1
|
Guo W, Li K, Yu H, Chang C, Zhu J, Li Q, Jiang C. Background-free luminescent and chromatic assay for strong visual detection of creatinine. Talanta 2025; 287:127631. [PMID: 39870022 DOI: 10.1016/j.talanta.2025.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine. DNBA undergoes a specific colorimetric reaction with creatinine, quenching the green upconversion luminescence (UCL) while leaving the red UCL unaffected, thus constructing the luminescent and colorimetric sensing modes for creatinine. The designed near-infrared excited sensing system eliminates auto-fluorescence with a multi-output signal, thereby enhancing the sensitivity and convenience of creatinine detection. Under optimal conditions, the detection limit in the colorimetric mode is 26 nM, while the detection limit in the luminescent mode is 2 nM. Moreover, a portable sensing platform is further developed, demonstrating sensitive sensing performance and paving a new way for point-of-care testing (POCT) of human body fluid biomarkers.
Collapse
Affiliation(s)
- Wenshuai Guo
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Kangran Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China
| | - Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China.
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
2
|
Tong H, Ju Z, Shi R, Qiao X, Wang R, Wang F, Yan M, Deng R. Anomalously Large Luminescence Modulation Induced by Trace Lanthanide Impurities in Alloyed Upconversion Nanocrystals. ACS NANO 2025; 19:9971-9980. [PMID: 40044504 DOI: 10.1021/acsnano.4c16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Achieving precise control over emission characteristics, such as wavelength and lifetime, is critical to unlocking the full potential of luminescent nanomaterials for diverse applications. In this work, we present a strategy for fine-tuning the optical properties of upconversion nanocrystals by engineering parts-per-million (ppm)-doping-level lanthanide impurities. We show that even trace impurities (∼10 ppm, fewer than 10 atoms per nanocrystal), which are only a hundredth of the conventionally studied doping levels and were previously considered negligible, serve as efficient energy traps in energy migration-based upconversion processes. By introducing controlled trapping centers via minimal impurity doping, we successfully regulate the upconversion emission colors and lifetimes with high precision. Moreover, we find that high-purity nanocrystals exhibit significantly greater lifetime changes in response to surface interactions, enabling an energy-transfer-based ultrasensitive spectrum and lifetime sensing. This approach facilitates the development of upconversion-based DNA sensors with detection limits over an order of magnitude lower than those of conventional methods, highlighting the potential of these nanocrystals as highly effective nanoprobes for interference-resistant biosensing in complex environments.
Collapse
Affiliation(s)
- Huimin Tong
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhijie Ju
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Rui Shi
- Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| | - Xin Qiao
- Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| | - Ruojia Wang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, P. R. China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Meng X, Shen T, Zhang W, Luo R, Zhou J, Liao R, Zhao R, Cao C. Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho 3+ Ions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8191-8197. [PMID: 39835810 DOI: 10.1021/acsami.4c18871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho3+-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho3+ ions by improving the photon absorption ability and energy utilization efficiency. Efficient absorption and transfer of excitation light energy were achieved through carefully selected host materials, precisely controlled sensitizers, and the design of external energy antennas using organic dyes, enhancing upconversion luminescence. Due to the attenuation effect of hydroxyl vibration on upconversion luminescence, the nanomaterials exhibit multicolor luminescent characteristics in different solution environments. Significantly, the composites exhibit intense upconversion of red light in aqueous solution, showing great application potential in biomedicine and colorimetry.
Collapse
Affiliation(s)
- Xiaoyu Meng
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Tao Shen
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenbo Zhang
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Luo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Jiangjie Zhou
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruotong Liao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruibo Zhao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Cong Cao
- School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Smart Biomedical Materials and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| |
Collapse
|
4
|
Ghorpade KB, Agrawal S, Havelikar U. WITHDRAWN: Biomarker Detection and Therapy of Parkinson's and Alzheimer's disease using upconversion based approach: A Comprehensive Review. Ageing Res Rev 2025:102656. [PMID: 39788432 DOI: 10.1016/j.arr.2025.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India.
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002 (Uttar Pradesh), India
| | - Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India
| |
Collapse
|
5
|
Habermann S, Gerken LRH, Kociak M, Monachon C, Kissling VM, Gogos A, Herrmann IK. Cathodoluminescent and Characteristic X-Ray-Emissive Rare-Earth-Doped Core/Shell Protein Labels for Spectromicroscopic Analysis of Cell Surface Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404309. [PMID: 39246186 PMCID: PMC11600707 DOI: 10.1002/smll.202404309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min perμ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.
Collapse
Affiliation(s)
- Sebastian Habermann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 38092ZurichSwitzerland
- Laboratory for Particles Biology InteractionsDepartment Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014St. GallenSwitzerland
| | - Lukas R. H. Gerken
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 38092ZurichSwitzerland
- Laboratory for Particles Biology InteractionsDepartment Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014St. GallenSwitzerland
| | - Mathieu Kociak
- Université Paris‐Saclay, CNRSLaboratoire de Physique des SolidesOrsay91405France
| | | | - Vera M. Kissling
- Laboratory for Particles Biology InteractionsDepartment Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014St. GallenSwitzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 38092ZurichSwitzerland
- Laboratory for Particles Biology InteractionsDepartment Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014St. GallenSwitzerland
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 38092ZurichSwitzerland
- Laboratory for Particles Biology InteractionsDepartment Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 59014St. GallenSwitzerland
- The Ingenuity LabUniversity Hospital BalgristBalgrist Campus, Forchstrasse 3408008ZurichSwitzerland
- Faculty of MedicineUniversity of ZurichRämistrasse 748006ZurichSwitzerland
| |
Collapse
|
6
|
Ye M, Shen Y, Xiao Z, Li Y, Zhang Q, Lan Y, Zhu C, Zhou Y. A hemicyanine-modified upconversion nanoprobe for NIR-excited evaluating superoxide signaling in drug-induced liver injury. Anal Chim Acta 2024; 1325:343122. [PMID: 39244308 DOI: 10.1016/j.aca.2024.343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most important standard for the entrance of clinical drugs into the pharmaceutical market. The elevation of superoxide anion (O2•-) during drug metabolism can mediate apoptosis of hepatocytes and further generation of liver damage. Therefore, developing an effective imaging method for evaluating O2•- levels during DILI is of great importance. However, current reported O2•- fluorescent probes either use short excitation wavelengths or a single intensity detection system, limiting the accurate quantification of O2•- in deep tissue in vivo. RESULTS We developed a NIR-excited ratiometric nanoprobe (CyD-UCNPs) by assembly of O2•--sensitive hemicyanine dyes (CyD) on the surface of Tm/Er-codoped upconversion nanoparticles (UCNPs) with the assistance of α-cyclodextrin, which exhibited a robust "turn-on" ratiometric sensing signal. In vitro experiments indicated that CyD-UCNPs respond well to O2•- with high selectivity. Furthermore, by taking advantage of the outstanding optical properties produced by the luminescent resonance energy transfer between the UCNPs and CyD upon the excitation of 980 nm, the ratiometric upconversion luminescence signal of CyD-UCNPs was successfully utilized to monitor the fluctuation of O2•- levels under phorbol-12-myristate-13-acetate (PMA)/cisplatin-induced oxidative stress in living cells, liver tissues, and zebrafish. More importantly, endogenous change in O2•- levels in the liver sites of mice during DILI and its prevention with L-carnitine was visualized using CyD-UCNPs. SIGNIFICANCE This study provides a ratiometric NIR-excited imaging strategy for investigating the correlation between O2•- levels and DILI and its prevention, which is significant for early diagnosis of DILI and preclinical screening of anti-hepatotoxic drugs in vivo.
