1
|
Fayaz F, Ganie MA, Kumar S, Raheem S, Rizvi MA, Shah BA. Modular access to sulfur substituted analogues of isocytosine via photoredox catalysis. Chem Commun (Camb) 2024; 60:8256-8259. [PMID: 39011863 DOI: 10.1039/d4cc02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A photoredox approach for synthesizing sulfur-substituted analogues of isocytosine via coupling of modular phenyl propargyl chloride with thiourea has been reported. The resulting product with an amine group was found amenable to various late-stage modifications, providing access to a broad range of sulfur-containing isocytosine derivatives.
Collapse
Affiliation(s)
- Faheem Fayaz
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
2
|
Kalhor M, Vahedi Z, Gharoubi H. Design of a new method for one-pot synthesis of 2-amino thiazoles using trichloroisocyanuric acid in the presence of a novel multi-functional and magnetically catalytic nanosystem: Ca/4-MePy-IL@ZY-Fe 3O 4. RSC Adv 2023; 13:9208-9221. [PMID: 36950710 PMCID: PMC10026822 DOI: 10.1039/d3ra00758h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
In this study, an effective approach was developed to synthesize a novel, multifunctional ionic liquid nanocatalyst based on zeolite-Y with 4-methylpyridinium chloride (4-MePy-Cl) and calcium ions (Ca/4-MePy-IL@ZY). Then, Fe3O4 nanoparticles were produced inside the zeolite pores with the use of ultrasonic waves. XRD, FESEM, FT-IR, EDX-Map, TGA-DTA, VSM, BET, and atomic absorption techniques were used to identify the structure of the magnetic nanocomposite. Then, its catalytic activity in the one-pot synthesis of 2-aminothiazoles using trichloroisocyanuric acid (TCCA) as a green supplier of halogen ions for intermediates was studied. To provide ideal conditions for the preparation of pure products, first, the one-pot reaction of acetophenone and thiourea in various solvents, different temperatures, and the presence of different amounts of nanocatalysts and the molar amount of TCCA was used. Next, the reaction was investigated in the one-pot preparation of 2-aminothiazole derivatives under optimal conditions. This method replaces iodine (I2), a toxic reagent, for the first time with TCCA, a safe and sustainable source of halogen. The use of non-toxic solvent and a cheap, safe, recyclable nanocatalyst, quick reaction times, high efficiency, and ease of nanocatalyst separation with the aid of a magnet are additional benefits of this method. This has led to this procedure being classified as "green chemistry".
Collapse
Affiliation(s)
- Mehdi Kalhor
- Department of Chemistry, Payame Noor University Tehran 19395-4697 Iran +98 2537179170 +98 2537179170
| | - Zahra Vahedi
- Department of Chemistry, Payame Noor University Tehran 19395-4697 Iran +98 2537179170 +98 2537179170
| | - Hanieh Gharoubi
- Department of Chemistry, Payame Noor University Tehran 19395-4697 Iran +98 2537179170 +98 2537179170
| |
Collapse
|
3
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Photoredox-Promoted Selective Synthesis of C-5 Thiolated 2-Aminothiazoles from Terminal Alkynes. Org Lett 2022; 24:7757-7762. [PMID: 36240126 DOI: 10.1021/acs.orglett.2c03064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild photoredox approach enabling the first one-step synthesis of thiolated 2-aminothiazoles has been reported. Notably, the incorporation of thio group on electron-rich heteroarenes such as aminothiazoles via conventional nucleophilic aromatic substitution (SNAr) presents a significant challenge owing to polarity mismatch. Herein, we present a remarkable site-selective installation of thio group at the C-5 position of the electron-rich aminothiazole skeleton and successfully used them for the postfunctionalization of drugs and natural products.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
4
|
Yuan L, Liu J, Huang K, Wang S, Jin Y, Lin J. Cascade Reaction of Tertiary Enaminones, KSCN, and Anilines: Temperature-Controlled Synthesis of 2-Aminothiazoles and 2-Iminothiazoline. J Org Chem 2022; 87:9171-9183. [PMID: 35786913 DOI: 10.1021/acs.joc.2c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-pot cascade strategy for the synthesis of 2-aminothiazole derivatives by tertiary enaminones, KSCN, and anilines was developed. By changing the reaction temperature, the three-component reaction could be transformed in different ways to obtain moderate to good yields of polysubstituted 2-aminothiazoles and 2-iminothiazolines. This protocol provides an efficient and concise approach to accessing 2-aminothiazole derivatives with potential bioactivity from readily accessible building blocks and reagents.
