOI: 10.1021/acs.bioconjchem.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Paclitaxel (PTX), although effective against primary breast cancer, presents formidable clinical challenges due to severe toxicity and pro-metastatic potential, a critical concern as distant metastasis causes 90% of breast cancer-related deaths. To address these limitations, we designed and prepared a tumor microenvironment-responsive nanoprodrug, PTX-SS-3'HPT@RGD-HA NPs, that engineered RGD peptide-modified hyaluronic acid (HA) nanocarriers encapsulating the antimetastatic 3'-hydroxy pterostilbene (3'HPT) and PTX heterodimer linked by a glutathione (GSH)-cleavable disulfide bond. These nanoparticles targeting CD44 and αvβ receptors overexpressed in aggressive breast cancer cells and synergized enhanced permeability and retention effects with receptor-mediated endocytosis, facilitating superior tumor-specific drug deposition and GSH-activated payload release in vitro and in vivo. Moreover, PTX-SS-3'HPT@RGD-HA NPs achieved excellent tumor growth inhibition while mitigating systemic toxicity and metastatic risks in 4T1 tumor-bearing mice. Mechanistically, 3'HPT counteracted PTX-induced epithelial-mesenchymal transition by downregulating MMP-9/N-cadherin and restoring E-cadherin expression, thereby neutralizing PTX-triggered pro-metastatic effects. This study pioneers a dual-targeted, toxicity-shielding nanoplatform that simultaneously improves therapeutic efficacy and addresses chemotherapy-driven metastasis, offering a revolutionary strategy for managing highly invasive breast cancer.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoke Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianbao Wang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Wang S, Liang X, Li H, Zou J, Xu L, Zhang Y, Lin J, Zeng J, Zhong X, Liu X, Liu Z, Zheng Y, Nie M, Yang L. The NET-DNA-CCDC25 inhibitor di-Pal-MTO suppresses tumor progression and promotes the innate immune response. Cell Mol Immunol 2025:10.1038/s41423-025-01286-7. [PMID: 40229592 DOI: 10.1038/s41423-025-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
The DNA component of neutrophil extracellular traps (NET-DNA) is associated with cancer metastasis and chemotherapy resistance. However, recent studies have suggested that NET-DNA contributes to the activation of dendritic cells (DCs) and promotes the innate immune response to anticancer immunity. Therefore, exploring therapeutic approaches to inhibit NET-mediated tumor progression while maintaining antitumor immunity is essential. Our groups recently identified CCDC25 as a specific NET-DNA sensor on the cytoplasmic membrane of cancer cells that promotes cancer metastasis. In this study, we performed small-molecule compound screening and revealed that mitoxantrone (MTO) could block the interaction between NET-DNA and CCDC25. Molecular docking results indicated that MTO competed with NET-DNA by binding with the amino acid residues Tyr24 (Y24), Glu25 (E25), and Asp28 (D28) of the crystal structure of CCDC25. More importantly, we conjugated MTO with palmitoleic acids such as di-Pal-MTO to increase its residence time on the cytoplasmic membrane, which increased its inhibitory efficiency and decreased its cytotoxicity. In addition, di-Pal-MTO markedly inhibited the RAC1-CDC42 cascade to alleviate the NET-induced cytoskeleton arrangement and chemotactic migration of cancer cells. In multiple mouse models, di-Pal-MTO can suppress breast cancer metastasis and have synergistic effects with chemotherapeutics. Moreover, di-Pal-MTO promotes NET-DNA-dependent DC activation, leading to the subsequent expression of various chemokines that facilitate the infiltration of CD8+ T cells. Overall, we successfully identified a small molecule inhibitor, di-Pal-MTO, with dual effects on tumor repression and the antitumor immune response, which provides a novel therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Shun Wang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyan Liang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Heliang Li
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Junying Zou
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Linxi Xu
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yetong Zhang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jianghua Lin
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiayi Zeng
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoming Zhong
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xu Liu
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhou Liu
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yue Zheng
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.