Collapse
Affiliation(s)
- Minan Ye
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuhan Shen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China
| | - Zhenghao Xiao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China
| | - Yuanjun Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China
| | - Qin Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuwei Lan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 11816, China.
| |
Collapse
|
7
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
8
|
Dash PP, Ghosh AK, Mohanty P, Behura R, Behera S, Jali BR, Sahoo SK. Advances on fluorescence chemosensors for selective detection of water. Talanta 2024; 275:126089. [PMID: 38608343 DOI: 10.1016/j.talanta.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Water, although an important part of everyday life, is acts as one of the most significant contaminants in various applications such as biomedical monitoring, chemical production, petroleum-based fuel and food processing. In fact, the presence of water in other solvents is a huge concern. For the quantification of trace water content, different methods such as Karl-Fischer, electrochemical, nuclear magnetic resonance, chromatography, and thermogravimetric analysis have been used. Although every technique has its own benefit, each one suffers from several drawbacks that include high detection costs, lengthy procedures and specialized operations. Nowadays, the development of fluorescence-based chemical probes has become an exciting area of research for the quick and accurate estimation of water content in organic solvents. A variety of chemical processes such as hydrolysis reaction, metal ions promoted oxidation reaction, suppression of the -C═N isomerization, protonation and deprotonation reactions, and molecular aggregation have been well researched in the last few years for the fluorescent detection of trace water. These chemical processes eventually lead to different photophysical events such as aggregation-induced emission (AIE), aggregation-induced emission enhancement (AIEE), aggregation-caused quenching (ACQ), fluorescent resonance energy transfer (FRET), charge transfer, photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT) that are responsible for the detection. This review presents a summary of the fluorescence-based chemosensors reported in recent years. The design of water sensors, sensing mechanisms and their potential applications are reviewed and discussed.
Collapse
Affiliation(s)
- Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Arup Kumar Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rubi Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sunita Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
9
|
Hassan Akhtar M, Azhar Hayat Nawaz M, Abbas M, Liu N, Han W, Lv Y, Yu C. Advances in pH Sensing: From Traditional Approaches to Next-Generation Sensors in Biological Contexts. CHEM REC 2024; 24:e202300369. [PMID: 38953343 DOI: 10.1002/tcr.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Indexed: 07/04/2024]
Abstract
pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.
Collapse
Affiliation(s)
- Mahmood Hassan Akhtar
- College of Animal Science, Jilin University, Changchun, 130062, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS, University Islamabad, 54000, Lahore, Campus, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ning Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yan Lv
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Selva Sharma A, Marimuthu M, Varghese AW, Wu J, Xu J, Xiaofeng L, Devaraj S, Lan Y, Li H, Chen Q. A review of biomolecules conjugated lanthanide up-conversion nanoparticles-based fluorescence probes in food safety and quality monitoring applications. Crit Rev Food Sci Nutr 2024; 64:6129-6159. [PMID: 36688820 DOI: 10.1080/10408398.2022.2163975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Upconversion nanoparticles (UCNPs) are known to possess unique characteristics, which allow them to overcome a number of issues that plague traditional fluorescence probes. UCNPs have been employed in a variety of applications, but it is arguably in the realm of optical sensors where they have shown the most promise. Biomolecule conjugated UCNPs-based fluorescence probes have been developed to detect and quantify a wide range of analytes, from metal ions to biomolecules, with great specificity and sensitivity. In this review, we have given much emphasis on the recent trends and progress in the preparation strategies of bioconjugated UCNPs and their potential application as fluorescence sensors in the trace level detection of food industry-based toxicants and adulterants. The paper discusses the preparation and functionalisation strategies of commonly used biomolecules over the surface of UCNPs. The use of different sensing strategies namely heterogenous and homogenous assays, underlying fluorescence mechanisms in the detection process of food adulterants are summarized in detail. This review might set a precedent for future multidisciplinary research including the development of novel biomolecules conjugated UCNPs for potential applications in food science and technology.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Murugavelu Marimuthu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Department of Science & Humanities, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Amal Wilson Varghese
- Division of Molecular Medicine, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojapura, Thiruvananthapuram, India
| | - Jizong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Jing Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Luo Xiaofeng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yang Lan
- Jiangxi Wuyuan Tea Vocational College, Jiangxi, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
11
|
Zhao X, Lu Y, Li B, Kong M, Sun Y, Li H, Liu X, Lu G. Self-ratiometric fluorescent platform based on upconversion nanoparticles for on-site detection of chlorpyrifos. Food Chem 2024; 439:138100. [PMID: 38041885 DOI: 10.1016/j.foodchem.2023.138100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Monitoring organophosphorus pesticides is significant for food safety assessment. Herein, we developed upconversion nanoparticles (UCNPs)-based self-ratiometric fluorescent platform for the detection of chlorpyrifos. The UCNPs have the ability to confine the detection and reference functions in one nanoparticle. Specifically, the blue upconversion (UC) emission (448 nm) in the shell layer of UCNPs is quenched by the product of the acetylcholinesterase-mediated reaction, while the red UC emission (652 nm) from the core remains constant as a self-calibrated reference signal. Employing the inhibition property of chlorpyrifos, self-proportional fluorescence is employed to detect chlorpyrifos. As proof-of-concept, test strips are fabricated by loading the UCNPs onto filter paper. Combined with the smartphone and image-processing algorithm, chlorpyrifos quantitative testing is achieved with a detection limit of 14.4843 ng mL-1. This portable platform displays anti-interference capability and high stability in the complicated matrix, making it an effective candidate for on-site application.
