1
|
Mayer F, Laa D, Koch T, Stampfl J, Liska R, Ehrmann K. Rapid 3D printing of unlayered, tough epoxy-alcohol resins with late gel points via dual-color curing technology. MATERIALS HORIZONS 2025; 12:1494-1503. [PMID: 39665675 DOI: 10.1039/d4mh01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Additive manufacturing technologies and, in particular, vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer via multifunctional alcohols, are a typical example of resins with late gel points, which require long irradiation times and high light intensities to print. Therefore, we have developed a dual-colour printing approach where rapid radical curing of a soft, wide-meshed polymer network facilitates fast and easy 3D structuring of the subsequently slow curing step-growth formulation at an orthogonal initiation-wavelength regime. Thereby the methacrylate system acts as a scaffold for an uncured epoxide alcohol system during the printing process, which is then cured with UV light post-printing. This way tough alcohol-regulated epoxy-systems become accessible to vat photopolymerization achieving outstanding high-resolution 3D printed parts without significant layering effects. The demonstrated wide-meshed matrix-assisted printing approach has the potential to make a multitude of slowly curing resins accessible to vat photopolymerization techniques, at low irradiation intensities and high curing speeds.
Collapse
Affiliation(s)
- Florian Mayer
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Dominik Laa
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Thomas Koch
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Jürgen Stampfl
- Institute of Materials Science and Technology, Technische Universität Wien, Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| | - Katharina Ehrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
2
|
Ma Y, Dreiling RJ, Recker EA, Kim JW, Shankel SL, Hu J, Easley AD, Page ZA, Lambert TH, Fors BP. Multimaterial Thermoset Synthesis: Switching Polymerization Mechanism with Light Dosage. ACS CENTRAL SCIENCE 2024; 10:2125-2131. [PMID: 39634213 PMCID: PMC11613345 DOI: 10.1021/acscentsci.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators. Upon exposure to a low dose of light, the photobuffer inhibits the cationic polymerization, while radical polymerization is initiated. With an increased light dosage, the buffer system saturates, leading to the formation of a strong acid that initiates a cationic polymerization of the dormant monomer. Applying this strategy, patterning is achieved by spatially varying light dosage via irradiation time or intensity allowing for simple construction of multimaterial thermosets. Importantly, by the addition of an inexpensive photobuffer, such as tetrabutylammonium chloride, commercially available resins can be implemented in grayscale vat photopolymerization 3D printing to prepare sophisticated multimodulus constructs.
Collapse
Affiliation(s)
- Yuting Ma
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Reagan J. Dreiling
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth A. Recker
- Department
of Chemical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Ji-Won Kim
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Shelby L. Shankel
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Jenny Hu
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Alexandra D. Easley
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Zachariah A. Page
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712, United States
| | - Tristan H. Lambert
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Brett P. Fors
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Li J, Zheng Z, Ma Y, Dong Z, Li MH, Hu J. Mechanically Ultra-Robust Fluorescent Elastomer for Elaborating Auxetic Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402130. [PMID: 38678509 DOI: 10.1002/smll.202402130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Fluorescent elastomers are predominantly fabricated through doping fluorescent components or conjugating chromophores into polymer networks, which often involves detrimental effects on mechanical performance and also makes large-scale production difficult. Inspired by the heteroatom-rich microphase separation structures assisted by intensive hydrogen bonds in natural organisms, an ultra-robust fluorescent polyurethane elastomer is reported, which features a remarkable fracture strength of 87.2 MPa with an elongation of 1797%, exceptional toughness of 678.4 MJ m-3 and intrinsic cyan fluorescence at 445 nm. Moreover, the reversible fluorescence variation with temperature could in situ reveal the microphase separation of the elastomer in real time. By taking advantage of mechanical properties, intrinsic fluorescence and hydrogen bonds-promoted interfacial bonding ability, this fluorescent elastomer can be utilized as an auxetic skeleton for the elaboration of an integrated auxetic composite. Compared with the auxetic skeleton alone, the integrated composite shows an improved mechanical performance while maintaining auxetic deformation in a large strain below 185%, and its auxetic process can be visually detected under ultraviolet light by the fluorescence of the auxetic skeleton. The concept of introducing hydrogen-bonded heteroatom-rich microphase separation structures into polymer networks in this work provides a promising approach to developing fluorescent elastomers with exceptional mechanical properties.
Collapse
Affiliation(s)
- Jiawei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yaning Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhaoxing Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Chaoyang District, Changchun, 130022, China
| |
Collapse
|
4
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Jia Y, Qian J, Hao S, Zhang S, Wei F, Zheng H, Li Y, Song J, Zhao Z. New Prospects Arising from Dynamically Crosslinked Polymers: Reprogramming Their Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313164. [PMID: 38577834 DOI: 10.1002/adma.202313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Dynamically crosslinked polymers (DCPs) have gained significant attention owing to their applications in fabricating (re)processable, recyclable, and self-healable thermosets, which hold great promise in addressing ecological issues, such as plastic pollution and resource scarcity. However, the current research predominantly focuses on redefining and/or manipulating their geometries while replicating their bulk properties. Given the inherent design flexibility of dynamic covalent networks, DCPs also exhibit a remarkable potential for various novel applications through postsynthesis reprogramming their properties. In this review, the recent advancements in strategies that enable DCPs to transform their bulk properties after synthesis are presented. The underlying mechanisms and associated material properties are overviewed mainly through three distinct strategies, namely latent catalysts, material-growth, and topology isomerizable networks. Furthermore, the mutual relationship and impact of these strategies when integrated within one material system are also discussed. Finally, the application prospects and relevant issues necessitating further investigation, along with the potential solutions are analyzed.