| | - Linbin Yang
- Breast Tumor Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Wu Y, Deng H, Li W, Cui L, Rong J, Zhao J. A polylysine/hyaluronan-based core-shell nanoparticle triggers drug delivery by ATP/hyaluronidase dual stimuli for inducing apoptosis of breast cancer cells. Int J Biol Macromol 2024; 277:134188. [PMID: 39084428 DOI: 10.1016/j.ijbiomac.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yan Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Wanying Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
4
|
van Driel M, Muñoz A, van Leeuwen JP. Overview of vitamin D actions in cancer. FELDMAN AND PIKE'S VITAMIN D 2024:679-718. [DOI: 10.1016/b978-0-323-91338-6.00034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Li X, Liu C, Zhang X, Sun C, Ling J, Liu Y, Zuo Y, Cao Y, Zhang C, Jiang T, Wang M, Liu J, Lu J. Bruceine A: Suppressing metastasis via MEK/ERK pathway and invoking mitochondrial apoptosis in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115784. [PMID: 37879215 DOI: 10.1016/j.biopha.2023.115784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC), as the most aggressive subtype of breast cancer, presents a scarcity of miraculous drugs in suppressing its proliferation and metastasis. Bruceine A (BA) is a functional group-rich quassin compound with extensive and distinctive pharmacological activities. Within the present study, we investigated the capabilities of BA in suppressing TNBC proliferation and metastasis as well as its potential mechanisms. The results displayed that BA dramatically repressed the proliferation of MDA-MB-231 and 4T1 cells with corresponding IC50 values of 78.4 nM and 524.6 nM, respectively. Concurrently, BA arrested cells in G1 phase by downregulating cycle-related proteins Cyclin D1 and CDK4. Furthermore, BA distinctly induced mitochondrial dysfunction as manifested by diminished mitochondrial membrane potential, elevated reactive oxygen species generation, minimized ATP production, and Caspase-dependent activation of the mitochondrial apoptosis pathway. Additionally, BA restrained the invasion and metastasis of TNBC cells by repressing MMP9 and MMP2 expression. Intriguingly, after pretreatment with MEK activator C16-PAF, the inhibitory effect of BA on MEK/ERK pathway was notably diminished, while the proliferation suppression and metastasis repression exerted by BA were all strikingly curtailed. Molecular docking illustrated that BA potently combined with residues on the MEK1 protein with the presence of diverse intermolecular interactions. Ultimately, BA effectively suppressed tumor growth in the 4T1 xenograft tumor model with no detectable visceral toxicity in the high-dose group and, astonishingly, repressed tumor metastasis in the 4T1-luc lung metastasis model. Collectively, our study demonstrates that BA is a promising chemotherapeutic agent for treating TNBC and suppressing lung metastasis.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515000, China.
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
6
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Sun X, Yuan W, Lang T, Yin Q, Li Y. Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS NANO 2023; 17:17826-17844. [PMID: 37690028 DOI: 10.1021/acsnano.3c03387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(β-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Meng Y, Han S, Yin J, Wu J. Therapeutic Copolymer from Salicylic Acid and l-Phenylalanine as a Nanosized Drug Carrier for Orthotopic Breast Cancer with Lung Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41743-41754. [PMID: 37610187 DOI: 10.1021/acsami.3c08608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nanoparticle (NP)-mediated drug delivery systems are promising for treating various diseases. However, clinical translation has been delayed by a variety of limitations, such as weak drug loading, nonspecific drug leakage, lack of bioactivity, and short blood circulation. These issues are in part due to the unsatisfactory function of biomaterials for nanocarriers. In addition, the synthesis procedures of drug carrier materials, especially polymers, were usually complicated and led to high cost. In this report, a bioactive copolymer of hydroxy acid and amino acid, poly(salicylic acid-co-phenylalanine) (PSP), was developed for the first time via a one-step rapid and facile synthesis strategy. The PSP could self-assemble into NPs (PSP-NPs) to co-load relatively hydrophilic sphingosine kinase 1 inhibitor (PF543 in HCl salt format) and highly hydrophobic paclitaxel (PTX) to form PF543/PTX@PSP-NPs with efficient dual drug loading. Encouragingly, PF543/PTX@PSP-NPs showed long blood circulation, good stability, and high tumor accumulation, leading to significantly enhanced therapeutic effects on breast cancer. Furthermore, PF543/PTX@PSP-NPs could additionally suppress the lung metastasis of breast cancer, and more importantly, the PSP-NPs themselves as therapeutic nanocarriers also showed an anti-breast cancer effect. With these combined advantages, this new polymer and corresponding NPs will provide valuable insights into the development of new functional polymers and nanomedicines for important diseases.