Collapse
Affiliation(s)
- Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Li
- Colorectal & Anal Surgery Department, General Surgery Center, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin Province 130021, People's Republic of China
| | - Minghui Kong
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China; Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China.
| | - Xiaomin Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
12
|
Zeng J, Zhang T, Liang G, Mo J, Zhu J, Qin L, Liu X, Ni Z. A "turn off-on" fluorescent sensor for detection of Cr(Ⅵ) based on upconversion nanoparticles and nanoporphyrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124002. [PMID: 38364512 DOI: 10.1016/j.saa.2024.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Hexavalent chromium (Cr(Ⅵ)) is a significant environmental pollutant because of its toxic and carcinogenic properties and wide use in various industries. Hence, there is an urgent need to develop accurate and selective approaches to detect the concentration of Cr(Ⅵ) in agricultural and aquaculture products to help humans avoid potential hazards of indirectly taking in Cr(Ⅵ). In this work, we report a "turn off-on" fluorescent sensor based on citric acid coated, 808 nm-excited core-shell upconversion nanoparticles (CA-UCNPs) and self-assembled copper porphyrin nanoparticles (nano CuTPyP) for sensitive and specific detection of Cr(Ⅵ). Nano copper 5, 10, 15, 20-tetra(4-pyridyl)-21H-23H- porphine obtained by acid-base neutralization micelle-confined self-assembly method function as an effective quencher due to its excellent optical property and water solubility. Through electrostatic interactions, positively charged nano CuTPyP are attracted to the surface of negatively charged CA-UCNPs, which can almost completely quench the fluorescence emission. In the presence of Cr(Ⅵ), nano CuTPyP can discriminatively interact with Cr(Ⅵ) and form nano CuTPyP/Cr(Ⅵ) complex, which separates nano CuTPyP from CA-UCNPs and restores the fluorescence. The sensing system exhibits a good linear response to Cr(Ⅵ) concentration in the range from 0.5 to 400 µM with a detection limit of 0.36 µM. The sensing method also displays high selectivity against other common ions including trivalent chromium and is applied to the analysis of Cr(Ⅵ) in actual rice and fish samples with satisfactory results.
Collapse
Affiliation(s)
- Jiaying Zeng
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Jingwen Mo
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Jianxiong Zhu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Longhui Qin
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaojun Liu
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhonghua Ni
- Engineering Research Center of New Light Sources Technology & Equipment-Ministry of Education, Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
13
|
Zhao T, Wu D, Zhang X, Lyu H. A fluorescent sensor based on single band bright red luminescent core-shell UCNPs for the high-sensitivity detection of glucose and glutathione. Anal Chim Acta 2024; 1295:342323. [PMID: 38355224 DOI: 10.1016/j.aca.2024.342323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
As the reliable biomarkers to evaluate the diabetes and neurological disease, sensitive and accurate detection of glucose and glutathione (GSH) in biological samples is necessary for early precaution and diagnosis of related-diseases. The single red upconversion nanoparticles (UCNPs) especially with core-shell structure can penetrate deeper biological tissues and cause less energy loss and thus have higher sensitivity and accuracy. Additionally, an enzyme-controlled cascade signal amplification (ECSAm) strategy will further enhance sensitivity. Herein, using single red UCNPs with core-shell structure as the luminescent material, a fluorescent sensor based on ECSAm was developed for the highly sensitive and accurate detection of glucose and GSH. Under the optimal conditions, the limits of detection for glucose and GSH by fluorescent method were 0.03 μM and 0.075 μM, separately. This assay was used to analyze the content of glucose and GSH in serum samples, and the obtained data was close to that of commercial blood glucose and GSH detection kit. The developed sensor platform based on single red UCNPs with core-shell structure and ECSAm can be a promising method for the accurate and sensitive detection of glucose and GSH in biological samples.
Collapse
Affiliation(s)
- Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dongzhi Wu
- Department of Orthopedics Institute, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, China; Department of Orthopedics Institute, Fuzhou Second Hospital, Fuzhou, 350007, China
| | - Xuecheng Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
14
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
15
|
Liu T, Liu X, Feng Y, Yao CJ. Advances in plasmonic enhanced luminenscence of upconversion nanoparticles. MATERIALS TODAY CHEMISTRY 2023; 34:101788. [DOI: 10.1016/j.mtchem.2023.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Wu X, Liang H, Li C, Zhou D, Liu R. A hyperthermia-enhanced nanocatalyst based on asymmetric Au@polypyrrole for synergistic cancer Fenton/photothermal therapy. RSC Adv 2023; 13:29061-29069. [PMID: 37799302 PMCID: PMC10548105 DOI: 10.1039/d3ra04779b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
The specific tumor microenvironment is a conducive breeding ground for malignant tumors, favoring their survival, rapid proliferation, and metastasis, which is also an inevitable obstacle to tumor treatment, particularly for catalytic therapy. To address this issue, a hyperthermia-enhanced nanocatalyst (AuP@MnO2) consisting of an asymmetric Au@polypyrrole core and a MnO2 shell is constructed for synergistic cancer Fenton/photothermal therapy. In an ultra-short reaction time (15 min), the innovative introduction of a new oxidizer, tetrachloroauric acid trihydrate, not only successfully initiates the oxidative polymerization of pyrrole monomer while reducing itself to cubic Au, but also accelerates the polymerization process by supplying protic acid. After MnO2 coating, AuP@MnO2 catalyzes the conversion of antioxidant GSH and excess H2O2 into GSSG and ˙OH through Mn2+/Mn4+ ion couples, leading to oxidative damage of tumor cells. More importantly, after 1064 nm laser irradiation, more extreme oxidative imbalance and cell death are demonstrated in this work under the combined effect of photothermal and catalytic therapy, with insignificant toxicity to normal cells. This work develops an efficient one-step synthesis method of asymmetric Au@polypyrrole and provides constructive insight into its oxidative stress-based antitumor treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Radiation Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region Nanning 530000 China
| | - Huazhen Liang
- The First Tumor Department, Maoming People's Hospital Maoming 525000 China
| | - Chaoming Li
- The First Tumor Department, Maoming People's Hospital Maoming 525000 China
| | - Duanyang Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University Shenzhen 518000 China
| | - Rui Liu
- Department of Joint Surgery and Sports Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region Nanning 530000 China
| |
Collapse
|
17
|