Collapse
Affiliation(s)
- Liu Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jin Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Kun Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Siyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
5
|
Matsui D, Tanimori S. A quick and easy access to a series of thiocyanated enaminones and 2‐iminothiazolones using
PIDA
under mild conditions. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daiki Matsui
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1‐1 Gakuencho, Nakaku, Sakai Osaka Japan
| | - Shinji Tanimori
- Department of Applied Life Sciences Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1‐1 Gakuencho, Nakaku, Sakai Osaka Japan
| |
Collapse
|
6
|
Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. Photochemical and electrochemical regioselective cross-dehydrogenative C(sp 2)–H sulfenylation and selenylation of substituted benzo[ a]phenazin-5-ols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The essence of photo- and electrochemistry: sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols through cross-dehydrogenative C(sp2)–H functionalization.
Collapse
Affiliation(s)
- Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
7
|
Yu ZY, Zhao JN, Yang F, Tang XF, Wu YF, Ma CF, Song B, Yun L, Meng QW. Rose bengal as photocatalyst: visible light-mediated Friedel–Crafts alkylation of indoles with nitroalkenes in water. RSC Adv 2020; 10:4825-4831. [PMID: 35495280 PMCID: PMC9049176 DOI: 10.1039/c9ra09227g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
A novel and facile visible-light-mediated alkylation of indoles and nitroalkenes has been developed. In this protocol, rose bengal acts as a photosensitizer, and environmentally benign water was used as the green and efficient reaction medium. Indoles reacted smoothly with nitroalkenes under the irradiation of visible-light and generated corresponding 3-(2-nitroalkyl)indoles in moderate to good yields (up to 87%). A novel and facile visible-light-mediated alkylation of indoles and nitroalkenes has been developed.![]()
Collapse
Affiliation(s)
- Zong-Yi Yu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Jing-Nan Zhao
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Fan Yang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xiao-Fei Tang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Yu-Feng Wu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Cun-Fei Ma
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Bo Song
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Lei Yun
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Qing-Wei Meng
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|
8
|
Fu RG, Wang Y, Xia F, Zhang HL, Sun Y, Yang DW, Wang YW, Yin P. Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source. J Org Chem 2019; 84:12237-12245. [PMID: 31480831 DOI: 10.1021/acs.joc.9b02032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel one-pot three-component cascade cyclization strategy for the synthesis of 2-amino-5-acylthiazoles using enaminones, cyanamide, and elemental sulfur has been developed. The reported methods have demonstrated good tolerance of various functional groups. Up to 28 2-amino-5-acylthiazole compounds bearing diverse structural differences were successfully synthesized from easily obtained starting materials with moderate to excellent yields. Our method provides an effective way for the access of valuable and potentially bioactive 2-amino-5-acylthiazole derivatives.
Collapse
Affiliation(s)
- Rong-Geng Fu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yong Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Fei Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Hao-Lin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Yuan Sun
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Duo-Wen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Ye-Wei Wang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine and TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , People's Republic of China
| |
Collapse
|
9
|
Roslan II, Ng KH, Jaenicke S, Chuah GK. Photocatalytic regeneration of brominating agent in the visible light-mediated synthesis of imidazo[1,2-a]pyridines. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00141g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regenerating the brominating agent by erythrosine B closes a catalytic cycle for the construction of the imidazo[1,2-a]pyridine framework.
Collapse
Affiliation(s)
| | - Kian-Hong Ng
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Stephan Jaenicke
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Gaik-Khuan Chuah
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
10
|
Kong Y, Xu W, Ye F, Weng J. Recent Advances in Visible-Light-Induced Cross Dehydrogenation Coupling Reaction under Transition Metal-Free Conditions. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|