1
|
Hu T, Wei JW, Zheng JY, Luo QY, Hu XR, Du Q, Cai YF, Zhang SJ. Metformin improves cognitive dysfunction through SIRT1/NLRP3 pathway-mediated neuroinflammation in db/db mice. J Mol Med (Berl) 2024; 102:1101-1115. [PMID: 38953935 DOI: 10.1007/s00109-024-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1β, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.
Collapse
Affiliation(s)
- Tian Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jun-Wen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qing-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin-Rui Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
3
|
Zhang Y, Lu SM, Zhuang JJ, Liang LG. Advances in gut-brain organ chips. Cell Prolif 2024:e13724. [PMID: 39086147 DOI: 10.1111/cpr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The brain and gut are sensory organs responsible for sensing, transmitting, integrating, and responding to signals from the internal and external environment. In-depth analysis of brain-gut axis interactions is important for human health and disease prevention. Current research on the brain-gut axis primarily relies on animal models. However, animal models make it difficult to study disease mechanisms due to inherent species differences, and the reproducibility of experiments is poor because of individual animal variations, which leads to a significant limitation of real-time sensory responses. Organ-on-a-chip platforms provide an innovative approach for disease treatment and personalized research by replicating brain and gut ecosystems in vitro. This enables a precise understanding of their biological functions and physiological responses. In this article, we examine the history and most current developments in brain, gut, and gut-brain chips. The importance of these systems for understanding pathophysiology and developing new drugs is emphasized throughout the review. This article also addresses future directions and present issues with the advancement and application of gut-brain-on-a-chip technologies.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Clinical In Vitro Diagnostic Techniques, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Jian Zhuang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Li-Guo Liang
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Cao Y, Xu W, Liu Q. Alterations of the blood-brain barrier during aging. J Cereb Blood Flow Metab 2024; 44:881-895. [PMID: 38513138 PMCID: PMC11318406 DOI: 10.1177/0271678x241240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional changes during aging, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. In recent years, advances in microscopy and high-throughput bioinformatics have allowed a more in-depth investigation of the aging mechanisms of BBB. This review summarizes age-related alterations of the BBB structure and function from six perspectives: endothelial cells, astrocytes, pericytes, basement membrane, microglia and perivascular macrophages, and fibroblasts, ranging from the molecular level to the human multi-system level. These basic components are essential for the proper functioning of the BBB. Recent imaging methods of BBB were also reviewed. Elucidation of age-associated BBB changes may offer insights into BBB homeostasis and may provide effective therapeutic strategies to protect it during aging.
Collapse
Affiliation(s)
- Yufan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihai Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Ahn SI, Kim Y. On-chip physiological mimicry of neurovascular unit: challenges and perspectives. Neural Regen Res 2024; 19:499-500. [PMID: 37721272 PMCID: PMC10581582 DOI: 10.4103/1673-5374.380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Song Ih Ahn
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Kang JH, Jang M, Seo SJ, Choi A, Shin D, Seo S, Lee SH, Kim HN. Mechanobiological Adaptation to Hyperosmolarity Enhances Barrier Function in Human Vascular Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206384. [PMID: 36808839 PMCID: PMC10161024 DOI: 10.1002/advs.202206384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Indexed: 05/06/2023]
Abstract
In infectious disease such as sepsis and COVID-19, blood vessel leakage treatment is critical to prevent fatal progression into multi-organ failure and ultimately death, but the existing effective therapeutic modalities that improve vascular barrier function are limited. Here, this study reports that osmolarity modulation can significantly improve vascular barrier function, even in an inflammatory condition. 3D human vascular microphysiological systems and automated permeability quantification processes for high-throughput analysis of vascular barrier function are utilized. Vascular barrier function is enhanced by >7-folds with 24-48 h hyperosmotic exposure (time window of emergency care; >500 mOsm L-1 ) but is disrupted after hypo-osmotic exposure (<200 mOsm L-1 ). By integrating genetic and protein level analysis, it is shown that hyperosmolarity upregulates vascular endothelial-cadherin, cortical F-actin, and cell-cell junction tension, indicating that hyperosmotic adaptation mechanically stabilizes the vascular barrier. Importantly, improved vascular barrier function following hyperosmotic exposure is maintained even after chronic exposure to proinflammatory cytokines and iso-osmotic recovery via Yes-associated protein signaling pathways. This study suggests that osmolarity modulation may be a unique therapeutic strategy to proactively prevent infectious disease progression into severe stages via vascular barrier function protection.
Collapse
Affiliation(s)
- Joon Ho Kang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Minjeong Jang
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Su Jin Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Chemical EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Andrew Choi
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Daeeun Shin
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Suyoung Seo
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Soo Hyun Lee
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolUniversity of Science and Technology (UST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
8
|
From Single- to Multi-organ-on-a-Chip System for Studying Metabolic Diseases. BIOCHIP JOURNAL 2023. [DOI: 10.1007/s13206-023-00098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Song J, Bang S, Choi N, Kim HN. Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. BIOMICROFLUIDICS 2022; 16:061301. [PMID: 36438549 PMCID: PMC9691285 DOI: 10.1063/5.0121476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases and neurodevelopmental disorders have become increasingly prevalent; however, the development of new pharmaceuticals to treat these diseases has lagged. Animal models have been extensively utilized to identify underlying mechanisms and to validate drug efficacies, but they possess inherent limitations including genetic heterogeneity with humans. To overcome these limitations, human cell-based in vitro brain models including brain-on-a-chip and brain organoids have been developed. Each technique has distinct advantages and disadvantages in terms of the mimicry of structure and microenvironment, but each technique could not fully mimic the structure and functional aspects of the brain tissue. Recently, a brain organoid-on-a-chip (BOoC) platform has emerged, which merges brain-on-a-chip and brain organoids. BOoC can potentially reflect the detailed structure of the brain tissue, vascular structure, and circulation of fluid. Hence, we summarize recent advances in BOoC as a human brain avatar and discuss future perspectives. BOoC platform can pave the way for mechanistic studies and the development of pharmaceuticals to treat brain diseases in future.
Collapse
Affiliation(s)
- Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Nakwon Choi
- Authors to whom correspondence should be addressed:; ; and
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|