Zhang Y, Zhang W, Zhang X, Zhou Y. Erbium-ytterbium containing upconversion mesoporous bioactive glass microspheres for tissue engineering: luminescence monitoring of biomineralization and drug release. Acta Biomater 2023; 168:628-636. [PMID: 37454706 DOI: 10.1016/j.actbio.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The development of functional biomaterials with real-time monitoring of mineralization processes, drug release and biodistribution has potential applications but remains an unsolved challenge. Herein, erbium- and ytterbium- containing mesoporous bioactive glass microspheres (MBGs:Er/Yb) with blue and red emission at an excitation wavelength of 980 nm were synthesized by a sol-gel combined with organic template method. As the concentration of Yb3+ ions gradually increases, the emission intensity of the MBGs:Er/Yb exhibits a clear concentration quenching effect. Combined with in vitro bioactivity tests, the optimal molar ratio of Er3+/Yb3+ was determined to be 4:3. Therefore, MBGs:4Er/3Yb was selected for in vitro biomineralization and drug release monitoring. The results of biomineralization monitoring show that the upconversion luminescence intensity is closely related to the degree of biomineralization. The upconversion luminescence intensity of MBGs:4Er/3Yb is quenched with the increase of the degree of biomineralization. The degree of luminescence quenching during biomineralization can be semiquantized. Drug release monitoring experiments showed that the anticancer drug doxorubicin hydrochloride (DOX) was successfully loaded into MBGs:4Er/3Yb and selectively quenched the green emission. When DOX was released, the green emission recovered stably, and It/I0 increased gradually. Moreover, there was a linear relationship between It/I0 and cumulative drug release, indicating that DOX-MBGs:4Er/3Yb is highly sensitive to DOX release, and monitoring the It/I0 values of DOX-MBGs:4Er/3Yb can achieve real-time tracking of the DOX release process to a certain extent. In conclusion, MBGs:4Er/3Yb has potential application as an upconversion luminescence biomonitoring material in the field of bone tissue engineering. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glasses have great potential for applications in bone tissue repair due to their excellent biological properties, but the effective information of the repair process cannot be grasped in a timely manner. Therefore, real-time monitoring of mineralization and drug release processes will be beneficial to obtain the degree of healing and optimize the amount and distribution of drugs to improve targeted therapeutic effects. For biomaterials, in vitro biological properties determine their biological properties in vivo, where the environment is more complex and diverse, and thus in vitro biomonitoring is particularly crucial. The organic combination of physical properties and biological properties will also provide a feasible idea for the development of biomaterials.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaona Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
18
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
19
|
Zarghami A, Dolatyari M, Mirtagioglu H, Rostami A. High-efficiency upconversion process in cobalt and neodymium doped graphene QDs for biomedical applications. Sci Rep 2023; 13:10277. [PMID: 37355717 PMCID: PMC10290654 DOI: 10.1038/s41598-023-37518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Multiphoton absorbing upconversion nanoparticles are emerging as bioimaging materials but are limited by the low quantum yield of their visible fluorescence. This article contains colloids of graphene quantum dots (GQDs), Neodymium, and Cobalt doped Graphene Quantum dots (Co-GQDs and Nd-GQDs) surrounded by carboxylic acids are synthesized which especially are suitable for bio applications; in this way, carboxylic acid groups exchanged by Amoxicillin as an antibiotic with bactericidal activity. The XRD diffraction method, TEM microscope, UV-Vis, and photoluminescence spectroscopies characterize the synthesized materials. The synthesized Quantum dots (QDs) exhibit upconversion properties and their emission is centered at 480 nm, but a red shift was observed with the increase of the excitation wavelength. In the emission spectra of synthesized QDs that can be related to the defect levels introduced by passivation of the QDs in the structure, the results show that with the interaction of the surface QDs with more carboxylic groups, the redshift is not observed. As the results indicate an increase in the intensity of upconversion emission is recorded for Co-GQDs and Nd-GQDs. The absolute quantum efficiency (QY) for Co-GQDs and Nd-GQDs were determined to be 41% and 100% more than GQDs respectively. DFT calculations indicate a strong bond between graphene and cobalt and Neodymium atoms. In doped materials, there are trap levels between the band gap of the GQDs which are responsible for increasing the intensity of the upconversion phenomenon.
Collapse
Affiliation(s)
- Armin Zarghami
- Photonics and Nanocrystal Research Lab. (PNRL), University of Tabriz, Tabriz, 5166614761, Iran
| | - Mahboubeh Dolatyari
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran
| | - Hamit Mirtagioglu
- Department of Statistics, Faculty of Science and Literature, University of Bitlis Eren, Bitlis, Turkey
| | - Ali Rostami
- Photonics and Nanocrystal Research Lab. (PNRL), University of Tabriz, Tabriz, 5166614761, Iran.
- SP-EPT Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
| |
Collapse
|
20
|
Khosh Abady K, Dankhar D, Krishnamoorthi A, Rentzepis PM. Enhancing the upconversion efficiency of NaYF 4:Yb,Er microparticles for infrared vision applications. Sci Rep 2023; 13:8408. [PMID: 37225762 DOI: 10.1038/s41598-023-35164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023] Open
Abstract
In this study, (NaYF4:Yb,Er) microparticles dispersed in water and ethanol, were used to generate 540 nm visible light from 980 nm infrared light by means of a nonlinear stepwise two-photon process. IR-reflecting mirrors placed on four sides of the cuvette that contained the microparticles increased the intensity of the upconverted 540 nm light by a factor of three. We also designed and constructed microparticle-coated lenses that can be used as eyeglasses, making it possible to see rather intense infrared light images that are converted to visible.
Collapse
Affiliation(s)
- Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Dinesh Dankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
21
|
Chen H, Li Q, Hu B, Zhu W, Xia H, Yang W. Analyte-triggered cascade signal amplification strategy for highly sensitive detection of iodate in table salt with dual-readout signals. Talanta 2023; 261:124661. [PMID: 37201339 DOI: 10.1016/j.talanta.2023.124661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A novel and highly sensitive upconversion fluorescence and colorimetric dual readout iodate (IO3-) nanosensor system was constructed by using both the outstanding optical performance of NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and the analyte-triggered cascade signal amplification (CSA) technique. The construction of the sensing system consisted of three processes. First, IO3- oxidized o-phenylenediamine (OPD) to diaminophenazine (OPDox), while IO3- was reduced to I2. Second, the generated I2 can further oxidize OPD to OPDox. This mechanism has been verified by 1H NMR spectra titration analysis and HRMS measurement, which effectively improves the selectivity and sensitivity of the measurement of IO3-. Third, the generated OPDox can effectively quench the fluorescence of UCNPs via the inner filter effect (IFE), realize analyte-triggered CSA, and allow quantitative determination of IO3-. Under the optimized conditions, the fluorescence quenching efficiency showed a good linear relationship to IO3- concentration in the range of 0.06-100 μM, and the detection limit reached 0.026 μM (3RSD/slope). Moreover, this method was applied to detect IO3- in table salt samples, yielding satisfactory determination results with excellent recoveries (95.5-105%) and high precision (RSD <5.5%). These results suggest that the dual-readout sensing strategy with well-defined response mechanisms has promising application prospects in physiological and pathological studies.
