1
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
2
|
Wang K, Liu J, Liu P, Wang D, Han T, Tang BZ. Multifunctional Fluorescent Main-Chain Charged Polyelectrolytes Synthesized by Cascade C-H Activation/Annulation Polymerizations. J Am Chem Soc 2023; 145:4208-4220. [PMID: 36763076 DOI: 10.1021/jacs.2c12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
3
|
Zhang Q, Zhang P, Jian S, Li J, Li F, Sun X, Li H, Zeng Y, Zeng Y, Liang S, Chen P, Liu Z. Drug-Bearing Peptide-Based Nanospheres for the Inhibition of Metastasis and Growth of Cancer. Mol Pharm 2020; 17:3165-3176. [DOI: 10.1021/acs.molpharmaceut.0c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Shandong Jian
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Jinting Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Xiaoliang Sun
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Hongrui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Yang Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Songping Liang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| |
Collapse
|
4
|
Zhao H, Xu J, Peng K, Fu X, Zhang E, Lv F, Liu L, Zhang N, Wang Y, Wang S, Gu Q. Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. Adv Healthc Mater 2020; 9:e1901295. [PMID: 31746152 DOI: 10.1002/adhm.201901295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Design and fabrication of fibrous materials by natural biological macromolecules in light of biomimetics to achieve spatially cellular arrangements are highly desirable in tissue engineering. Herein, chromatin-inspired supramolecular fibers formed through the interfacial polyelectrolyte complexation (IPC) process by DNA and histone proteins for encapsulation and in situ differentiation of murine brain-derived neural stem cells (NSCs) are reported. High cell viability of encapsulated NSCs demonstrates the excellent biocompatibility of fibers as 3D scaffolds. Moreover, a cell-adhesive peptide (K6 -PEG-RGD) is introduced into fibers by electrostatic interaction to improve NSCs encapsulation efficiency and prevent them from migrating out of fibers for enhanced spatially cellular arrangement. In situ differentiation of NSCs into oligodendrocytes within fibers is revealed by immunocytochemical staining assay. Due to the robust abilities to encapsulate and in situ differentiate NSCs, these chromatin-inspired supramolecular fibers show great potential in neural system-related tissue.
Collapse
Affiliation(s)
- Hao Zhao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jingwen Xu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Ke Peng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Na Zhang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Lin MW, Tseng YW, Shen CC, Hsu MN, Hwu JR, Chang CW, Yeh CJ, Chou MY, Wu JC, Hu YC. Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells. Nucleic Acids Res 2018; 46:e93. [PMID: 29905834 PMCID: PMC6125686 DOI: 10.1093/nar/gky447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Baculovirus (BV) holds promise as a vector for anticancer gene delivery to combat the most common liver cancer-hepatocellular carcinoma (HCC). However, in vivo BV administration inevitably results in BV entry into non-HCC normal cells, leaky anticancer gene expression and possible toxicity. To improve the safety, we employed synthetic biology to engineer BV for transgene expression regulation. We first uncovered that miR-196a and miR-126 are exclusively expressed in HCC and normal cells, respectively, which allowed us to engineer a sensor based on distinct miRNA expression signature. We next assembled a synthetic switch by coupling the miRNA sensor and RNA binding protein L7Ae for translational repression, and incorporated the entire device into a single BV. The recombinant BV efficiently entered HCC and normal cells and enabled cis-acting transgene expression control, by turning OFF transgene expression in normal cells while switching ON transgene expression in HCC cells. Using pro-apoptotic hBax as the transgene, the switch-based BV selectively killed HCC cells in separate culture and mixed culture of HCC and normal cells. These data demonstrate the potential of synthetic switch-based BV to distinguish HCC and non-HCC normal cells for selective transgene expression control and killing of HCC cells.
Collapse
Affiliation(s)
- Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yen-Wen Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Ju Yeh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jaw-Ching Wu
- Medical Research Department, Taipei Veterans General Hospital, Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Zhang K, Liimatainen H. Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801937. [PMID: 30151995 DOI: 10.1002/smll.201801937] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Indexed: 05/28/2023]
Abstract
In the present study, interfacial complexation spinning of oppositely charged cellulose-materials is applied to fabricate hierarchical and continuous nanocellulose based filaments under aqueous conditions by using cationic cellulose nanocrystals with different anionic celluloses including soluble sodium carboxymethyl cellulose and insoluble 2,2,6,6-tetramethylpiperidinyl-1-oxy radical-oxidized cellulose nanofibers and dicarboxylated cellulose nanocrystals (DC-CNC). The morphologies of the wet and dry nanocellulose based filaments are further investigated by optical and electron microscopy. All fabricated continuous nanocellulose based filaments display a hierarchical structure similar to the natural cellulose fibers in plant cells. As far as it is known, this is not only the first report about the fabrication of nanocellulose based filaments by interfacial complexation of cationic CNCs with anionic celluloses but also the first demonstration of fabricating continuous fibers directly from oppositely charged nanoparticles by interfacial nanoparticle complexation (INC). This INC approach may provide a new route to design continuous filaments from many other oppositely charged nanoparticles with tailored characteristics.