Collapse
Affiliation(s)
- Yabin Meng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuyan Han
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, Guangdong China
- Division of Life Science, The Hong Kong University of Science and Technology, Hongkong SAR, China
| |
Collapse
|
8
|
Redox-Sensitive Multifunctional Hyaluronic acid-based Nanomicelles with Fine-controlled Anticancer Drug Release. Int J Pharm 2022; 629:122402. [DOI: 10.1016/j.ijpharm.2022.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
9
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Overcoming challenges to enable targeting of metastatic breast cancer tumour microenvironment with nano-therapeutics: Current status and future perspectives. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liu X, Lv H, Shen H. Vitamin D enhances the sensitivity of breast cancer cells to the combination therapy of photodynamic therapy and paclitaxel. Tissue Cell 2022; 77:101815. [DOI: 10.1016/j.tice.2022.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
12
|
Thabet RH, Gomaa AA, Matalqah LM, Shalaby EM. Vitamin D: an essential adjuvant therapeutic agent in breast cancer. J Int Med Res 2022; 50:3000605221113800. [PMID: 35883275 PMCID: PMC9340350 DOI: 10.1177/03000605221113800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Low serum levels of vitamin D have been reported as a risk factor for breast cancer. This narrative review provides an update on the impact of vitamin D on hormone receptors, notably estrogen receptor subunits, and gives insights on possible therapeutic interventions to overcome breast cancer. In addition, evidence that supports the beneficial use of vitamin D as adjuvant treatment of breast cancer is summarized. Vitamin D deficiency is significantly widespread in patients with triple-negative tumors. Several studies have observed a possible modulatory effect of vitamin D or its analogues on the expression of different hormone receptors in breast cancer and increased sensitivity to tamoxifen. Vitamin D possesses anti-inflammatory and immunomodulatory effects in patients with breast cancer, and the mechanism of action of vitamin D in patients with breast cancer is discussed. In conclusion, vitamin D appears to have a beneficial role in the prevention and management of breast cancer, however, large-scale, randomized controlled trials are needed to confirm the effects of vitamin D in breast cancer prevention or treatment.
Collapse
Affiliation(s)
- Romany H Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut
University
- Department of Basic Medical Sciences, Faculty of Medicine,
Yarmouk University, Irbid-Jordan
| | - Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut
University
- Center for Research on Management of Age-Related Diseases,
Assiut University, Assiut, Egypt
| | - Laila M Matalqah
- Department of Basic Medical Sciences, Faculty of Medicine,
Yarmouk University, Irbid-Jordan
| | | |
Collapse
|
13
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|
14
|
Khodaverdi H, Zeini MS, Moghaddam MM, Vazifedust S, Akbariqomi M, Tebyanian H. Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review. Curr Drug Deliv 2022; 19:1012-1033. [DOI: 10.2174/1567201819666220117102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
Collapse
Affiliation(s)
- Hamed Khodaverdi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Shokrian Zeini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Liu J, Shen J, Mu C, Liu Y, He D, Luo H, Wu W, Zheng X, Liu Y, Chen S, Pan Q, Hu Y, Ni Y, Wang Y, Liu Y, Li Z. High-dose vitamin D metabolite delivery inhibits breast cancer metastasis. Bioeng Transl Med 2022; 7:e10263. [PMID: 35111955 PMCID: PMC8780911 DOI: 10.1002/btm2.10263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023] Open
Abstract
Besides its well-known benefits on human health, calcitriol, the hormonally active form of vitamin D3, has been being evaluated in clinical trials as an anticancer agent. However, currently available results are contradictory and not fundamentally deciphered. To the best of our knowledge, hypercalcemia caused by high-dose calcitriol administration and its low bioavailability limit its anticancer investigations and translations. Here, we show that the one-step self-assembly of calcitriol and amphiphilic cholesterol-based conjugates leads to the formation of a stable minimalist micellar nanosystem. When administered to mice, this nanosystem demonstrates high calcitriol doses in breast tumor cells, significant tumor growth inhibition and antimetastasis capability, as well as good biocompatibility. We further reveal that the underlying molecular antimetastatic mechanisms involve downregulation of proteins facilitating metastasis and upregulation of paxillin, the key protein of focal adhesion, in primary tumors.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyang Mu
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Yang Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Dongsheng He
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Han Luo
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xun Zheng
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China HospitalSichuan UniversityChengduChina
| | | | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Yinyun Ni
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Yang Wang
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Yong Liu
- Department of Gastroenterological SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Zhihui Li