Collapse
Affiliation(s)
- Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China; Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Qingfeng Li
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wenping Zhu
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hongjun Xia
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Weijie Yang
- Henan Key Laboratory of Rare Earth Functional Materials; International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| |
Collapse
|
22
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
23
|
Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS 2023; 23:2253-2261. [PMID: 36729707 DOI: 10.1021/acs.nanolett.2c04899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 μL sample volume.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- EMEA Clinical Service Operations, NAMSA, 38670 Chasse-sur-Rhône, France
| | - Satu Lahtinen
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niina Höysniemi
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Jiajia Guo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tero Soukka
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Université de Rouen Normandie, CNRS, INSA, Normandie Université, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), 76000 Rouen, France
- Seoul National University, Department of Chemistry, Seoul 08826, South Korea
| |
Collapse
|
24
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Liang S, Zhang L. Fluorescent Mechanism and Optical Switching of Fluorophore-Free Organogel. Macromol Rapid Commun 2023; 44:e2200752. [PMID: 36285607 DOI: 10.1002/marc.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
Fluorophore is essential to enable the fluorescence and optical switching in most of polymer gels. Herein, a novel concept is proposed to develop a fluorophore-free organogel that is capable of generation of blue fluorescence at transparent state, while it proceeds with optical switching from blue to purple upon phase transition into non-transparent state in water. Ammonium persulphate (APS) is utilized to initiate co-crosslinking of hydrophilic acrylamide (AM) and hydrophobic 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA) in dimethyl sulphoxide (DMSO) to give organogel of AM@HFBA at 80 °C. APS decomposes to generate not only radicals, but also ammonium bisulfate (ABS) during heating, in which the elements of ABS produce blue fluorescence (λ = 440 nm), excited by UV light (λ = 365 nm). After the phase transition into non-transparent state, light-reflection behavior at the phase-transitioned surface triggers the optical switching of the organogel from blue to purple under UV light. The optical switching is patternable and reversible, which enables the applications of organogel of AM@HFBA for information encoding/encryption and optical-switchable soft actuators. This method is universal to achieve fluorescence and optical switching for free radical polymerization-based gel systems as long as they are initiated by APS in DMSO.
Collapse
Affiliation(s)
- Shumin Liang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
26
|
Zhu Y, Guo X, Ma X, Liu K, Han Y, Wu Y, Li X. Rare earth upconversion luminescent composite based on energy transfer for specific and sensitive detection of cysteine. Analyst 2023; 148:1016-1023. [PMID: 36723185 DOI: 10.1039/d2an01994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abnormal levels of thiols in cysteine (Cys) have been shown to be associated with growth retardation, skin lesions, and neurotoxicity in humans. Herein, we designed and synthesized a rare earth upconversion luminescent (UCL) nanocomposite probe UCNP-PEG-NOF1 for the UCL detection of Cys using NOF1 developed by our group as a Cys probe. The core structure of rare earth nanoparticles can absorb light at 980 nm and convert it into visible light. The detection principle of Cys was based on the change in absorption peak before and after the reaction between NOF1 and Cys, as well as the change in UCL intensity. The rare earth nanocomposite in the probe could be excited by near-infrared light and had low background fluorescence and strong penetration ability; thus, the probe was successfully employed to specifically and sensitively detect Cys with a low background signal. Overall, the developed UCNP-PEG-NOF1 probe had good selectivity and high sensitivity for Cys; its detection limit was as low as 83 nM.
Collapse
Affiliation(s)
- Yulian Zhu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaomei Guo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiao Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yuting Han
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| |
Collapse
|
27
|
Dimitriev O, Slominskii Y, Giancaspro M, Rizzi F, Depalo N, Fanizza E, Yoshida T. Assembling Near-Infrared Dye on the Surface of Near-Infrared Silica-Coated Copper Sulphide Plasmonic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:510. [PMID: 36770471 PMCID: PMC9919055 DOI: 10.3390/nano13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Functionalization of colloidal nanoparticles with organic dyes, which absorb photons in complementary spectral ranges, brings a synergistic effect for harvesting additional light energy. Here, we show functionalization of near-infrared (NIR) plasmonic nanoparticles (NPs) of bare and amino-group functionalized mesoporous silica-coated copper sulphide (Cu2-xS@MSS and Cu2-xS@MSS-NH2) with specific tricarbocyanine NIR dye possessing sulfonate end groups. The role of specific surface chemistry in dye assembling on the surface of NPs is demonstrated, depending on the organic polar liquids or water used as a dispersant solvent. It is shown that dye binding to the NP surfaces occurs with different efficiency, but mostly in the monomer form in polar organic solvents. Conversely, the aqueous medium leads to different scenarios according to the NP surface chemistry. Predominant formation of the disordered dye monomers occurs on the bare surface of mesoporous silica shell (MSS), whereas the amino-group functionalized MSS accepts dye predominantly in the form of dimers. It is found that the dye-NP interaction overcomes the dye-dye interaction, leading to disruption of dye J-aggregates in the presence of the NPs. The different organization of the dye molecules on the surface of silica-coated copper sulphide NPs provides tuning of their specific functional properties, such as hot-band absorption and photoluminescence.
Collapse
Affiliation(s)
- Oleg Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, 03028 Kyiv, Ukraine
- Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Yuri Slominskii
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine
| | - Mariangela Giancaspro
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Federica Rizzi
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Depalo
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- Chemistry Department, University of Bari, via Orabona 4, 70125 Bari, Italy
- CNR-Institute for Chemical and Physical Process, SS Bari, via Orabona 4, 70125 Bari, Italy
| | - Tsukasa Yoshida
- Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| |
Collapse
|
28
|
Research Progress on Up-Conversion Fluorescence Probe for Detection of Perfluorooctanoic Acid in Water Treatment. Polymers (Basel) 2023; 15:polym15030605. [PMID: 36771906 PMCID: PMC9920290 DOI: 10.3390/polym15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. It is necessary to review the fluorescence detection routes for PFOA. In addition, the up-conversion of fluorescent materials (UCNPs), as fluorescent materials to prepare fluorescent probes with, has significant advantages and also attracts the attention of researchers, however, reviews related to their application in detecting PFOA and comparing them with other routes are rare. Furthermore, there are many strategies to improve the performance of up-conversion fluorescent probes including SiO2 modification and amino modification. These strategies can enhance the detection effect of PFOA. Thus, this work reviews the types of fluorescence detection, the design, and synthesis of UCNPs, their recognition mechanism, properties, and their application progress. Moreover, the development trend and prospects of these detection probes are given.