Collapse
Affiliation(s)
- Yunchao Jia
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingjing Qian
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Senyuan Hao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Shijie Zhang
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Fengchun Wei
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Hongjuan Zheng
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Yilong Li
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| | - Jingwen Song
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Ave., Zhengzhou, 450001, P. R. China
| | - Zhiwei Zhao
- School of Materials Science and Engineering, Henan University of Technology, 100 Lianhua St., Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Greenlee A, Weitekamp RA, Foster JC, Leguizamon SC. PhotoROMP: The Future Is Bright. ACS Catal 2024; 14:6217-6227. [PMID: 38660608 PMCID: PMC11036397 DOI: 10.1021/acscatal.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Since the earliest investigations of olefin metathesis catalysis, light has been the choice for controlling the catalyst activity on demand. From the perspective of energy efficiency, temporal and spatial control, and selectivity, photochemistry is not only an attractive alternative to traditional thermal manufacturing techniques but also arguably a superior manifold for advanced applications like additive manufacturing (AM). In the last three decades, pioneering work in the field of ring-opening metathesis polymerization (ROMP) has broadened the scope of material properties achievable through AM, particularly using light as both an activating and deactivating stimulus. In this Perspective, we explore trends in photocontrolled ROMP systems with an emphasis on approaches to photoinduced activation and deactivation of metathesis catalysts. Recent work has yielded a myriad of commercial and synthetically accessible photosensitive catalyst systems, although comparatively little attention has been paid to achieving precise control over polymer morphology using light. Metal-free, photophysical, and living ROMP systems have also been relatively underexplored. To take fuller advantage of both the thermomechanical properties of ROMP polymers and the operational simplicity of photocontrol, clear directions for the field are to improve the reversibility of activation and deactivation strategies as well as to further develop photocontrolled approaches to tuning cross-link density and polymer tacticity.
Collapse
Affiliation(s)
- Andrew
J. Greenlee
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Jeffrey C. Foster
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
States
| | | |
Collapse
|
7
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
8
|
Rapp J, Borden MA, Bhat V, Sarabia A, Leibfarth FA. Continuous Polymer Synthesis and Manufacturing of Polyurethane Elastomers Enabled by Automation. ACS POLYMERS AU 2024; 4:120-127. [PMID: 38618002 PMCID: PMC11010252 DOI: 10.1021/acspolymersau.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 04/16/2024]
Abstract
Connecting polymer synthesis and processing is an important challenge for streamlining the manufacturing of polymeric materials. In this work, the automated synthesis of acrylate-capped polyurethane oligomers is integrated with vat photopolymerization 3D printing. This strategy enabled the rapid manufacturing of a library of polyurethane-based elastomeric materials with differentiated thermal and mechanical properties. The automated semicontinuous batch synthesis approach proved enabling for resins with otherwise short shelf lives because of the intimate connection between synthesis, formulation, and processing. Structure-property studies demonstrated the ability to tune properties through systematic alteration of cross-link density and chemical composition.
Collapse
Affiliation(s)
- Johann
L. Rapp
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Meredith A. Borden
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Vittal Bhat
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Alexis Sarabia
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
9
|
Cheng X, Hu H, Bu L, Wu Y, Ma Z, Ma Z. Suppressive Photochromism and Promotive Mechanochromism of Rhodamine Mechanophore by the Strategy of Poly(methyl acrylate)/Polyurethane Interpenetrating Polymer Network. ACS Macro Lett 2024; 13:308-314. [PMID: 38373339 DOI: 10.1021/acsmacrolett.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
As molecular design and the structure-property relationships of photochemical molecules established in the literature serve as a convenient reference for mechanophore exploration, many typical mechanophores suffer undesired responses to UV light or even sunlight in bulk polymers. We developed a strategy of a poly(methyl acrylate)/polyurethane (PMA/PU) interpenetrating polymer network (IPN) to suppress the photochromic property of the mechanophore and promote its mechanochromic property. A widely used rhodamine mechanophore (Rh-2OH) was first incorporated into polyurethane (P1). Then P1 was swollen in methyl acrylate and photopolymerized to prepare a PMA2.8/PU IPN (P2). Different from photo/force-responsive P1, P2 selectively responded to force because the low free volume in IPN greatly hinders photoisomerization of the rhodamine spirolactam, suggesting that a simple IPN strategy successfully resolves the giant problem of nonselective response to photo/force for photochromic mechanophores. Moreover, PMA/PU IPN enhanced the mechanical property, resulting in a higher mechanochemical activation ratio than PU, and the prestretching effect of PMA/PU IPN promoted the force sensitivity of rhodamine mechanophores significantly. We believe that the strategy can be applied to other mechanophores, promoting their application in more complicated environments.