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Zhu R, Lang T, Yin Q, Li Y. Nano drug delivery systems improve metastatic breast cancer therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:244-274. [PMID: 37724299 PMCID: PMC10388745 DOI: 10.1515/mr-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Despite continual progress in the technologies and regimens for cancer therapy, the treatment outcome of fatal metastatic breast cancer is far from satisfactory. Encouragingly, nanotechnology has emerged as a valuable tool to optimize drug delivery process in cancer therapy via preventing the cargos from degradation, improving the tumor-targeting efficiency, enhancing therapeutic agents' retention in specific sites, and controlling drug release. In the last decade, several mechanisms of suppressing tumor metastasis by functional nano drug delivery systems (NDDSs) have been revealed and a guidance for the rational design of anti-metastasis NDDSs is summarized, which consist of three aspects: optimization of physiochemical properties, tumor microenvironment remodeling, and biomimetic strategies. A series of medicinal functional biomaterials and anti-metastatic breast cancer NDDSs constructed by our team are introduced in this review. It is hoped that better anti-metastasis strategies can be inspired and applied in clinic.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
17
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
18
|
Zhou C, Hu X, Liu Q, Wang L, Zhou Y, Jin Y, Ma Y, Liu Y. Stromal Barrier-Dismantled Nanodrill-Like and Cancer Cell-Targeted pH-Responsive Polymeric Micelles for Further Enhancing the Anticancer Efficacy of Doxorubicin. ACS Biomater Sci Eng 2021; 7:5690-5705. [PMID: 34761919 DOI: 10.1021/acsbiomaterials.1c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs) were believed to establish a tight physical barrier and a dense scaffold for tumor cells to make them maintain immunosuppression and drug resistance, strongly hindering nanoparticles to penetrate into the core of tumor tissues and limiting the performance of tumor cell-targeted nanoparticles. Here, we fabricated the substrate Z-Gly-Pro of fibroblast activation protein α (FAPα) and folic acid-codecorated pH-responsive polymeric micelles (dual ligand-modified PEOz-PLA polymeric micelles, DL-PP-PMs) that possessed nanodrill and tumor cell-targeted functions based on Z-Gly-pro-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) (ZGP-PEOz-PLA), folic acid (FA)-conjugated PEOz-PLA (FA-PEOz-PLA), and PEOz-PLA for cancer therapy. The micelles with about 40 nm particle size and a narrow distribution exhibited favorable pH-activated endo/lysosome escape induced by their pH responsibility. In addition, the enhancement of in vitro cellular uptake and cytotoxicity to folate receptors or FAPα-positive cells for doxorubicin (DOX)/DL-PP-PMs compared with DOX/PP-PMs evidenced the dual target ability of DOX/DL-PP-PMs, which was further supported by in vivo biodistribution results. As expected, in the human oral epidermal carcinoma (KB) cells xenograft nude mice model, the remarkable enhancement of antitumor efficacy for DOX/DL-PP-PMs with low toxicity was observed compared with DOX/FA-PP-PMs and DOX/ZGP-PP-PMs. The possible mechanism was elucidated to be the dismantling of the stromal barrier by nanodrill-like DOX/DL-PP-PMs via the deletion of CAFs evidenced by the downregulation of α-SMA and inhibition of their functions proved by the decrease in the microvascular density labeled with CD31 and the reduction in the extracellular matrix detected by the collagen content, thereby promoting tumor penetration and enhancing their uptake by tumor cells. The present research offered an alternative approach integrating anticancer and antifibrosis effects in one delivery system to enhance the delivery efficiency and therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yining Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Han W, Ke J, Guo F, Meng F, Li H, Wang L. Construction and antitumor properties of a targeted nano-drug carrier system responsive to the tumor microenvironment. Int J Pharm 2021; 608:121066. [PMID: 34481009 DOI: 10.1016/j.ijpharm.2021.121066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022]
Abstract
Doxorubicin (DOX) is one of the most commonly used and effective chemotherapy drugs among anthracyclines. An inherent limitation of DOX is its nonspecificity, which can cause serious side effects, thereby preventing the therapeutic use of high drug doses. In this study, we designed and created a simple nano-drug delivery system (PEG-MAF = P) with low biological toxicity that was responsive to the tumor environment. PEG-MAF = P was designed to self-assemble into nanospheres via control of a phenylalanine dipeptide (FF). The N-terminus of the peptide was linked to aldehyde groups at both ends of oxidized Pluronic F127 (F127-CHO) via Schiff bonds. The acidic environment surrounding the tumors was suitable for triggering the Schiff bonds, causing the nanospheres to disintegrate. The C-terminus of FF was connected to a ligand peptide, ATN-161, which was able to recognize cells expressing high levels of integrin α5β1 antigens both in vivo and in vitro. To prevent the impediment in drug release, PEG was linked via a matrix metalloproteinase-9 response peptide. Therefore, in an acidic tumor microenvironment containing MMP-9, PEG-MAF = P disintegrated and rapidly released the drug. PEG-MAF = P exhibited low cytotoxicity, high drug-loading rate, and excellent antitumor properties both in vivo and in vitro. Compared with free DOX, PEG-MAF = P-DOX reduced injury to normal tissues.