Collapse
|
29
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
30
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
31
|
Chen L, Jiang X, Liu Q, Tang Z, Wang D, Xiang Z, Liu S, Tang H. A dual-targeting near-infrared biomimetic drug delivery system for HBV treatment. J Med Virol 2023; 95:e28312. [PMID: 36404678 DOI: 10.1002/jmv.28312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Hepatitis B virus (HBV) infection is a serious global public health threat. It remains elusive to achieve a functional HBV cure with currently available antivirals. Herein, a photo-responsive delivery vehicle composed of Nd3+ -sensitized core-shell upconversion nanoparticle (UCNP), mesoporous silica nanoparticle (MSN), antisense oligonucleotides (ASOs), and capsid-binding inhibitor C39 was established, which was named UMAC according to the initials of its components. Subsequently, the as-synthesized delivery vehicle was encapsulated by β- D-galactopyranoside (Gal) modified red blood cell (RBC) membrane vesicles, which enabled precise targeting of the liver cells (UMAC-M-Gal). Both in vitro and in vivo experiments demonstrated that this biomimetic system could successfully achieve controlled drug release under light conditions at 808 nm, leading to effective suppression of HBV replication in this dual-targeted therapeutic approach. Together, these results substantiate the system has huge prospects for application to achieve functional HBV cure, and provides a promising novel strategy for drug delivery.
Collapse
Affiliation(s)
- Liuxian Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xinyun Jiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Qiang Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- The People's Hospital of Rongchang District, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
33
|
Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238421. [PMID: 36500513 PMCID: PMC9737913 DOI: 10.3390/molecules27238421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The activity levels of key substances (metal ions, reactive oxygen species, reactive nitrogen, biological small molecules, etc.) in organisms are closely related to intracellular redox reactions, disease occurrence and treatment, as well as drug absorption and distribution. Fluorescence imaging technology provides a visual tool for medicine, showing great potential in the fields of molecular biology, cellular immunology and oncology. In recent years, organic fluorescent probes have attracted much attention in the bioanalytical field. Among various organic fluorescent probes, fluorescent organic small molecule probes (FOSMPs) have become a research hotspot due to their excellent physicochemical properties, such as good photostability, high spatial and temporal resolution, as well as excellent biocompatibility. FOSMPs have proved to be suitable for in vivo bioimaging and detection. On the basis of the introduction of several primary fluorescence mechanisms, the latest progress of FOSMPs in the applications of bioimaging and detection is comprehensively reviewed. Following this, the preparation and application of fluorescent organic nanoparticles (FONPs) that are designed with FOSMPs as fluorophores are overviewed. Additionally, the prospects of FOSMPs in bioimaging and detection are discussed.
Collapse
|
34
|
Wang N, Yang Y, Zhang M, Zhu Q, Li Z. Lysosomal Adenosine Triphosphate-Activated Upconversion Nanoparticle/Carbon Dot Composite for Ratiometric Imaging of Hepatotoxicity. Anal Chem 2022; 94:15738-15745. [DOI: 10.1021/acs.analchem.2c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ningning Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yaqing Yang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Zhang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
35
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Chu Z, Tian T, Tao Z, Yang J, Chen B, Chen H, Wang W, Yin P, Xia X, Wang H, Qian H. Upconversion nanoparticles@AgBiS 2 core-shell nanoparticles with cancer-cell-specific cytotoxicity for combined photothermal and photodynamic therapy of cancers. Bioact Mater 2022; 17:71-80. [PMID: 35386437 PMCID: PMC8958283 DOI: 10.1016/j.bioactmat.2022.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
UCNPs@AgBiS2 core-shell nanoparticles that AgBiS2 coated on the surface of upconversion nanoparticles (UCNPs) was successfully prepared through an ion exchange reaction. The photothermal conversion efficiency of AgBiS2 can be improved from 14.7% to 45% due to the cross relaxation between Nd ions and AgBiS2. The doping concentration of Nd ions played a critical role in the production of reactive oxygen species (ROS) and enhanced the photothermal conversion efficiency. The NaYF4:Yb/Er/Nd@NaYF4:Nd nanoparticles endows strong upconversion emissions when the doped concentration of Nd ions is 1% in the inner core, which excites the AgBiS2 shell to produce ROS for photodynamic therapy (PDT) of cancer cells. As a result, the as-prepared NaYF4:Yb/Er/Nd@NaYF4:Nd@AgBiS2 core-shell nanoparticles showed combined photothermal/photodynamic therapy (PTT/PDT) against malignant tumors. This work provides an alternative near-infrared light-active multimodal nanostructures for applications such as fighting against cancers.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Tian Tian
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Zhenchao Tao
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Juan Yang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Benjin Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Hao Chen
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Wanni Wang
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Peiqun Yin
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Children's Hospital of Anhui Medical University, Anhui Provincial Children's Hospital, Hefei, Anhui, 230051, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, School of Basic Medical Sciences, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, 230032, PR China
| |
Collapse
|
37
|
Li L, Song M, Lao X, Pang SY, Liu Y, Wong MC, Ma Y, Yang M, Hao J. Rapid and ultrasensitive detection of SARS-CoV-2 spike protein based on upconversion luminescence biosensor for COVID-19 point-of-care diagnostics. MATERIALS & DESIGN 2022; 223:111263. [PMID: 36275835 PMCID: PMC9575549 DOI: 10.1016/j.matdes.2022.111263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Here, we firstly introduce a detection system consisting of upconversion nanoparticles (UCNPs) and Au nanorods (AuNRs) for an ultrasensitive, rapid, quantitative and on-site detection of SARS-CoV-2 spike (S) protein based on Förster resonance energy transfer (FRET) effect. Briefly, the UCNPs capture the S protein of lysed SARS-CoV-2 in the swabs and subsequently they are bound with the anti-S antibodies modified AuNRs, resulting in significant nonradiative transitions from UCNPs (donors) to AuNRs (acceptors) at 480 nm and 800 nm, respectively. Notably, the specific recognition and quantitation of S protein can be realized in minutes at 800 nm because of the low autofluorescence and high Yb-Tm energy transfer in upconversion process. Inspiringly, the limit of detection (LOD) of the S protein can reach down to 1.06 fg mL-1, while the recognition of nucleocapsid protein is also comparable with a commercial test kit in a shorter time (only 5 min). The established strategy is technically superior to those reported point-of-care biosensors in terms of detection time, cost, and sensitivity, which paves a new avenue for future on-site rapid viral screening and point-of-care diagnostics.