Collapse
Affiliation(s)
- Kaitao Zhang
- Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| | - Henrikki Liimatainen
- Fiber and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Oulu, Finland
| |
Collapse
|
7
|
Dai X, Guo Q, Zhao Y, Zhang P, Zhang T, Zhang X, Li C. Functional Silver Nanoparticle as a Benign Antimicrobial Agent That Eradicates Antibiotic-Resistant Bacteria and Promotes Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25798-25807. [PMID: 27622986 DOI: 10.1021/acsami.6b09267] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
With the increased prevalence of antibiotic-resistant bacteria infections, there is a pressed need for innovative antimicrobial agent. Here, we report a benign ε-polylysine/silver nanoparticle nanocomposite (EPL-g-butyl@AgNPs) with polyvalent and synergistic antibacterial effects. EPL-g-butyl@AgNPs exhibited good stability in aqueous solution and effective antibacterial activity against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) bacteria without emergence of bacterial resistance. Importantly, the nanocomposites eradicated the antibiotic-resistant bacteria without toxicity to mammalian cells. Analysis of the antibacterial mechanism confirmed that the nanocomposites adhered to the bacterial surface, irreversibly disrupted the membrane structure of the bacteria, subsequently penetrated cells, and effectively inhibited protein activity, which ultimately led to bacteria apoptosis. Notably, the nanocomposites modulated the relative level of CD3+ T cells and CD68+ macrophages and effectively promoted infected wound healing in diabetic rats. This work improves our understanding of the antibacterial mechanism of AgNPs-based nanocomposites and offers guidance to activity prediction and rational design of effective antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Peng Zhang
- Department of Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Tianqi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
8
|
Sajjan DB, Hinchigeri SB. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:86-100. [PMID: 26787118 DOI: 10.1007/s12560-016-9227-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides.
Collapse
Affiliation(s)
- Dayanand B Sajjan
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, 580 003, India
| | - Shivayogeppa B Hinchigeri
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka, 580 003, India.
- REVA University, Rukmini Knowledge Park, Adminstrative Block, Kattigenahalli, Yelahanka, Bangalore, Karnataka, 560064, India.
| |
Collapse
|
9
|
Zhou J, Wen H, Ke F, Shi D, Brisky AA, Wang N, Zhu L, Qiu X, Liang D. Capsules with a hierarchical shell structure assembled by aminoglycosides and DNA via the kinetic path. Chem Commun (Camb) 2015; 50:9525-8. [PMID: 25011694 DOI: 10.1039/c4cc03508a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aminoglycosides are capable of expelling water molecules when forming a complex with DNA via electrostatic interaction. The "water-proof" nature of the complex leads to the formation of capsules, which possess hierarchical shell structures with a smooth and rigid outer layer and a viscoelastic inner layer.
Collapse
Affiliation(s)
- Jihan Zhou
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Wang F, Liu Z, Wang B, Feng L, Liu L, Lv F, Wang Y, Wang S. Multi-Colored Fibers by Self-Assembly of DNA, Histone Proteins, and Cationic Conjugated Polymers. Angew Chem Int Ed Engl 2013; 53:424-8. [DOI: 10.1002/anie.201308795] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 01/13/2023]
|
12
|
Wang F, Liu Z, Wang B, Feng L, Liu L, Lv F, Wang Y, Wang S. Multi-Colored Fibers by Self-Assembly of DNA, Histone Proteins, and Cationic Conjugated Polymers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Trachtenberg JE, Mountziaris PM, Kasper FK, Mikos AG. Fiber-Based Composite Tissue Engineering Scaffolds for Drug Delivery. Isr J Chem 2013. [DOI: 10.1002/ijch.201300051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3867-74. [PMID: 23586616 DOI: 10.1021/am4005495] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recently, graphene oxide (GO) based nanocomposites have raised significant interests in many different areas, one of which being antibacterial agents where sliver nanoparticle (AgNPs) anchored GO (GO-Ag) has shown promising potential. However, to our best knowledge, factors affecting its antibacterial activity as well as the underlying mechanism remain unclear. In this study, we fabricate GO-Ag nanocomposites with different AgNPs to GO ratios and carefully investigate their antibacterial activities against both the Gram-negative (G-) bacteria Escherichia coli ( E. coli ) and the Gram-positive (G+) bacteria Staphylococcus aureus ( S. aureus ). We discover that, compared to AgNPs, GO-Ag nanocomposite with an optimal ratio of AgNPs to GO is much more effective and shows synergistically enhanced, strong antibacterial activities at rather low dose (2.5 μg/mL). The GO-Ag nanocomposite is more toxic to E. coli than that to S. aureus . The antibacterial effects of GO-Ag nanocomposite are further investigated, revealing distinct, species-specific mechanisms. The results demonstrate that GO-Ag nanocomposite functions as a bactericide against the G- E. coli through disrupting bacterial cell wall integrity, whereas it exhibits bacteriostatic effect on the G+ S. aureus by dramatically inhibiting cell division. Our work not only highlights the great promise of using GO-Ag as a highly effective antibacterial agent but also provides more in-depth understandings of the interactions between microorganisms and GO-based nanocomposites.
Collapse
Affiliation(s)
- Jia Tang
- Institute of Functional aNano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | | | | | | | |
Collapse
|