Collapse
Affiliation(s)
- Wenzhao Han
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Junfeng Ke
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Feng Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Fanwei Meng
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Hui Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
20
|
Jin M, Hou Y, Quan X, Chen L, Gao Z, Huang W. Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice. Int J Nanomedicine 2021; 16:5479-5494. [PMID: 34413645 PMCID: PMC8370882 DOI: 10.2147/ijn.s313339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background The dual-loaded nano-delivery system can realize chemotherapeutic drug and small interfering RNA (siRNA) co-loading as well as enhance the therapeutic effect of drugs on tumors through a synergistic effect, while reducing their toxic and side effects on normal tissues. Methods Previously, we developed layered smart nanoparticles (NPs) to co-deliver survivin siRNA as well as small molecule drugs for lung cancer. In this study, we used such smart NPs to co-deliver paclitaxel (PTX) and siRNA against vascular endothelial growth factor (VEGF) gene for breast cancer therapy in mice models. For the prepared NPs, characterizations such as particle size, zeta potential, gel electrophoresis imaging and in vitro stability were investigated. Then, 4T1 cells were used to evaluate the in vitro VEGF silencing capacity, tumor cell inhibitory and anti-apoptotic abilities. Finally, an orthotopic model of mouse breast cancer was established to evaluate the in vivo antitumor effects and safety properties of PTX-siRNAVEGF-NPs. Results We prepared PTX-siRNAVEGF-NPs with particle size of 85.25 nm, PDI of 0.261, and zeta potential of 5.25 mV. The NPs with VEGF siRNA effectively knocked down the expression of VEGF mRNA. Cell counting kit-8 (CCK-8) and apoptosis assays revealed that the PTX-siRNAVEGF-NPs exhibited antiproliferation effect of PTX on 4T1 cells. The in vivo anti-tumor study indicated that PTX-siRNAVEGF-NPs could exert an antitumor effect by inhibiting the formation and development of new blood vessels in tumor tissues, thereby cutting off nutrient and blood supplies required for tumor tissue growth. Both the anti-tumor efficacy and in vivo safety of the PTX-siRNAVEGF-NPs group were better than that of the PTX-NPs and siRNAVEGF-NPs groups. Conclusion The combination of PTX and VEGF siRNA exerts good antitumor effect on 4T1 tumor cells. This study provides a theoretical and practical basis for breast cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Pharmacy, Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Xiuquan Quan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Department of Emergency Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, 133000, People's Republic of China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China.,Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| |
Collapse
|
21
|
Asgari S, Pourjavadi A, Setayeshmehr M, Boisen A, Ajalloueian F. Encapsulation of Drug‐Loaded Graphene Oxide‐Based Nanocarrier into Electrospun Pullulan Nanofibers for Potential Local Chemotherapy of Breast Cancer. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shadi Asgari
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory Department of Chemistry Sharif University of Technology Tehran 1458889694 Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials Tissue Engineering and Nanotechnology School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan 8174673461 Iran
| | - Anja Boisen
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800 Kgs. Lyngby Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) Department of Health Technology Technical University of Denmark Ørsteds Plads, 2800, Kgs. Lyngby Denmark
| |
Collapse
|
22
|
Emerging nanotaxanes for cancer therapy. Biomaterials 2021; 272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
The clinical application of taxane (including paclitaxel, docetaxel, and cabazitaxel)-based formulations is significantly impeded by their off-target distribution, unsatisfactory release, and acquired resistance/metastasis. Recent decades have witnessed a dramatic progress in the development of high-efficiency, low-toxicity nanotaxanes via the use of novel biomaterials and nanoparticulate drug delivery systems (nano-DDSs). Thus, in this review, the achievements of nanotaxanes-targeted delivery and stimuli-responsive nano-DDSs-in preclinical or clinical trials have been outlined. Then, emerging nanotherapeutics against tumor resistance and metastasis have been overviewed, with a particular emphasis on synergistic therapy strategies (e.g., combination with surgery, chemotherapy, radiotherapy, biotherapy, immunotherapy, gas therapy, phototherapy, and multitherapy). Finally, the latest oral nanotaxanes have been briefly discussed.
Collapse
|
23
|
Jiang M, Li W, Zhu C, Li X, Zhang J, Luo Z, Qin B, Du Y, Luo L, You J. Perdurable PD-1 blockage awakes anti-tumor immunity suppressed by precise chemotherapy. J Control Release 2021; 329:1023-1036. [DOI: 10.1016/j.jconrel.2020.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
|