Collapse
Affiliation(s)
- Xin Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Bu
- Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Yu Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Wang H, Chen R, Song D, Sun G, Yu J, Liu Q, Liu J, Zhu J, Liu P, Wang J. Silicone-modified polyurea-interpenetrating polymer network fouling release coatings with excellent wear resistance property tailored to regulations. J Colloid Interface Sci 2024; 653:971-980. [PMID: 37776724 DOI: 10.1016/j.jcis.2023.09.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
The invasion of alien species via marine organisms attaching to the surfaces of ship hulls is a growing problem. A number of countries have introduced corresponding regulations to combat ship biofouling. One effective way to solve this problem is to apply a fouling release coating with excellent wear resistance. In this study, a silicone-modified polyaspartic ester polyurea was synthesized by a simultaneous crosslinking polymerization. Polyaspartic ester polyurea is employed to form a tightly cross-linked network with excellent toughness and outstanding adhesion, while polydimethylsiloxane is used to form a relatively soft cross-linked network with low surface energy and surface elasticity modulus. Polyurea and silicone molecular chain lock onto each other to form interpenetrating polymer network (IPN) through their respective polymerization systems and cross-linking processes. The synergy between silicone and polyurea provides excellent mechanical properties as well as fouling release performance through the locking mechanism. This study provides a promising and universal strategy for the development of fouling release coatings with excellent wear resistance.
Collapse
Affiliation(s)
- Hongxia Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China.
| | - Dalei Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Gaohui Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Nanhai Institute of Harbin Engineering University, Hainan 572024, China
| |
Collapse
|
12
|
Zheng Z, Li J, Wei K, Tang N, Li MH, Hu J. Bioinspired Integrated Auxetic Elastomers Constructed by a Dual Dynamic Interfacial Healing Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304631. [PMID: 37436838 DOI: 10.1002/adma.202304631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Auxetic materials are appealing due to their unique characteristics of transverse expansion while being axially stretched. Nevertheless, current auxetic materials are often produced by the introduction of diverse geometric structures through cutting or other pore-making processes, which heavily weaken their mechanical performance. Inspired by the skeleton-matrix structures in natural organisms, this study reports an integrated auxetic elastomer (IAE) composed of high-modulus cross-linked poly(urethane-urea) as a skeleton and low-modulus non-cross-linked poly(urethane-urea) as a complementary-shape matrix. Benefiting from disulfide bonds and hydrogen-bond-promoted dual dynamic interfacial healing, the resulting IAE is flat, void-free, and has no sharp soft-to-hard interface. Its fracture strength and elongation at the break are increased to 400% and 150%, respectively, of the values of corrugated re-entrant skeleton alone, while the negative Poisson's ratio (NPR) reserves within a strain range of 0%-104%. In addition, the advantageous mechanical and auxetic properties of this elastomer are further confirmed by finite element analysis. The concept of combining two dissimilar polymers into an integrated hybrid material solves the problem of the deterioration in mechanical performance of auxetic materials after subtractive manufacturing, while preserves the NPR effect in a large deformation, which provides a promising approach to robust auxetic materials for engineering applications.
Collapse
Affiliation(s)
- Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Jiawei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Kailun Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
13
|
Kabra M, Kloxin CJ. CuAAC-methacrylate interpenetrating polymer network (IPN) properties modulated by visible-light photoinitiation. Polym Chem 2023; 14:3739-3748. [PMID: 37663952 PMCID: PMC10470441 DOI: 10.1039/d3py00507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Interpenetrating polymer networks (IPNs) are a class of materials with interwoven polymers that exhibit unique blended or enhanced properties useful to a variety of applications, ranging from restorative protective materials to conductive membranes and hydrophobic adhesives. The IPN formation kinetics can play a critical role in the development of the underlying morphology and in turn the properties of the material. Dual photoinitiation of copper-catalyzed azide-alkyne (CuAAC) and radical mediated methacrylate polymerization chemistries enable the manipulation of IPN microstructure and properties by controlling the kinetics of IPN formation via the intensity of the initiating light. Specifically, azide and alkyne-based polyethylene glycol monomers and tetraethylene glycol dimethacrylate (TEGDMA) were polymerized in a single pot to form IPNs and the properties were evaluated as a function of the photoinitiating light intensity. Morphological differences as a function of intensity were observed in the IPNs as determined by thermomechanical properties and phase-contrast imaging in tapping mode atomic force microscopy (AFM). At moderate intensities (20 mW/cm2) of visible light (470 nm), the TEGDMA polymerization gels first and therefore forms the underlying network scaffold. At low intensities (0.2 mW/cm2), the CuAAC polymerization can gel first. The ability to switch sequence of gelation and IPN trajectory (simultaneous vs. sequential), affords control over phase separation behavior. Thus, light not only allows for spatial and temporal control over the IPN formation but also provides control over their thermomechanical properties, representing a route for facile IPNs design, synthesis, and application.
Collapse
Affiliation(s)
- Mukund Kabra
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Christopher J Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|