Collapse
Affiliation(s)
- Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sin-Yi Pang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuan Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yingjin Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Geng Y, Zhang W, Liang JC, Zhou RS, Gong SM, Wang JR, Song JF. Two new 5-mercapto-1-phenyl-1H-tetrazole-based Cu(I) coordination polymers with double layer structures: Crystal structures, substituent effects and sensing responses to NACs. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
40
|
Gerelkhuu Z, Lee YI, Yoon TH. Upconversion Nanomaterials in Bioimaging and Biosensor Applications and Their Biological Response. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3470. [PMID: 36234598 PMCID: PMC9565472 DOI: 10.3390/nano12193470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, upconversion nanomaterials (UCNMs) have attracted considerable research interest because of their unique optical properties, such as large anti-Stokes shifts, sharp emissions, non-photobleaching, and long lifetime. These unique properties make them ideal candidates for unified applications in biomedical fields, including drug delivery, bioimaging, biosensing, and photodynamic therapy for specific cancers. This review describes the general mechanisms of upconversion, synthesis methods, and potential applications in biology and their biological responses. Additionally, the biological toxicity of UCNMs is explained and summarized with the associated intracellular association mechanisms. Finally, the prospects and future challenges of UCNMs at the clinical level in biological applications are described, along with a summary of opportunity for biological as well as clinical applications of UCNMs.
Collapse
Affiliation(s)
- Zayakhuu Gerelkhuu
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
41
|
Yu X, Ouyang W, Qiu H, Zhang Z, Wang Z, Xing B. Detection of Reactive Oxygen and Nitrogen Species by Upconversion Nanoparticle‐Based Near‐Infrared Nanoprobes: Recent Progress and Perspectives. Chemistry 2022; 28:e202201966. [DOI: 10.1002/chem.202201966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaokan Yu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Wenao Ouyang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Hao Qiu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhijun Zhang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing 10008 China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Chemistry Chemical Engineering & Biotechnology Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
42
|
Chauhan D, Kumar A, Warkar SG. Modified polymeric hydrogels for the detection of Zn 2+ in E. coli bacterial cells and Zn 2+, Cd 2+ and Hg 2+ in industrial effluents. ENVIRONMENTAL TECHNOLOGY 2022; 43:3600-3607. [PMID: 33977856 DOI: 10.1080/09593330.2021.1928294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The article focusses on exploring the real-time application of meta-benziporphodimethene (m-BPDM) embedded polyacrylamide/carboxymethylguargum (PAM/CMG) hydrogel. The hydrogel-based sensor is highly selective for Zn2+, Cd2+ and Hg2+ with no significant response to other competitive cations including Na+, K+, Ca2+, Cr3+, Pb2+, Mg2+, Mn2+, Co2+, Cu2+ in aqueous medium. Initially, the stability of the hydrogel has been examined at different pH conditions. The sensitivity of the hydrogel was found to be 0.5, 1, and 2 ppm in 1, 2 and 3 h for Hg2+, Zn2+, and Cd2+, respectively, at pH 6. The sensor exhibits colour change from red to bluish-green with Zn2+, Cd2+ and Hg2+ in water over other ions. The modified hydrogel matrix displayed a unique naked eye turn-on colorimetric sensor selectivity for Zn2+, Cd2+ and Hg2+ ions in the aqueous solutions of Escherichia coli (E. coli) bacterial cells and industrial effluents. During the detection process, the zinc metal ions released because of cell lysis bind with hydrogel, in the former. The binding of Zn2+ causes the change in the colour of hydrogel from red to bluish-green, which was visually detected. The m-BPDM does not leach out and is stable in the hydrogel matrix. The sensing of Zn2+, Cd2+ and Hg2+ was achieved by directly adding hydrogel into industrial effluent without any pretreatment of effluent. The quantitative determination of Zn2+, Cd2+ and Hg2+ in industrial effluent was performed by the atomic absorption spectroscopy technique just to confirm the results obtained with the hydrogel.
Collapse
Affiliation(s)
- Deepti Chauhan
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
43
|
Liu G, Wei J, Li X, Tian M, Wang Z, Shen C, Sun W, Li C, Li X, Lv E, Tian S, Wang J, Xu S, Zhao B. Near-Infrared-Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202505. [PMID: 35853243 PMCID: PMC9475548 DOI: 10.1002/advs.202202505] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Exploring the advanced techniques for protein detection facilitates cell fate investigation. However, it remains challenging to quantify and visualize the protein with one single probe. Here, a luminescent approach to detect hepatic cell fate marker albumin in vitro and living cell labeling with upconversion nanoparticles (UCNPs), which are conjugated with antibody (Ab) and rose bengal hexanoic acid (RBHA) is reported. To guarantee the detection quality and accuracy, an "OFF-ON" strategy is adopted: in the presence of albumin, the luminescence of nanoparticles remains suppressed owing to energy transfer to the quencher. Upon albumin binding to the antibody, the luminescence is recovered under near-infrared light. In various bio-samples, the UCNPs-Ab-RBHA (UCAR) nanoprobe can sense albumin with a broad detection range (5-315 ng mL-1 ). When applied to liver ductal organoid culture medium, the UCAR can monitor hepatocyte differentiation in real time by sensing the secreted albumin. Further, UCAR enables live imaging of cellular albumin in cells, organoids, and tissues. In a CCl4 -induced liver injury model, UCAR detects reduced albumin in liver tissue and serum. Thus, a biocompatible nanoprobe for both quantification and imaging of protein in complex biological environment with superior stability and high sensitivity is provided.
