1
|
Thouvenot E, Charnay L, Burshtein N, Guigner JM, Dec L, Loew D, Silva AKA, Lindner A, Wilhelm C. High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412498. [PMID: 39530646 DOI: 10.1002/adma.202412498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) are emerging as novel therapeutics, particularly in cancer and degenerative diseases. Nevertheless, from both market and clinical viewpoints, high-yield production methods using minimal cell materials are still needed. Herein, a millifluidic cross-slot chip is proposed to induce high-yield release of biologically active EVs from less than three million cells. Depending on the flow rate, a single vortex forms in the outlet channels, exposing transported cellular material to high viscous stresses. Importantly, the chip accommodates producer cells within their physiological environment, such as human mesenchymal stem cells (hMSCs) spheroids, while facilitating their visualization and individual tracking within the vortex. This precise control of viscous stresses at the spheroid level allows for the release of up to 30000 EVs per cell at a Reynolds number of ≈400, without compromising cellular integrity. Additionally, it reveals a threshold initiating EV production, providing evidence for a stress-dependent mechanism governing vesicle secretion. EVs mass-produced at high Reynolds displayed pro-angiogenic and wound healing capabilities, as confirmed by proteomic and cytometric analysis of their cargo. These distinct molecular signatures of these EVs, compared to those derived from monolayers, underscore the critical roles of the production method and the 3D cellular environment in EV generation.
Collapse
Affiliation(s)
- Elliot Thouvenot
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Laura Charnay
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Noa Burshtein
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, MNHN, IRD UR 206, Campus Jussieu, Sorbonne Université, Case courrier 115, 4 Place Jussieu, 75252, Paris, Cedex 05, France
| | - Léonie Dec
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, MSC, CNRS UMR7057, Université Paris Cité, Paris, 75006, France
| | - Anke Lindner
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| |
Collapse
|
2
|
Zhang W, Yao F, Li WF, Liu HF, Wang FC. Effect of Chamber Depth Modifications on Flow Regimes and Mixing Performance in Cross-Shaped Mixers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Wei Zhang
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Feng Yao
- Shanghai Engineering Research Center of Space Engine, Shanghai Institute of Space Propulsion, Shanghai201112, China
| | - Wei-feng Li
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Hai-feng Liu
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| | - Fu-chen Wang
- Shanghai Engineering Research Center of Coal Gasification, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
4
|
Zhang W, Shi Z, Xu X, Li W, Liu H, Wang F. Oscillation induced by vortex ring shedding in a cross-shaped channel. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wang F, Yu G, Liu H, Li W, Guo Q, Xu J, Gong Y, Zhao H, Lu H, Shen Z. Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, Shen AQ, Chung AJ. Intracellular Nanomaterial Delivery via Spiral Hydroporation. ACS NANO 2020; 14:3048-3058. [PMID: 32069037 DOI: 10.1021/acsnano.9b07930] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).
Collapse
Affiliation(s)
- GeoumYoung Kang
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel W Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Simon J Haward
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Aram J Chung
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|