Collapse
Affiliation(s)
- Guofeng Liu
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Jinsong Wei
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
- Greater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityNansha DistrictGuangzhou511458China
| | - Xiaoyu Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Meng Tian
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Zhenxing Wang
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Congcong Shen
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Wan Sun
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Chonghui Li
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Xuewen Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Enguang Lv
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Shizheng Tian
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Jihua Wang
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Shicai Xu
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
| | - Bing Zhao
- Shandong Key Laboratory of BiophysicsInstitute of BiophysicsCollege of Physics and Electronic InformationDezhou UniversityDezhou253023China
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
44
|
Kotulska AM, Pilch-Wróbel A, Lahtinen S, Soukka T, Bednarkiewicz A. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses. LIGHT, SCIENCE & APPLICATIONS 2022; 11:256. [PMID: 35986019 PMCID: PMC9391450 DOI: 10.1038/s41377-022-00946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 05/15/2023]
Abstract
Lanthanide-doped colloidal nanoparticles capable of photon upconversion (UC) offer long luminescence lifetimes, narrowband absorption and emission spectra, and efficient anti-Stokes emission. These features are highly advantageous for Förster Resonance Energy Transfer (FRET) based detection. Upconverting nanoparticles (UCNPs) as donors may solve the existing problems of molecular FRET systems, such as photobleaching and limitations in quantitative analysis, but these new labels also bring new challenges. Here we have studied the impact of the core-shell compositional architecture of upconverting nanoparticle donors and the mode of photoexcitation on the performance of UC-FRET from UCNPs to Rose Bengal (RB) molecular acceptor. We have quantitatively compared luminescence rise and decay kinetics of Er3+ emission using core-only NaYF4: 20% Yb, 2% Er and core-shell NaYF4: 20% Yb @ NaYF4: 20% Yb, 5% Er donor UCNPs under three photoexcitation schemes: (1) direct short-pulse photoexcitation of Er3+ at 520 nm; indirect photoexcitation of Er3+ through Yb3+ sensitizer with (2) 980 nm short (5-7 ns) or (3) 980 nm long (4 ms) laser pulses. The donor luminescence kinetics and steady-state emission spectra differed between the UCNP architectures and excitation schemes. Aiming for highly sensitive kinetic upconversion FRET-based biomolecular assays, the experimental results underline the complexity of the excitation and energy-migration mechanisms affecting the Er3+ donor responses and suggest ways to optimize the photoexcitation scheme and the architecture of the UCNPs used as luminescent donors.
Collapse
Affiliation(s)
- Agata M Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Aleksandra Pilch-Wróbel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
45
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
46
|
Demir-Yilmaz I, Yakovenko N, Roux C, Guiraud P, Collin F, Coudret C, Ter Halle A, Formosa-Dague C. The role of microplastics in microalgae cells aggregation: A study at the molecular scale using atomic force microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155036. [PMID: 35390366 DOI: 10.1016/j.scitotenv.2022.155036] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution has become a significant concern in aquatic ecosystems, where photosynthetic microorganisms such as microalgae represent a major point of entry in the food chain. For this reason an important challenge is to better understand the consequences of plastic pollution on microalgae and the mechanisms underlying the interaction between plastic particles and cell's interfaces. In this study, to answer such questions, we developed an interdisciplinary approach to investigate the role of plastic microparticles in the aggregation of a freshwater microalgae species, Chlorella vulgaris. First, the biophysical characterization, using atomic force microscopy, of the synthetic plastic microparticles used showed that they have in fact similar properties than the ones found in the environment, with a rough, irregular and hydrophobic surface, thereby making them a relevant model. Then a combination of optical imaging and separation experiments showed that the presence of plastic particles in microalgae cultures induced the production of exopolysaccharides (EPS) by the cells, responsible for their aggregation. However, cells that were not cultured with plastic particles could also form aggregates when exposed to the particles after culture. To understand this, advanced single-cell force spectroscopy experiments were performed to probe the interactions between cells and plastic microparticles; the results showed that cells could directly interact with plastic particles through hydrophobic interactions. In conclusion, our experimental approach allowed highlighting the two mechanisms by which plastic microparticles trigger cell aggregation; by direct contact or by inducing the production of EPS by the cells. Because these microalgae aggregates containing plastic are then consumed by bigger animals, these results are important to understand the consequences of plastic pollution on a large scale.
Collapse
Affiliation(s)
- Irem Demir-Yilmaz
- TBI, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, France; LAAS, Université de Toulouse, CNRS, Toulouse, France
| | | | | | - Pascal Guiraud
- TBI, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, France; Fédération de Recherche Fermat, CNRS, Toulouse, France
| | | | - Christophe Coudret
- UMR 5623 IMRCP, CNRS, Toulouse, France; Fédération de Recherche Fermat, CNRS, Toulouse, France
| | | | - Cécile Formosa-Dague
- TBI, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, France; Fédération de Recherche Fermat, CNRS, Toulouse, France.
| |
Collapse
|
47
|
Borse S, Rafique R, Murthy ZVP, Park TJ, Kailasa SK. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Analyst 2022; 147:3155-3179. [PMID: 35730445 DOI: 10.1039/d1an02170b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.
Collapse
Affiliation(s)
- Shraddha Borse
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| | - Rafia Rafique
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Z V P Murthy
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - 395007, Gujarat, India.
| |
Collapse
|
48
|
Han Y, Nie Y, Ran L, Tuo S, Li Y, Yan J. Reversible or irreversible: the photochromic behavior studies of ionic compound containing γ-octamolybdate and pyrazole ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Hu B, Zhu J, Shen J, Yang L, Jiang C. A Portable Sensing Platform Using an Upconversion-Based Nanosensor for Visual Quantitative Monitoring of Mesna. Anal Chem 2022; 94:7559-7566. [PMID: 35587268 DOI: 10.1021/acs.analchem.2c00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesna is an important regional antidote for protecting the urinary system of chemotherapy patients, which requires monitoring its level in real time to ensure the curative effect. The fluorescence method is a powerful tool in real-time detection with the advantages of fast response and visualization. However, the background interference limits its application in biological sensing. Here, we developed a portable sensing platform using an upconversion-based nanosensor for visual quantitative monitoring of mesna in real-time/on-site conditions. The nanosensor was constructed by upconversion nanoparticles (UCNPs) and ethyl violet (EV), in which the UCNPs emitted red and green light, while EV quenched the green light due to the inner filter effect (IFE). The reaction of mesna with EV caused its fading and broke the IFE process, leading to the recovery of green light. By the fluorescence and colorimetric chromaticity variations, the nanosensor achieved a dual-readout detection for mesna with low limits of detection (LODs) of 26 and 48 nM, respectively. Furthermore, a highly compatible sensing platform was fabricated for facile determination of mesna with an LOD of 56 nM, realizing visual quantitative monitoring of the mesna level to ensure the curative effect and providing a new strategy for point-of-care testing of drugs in clinical settings.
Collapse
Affiliation(s)
- Bin Hu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jiawei Zhu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Shen
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
50
|
Yi J, Li X, Cui D, Han L, Jiang W, Zhang R, Niu N, Chen L. Fabricating UCNPs-AuNPs Fluorescent Probe for Sensitive Sensing Thiamphenicol. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|