1
|
Schleifer CH, Chang SE, Amir CM, O'Hora KP, Fung H, Kang JWD, Kushan-Wells L, Daly E, Di Fabio F, Frascarelli M, Gudbrandsen M, Kates WR, Murphy D, Addington J, Anticevic A, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Walker E, Woods SW, Uddin LQ, Kumar K, Hoftman GD, Bearden CE. Unique Functional Neuroimaging Signatures of Genetic Versus Clinical High Risk for Psychosis. Biol Psychiatry 2025; 97:178-187. [PMID: 39181389 DOI: 10.1016/j.biopsych.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22qDel) is a copy number variant that is associated with psychosis and other neurodevelopmental disorders. Adolescents who are at clinical high risk for psychosis (CHR) are identified based on the presence of subthreshold psychosis symptoms. Whether common neural substrates underlie these distinct high-risk populations is unknown. We compared functional brain measures in 22qDel and CHR cohorts and mapped the results to biological pathways. METHODS We analyzed 2 large multisite cohorts with resting-state functional magnetic resonance imaging data: 1) a 22qDel cohort (n = 164, 47% female) and typically developing (TD) control participants (n = 134, 56% female); and 2) a cohort of CHR individuals (n = 240, 41% female) and TD control participants (n = 149, 46% female) from the NAPLS-2 (North American Prodrome Longitudinal Study-2). We computed global brain connectivity (GBC), local connectivity (LC), and brain signal variability (BSV) across cortical regions and tested case-control differences for 22qDel and CHR separately. Group difference maps were related to published brain maps using autocorrelation-preserving permutation. RESULTS BSV, LC, and GBC were significantly disrupted in individuals with 22qDel compared with TD control participants (false discovery rate-corrected q < .05). Spatial maps of BSV and LC differences were highly correlated with each other, unlike GBC. In the CHR group, only LC was significantly altered versus the control group, with a different spatial pattern than the 22qDel group. Group differences mapped onto biological gradients, with 22qDel effects being strongest in regions with high predicted blood flow and metabolism. CONCLUSIONS 22qDel carriers and CHR individuals exhibited different effects on functional magnetic resonance imaging temporal variability and multiscale functional connectivity. In 22qDel carriers, strong and convergent disruptions in BSV and LC that were not seen in CHR individuals suggest distinct functional brain alterations.
Collapse
Affiliation(s)
- Charles H Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Sarah E Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carolyn M Amir
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Kathleen P O'Hora
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Hoki Fung
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Jee Won D Kang
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fabio Di Fabio
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | | | - Maria Gudbrandsen
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Centre for Research in Psychological Wellbeing, School of Psychology, University of Roehampton, London, United Kingdom
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alan Anticevic
- Manifest Technologies, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, California
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - Barbara A Cornblatt
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco and Veterans Affairs San Francisco Health Care System, San Francisco, California
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elaine Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Kuldeep Kumar
- Centre de Recherche du CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Giardino M, Peluso F, Daolio O, Bellini M, Ambrosini E, Zito M, Squarcia A. An uncommon neuroradiological finding of hippocampal malrotation in childhood onset schizophrenia and 22q11.2 Deletion Syndrome: a case report and a brief review of the literature. Eur Child Adolesc Psychiatry 2025; 34:363-368. [PMID: 39164503 DOI: 10.1007/s00787-024-02569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Childhood Onset Schizophrenia is a rare neuropsychiatric disorder significantly associated with 22q11.2 Deletion Syndrome. We describe a male patient, followed from childhood to adolescence, who exhibited premorbid impairments in language, learning and social abilities, along with comorbid anxiety disorders. Over time, he gradually developed Childhood Onset Schizophrenia, with neuroradiological findings of white matter hyperintensities, a dysmorphic corpus callosum and Hippocampal Malrotation. These findings were observed in the context of a genetic diagnosis of 22q11.2 Deletion Syndrome, despite the absence of the most common congenital malformations and clinical conditions typically associated with this syndrome. A remarkable aspect of this case report is the emphasis on the importance of suspecting 22q11.2 Deletion Syndrome even in cases where only the neuropsychiatric phenotype of Childhood-Onset Schizophrenia and structural brain alterations, is present. While abnormalities of white matter and corpus callosum are associated with schizophrenia in patients with 22q11.2 Deletion Syndrome, Hippocampal Malrotation is more frequently described in patients with epilepsy and prolonged febrile seizures. Recently, only 10 adult patients with 22q11.2 Deletion Syndrome have been reported to have Hippocampal Malrotation, six of whom were affected by schizophrenia, with or without epilepsy. Our case report aims to extend the neuroradiological findings associated with 22q11.2 Deletion Syndrome and Schizophrenia, including Hippocampal Malrotation. This is the first case report in which Hippocampal Malrotation has been described in Childhood Onset Schizophrenia and 22q11.2 Deletion Syndrome. We suggest that patients with Hippocampal Malrotation and Childhood Onset Schizophrenia, should have a chromosomal microarray performed to screen for 22q11.2 Deletion Syndrome.
Collapse
Affiliation(s)
- Maria Giardino
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy.
| | - Francesca Peluso
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Omar Daolio
- Department of Mental Health and Pathological Addiction, Child and Adolescent Neuropsychiatry Service, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Melissa Bellini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Zito
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy
| | | |
Collapse
|
3
|
Karali Z, Karali Y, Cekic S, Altinok B, Bodur M, Bostanci M, Kilic SS. Neurocognitive Evaluation of Patients With DiGeorge Syndrome. Pediatr Neurol 2025; 162:40-46. [PMID: 39536594 DOI: 10.1016/j.pediatrneurol.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND DiGeorge syndrome (DGS), the most common microdeletion syndrome, affects multiple organs, including the heart, the nervous system, and the immune system. In this study, we aimed to evaluate the clinical, laboratory, brain magnetic resonance imaging (MRI), and neurocognitive findings of our patients with DGS. METHODS Clinical and laboratory data of 52 patients with DGS between June 2000 and March 2022 were evaluated retrospectively. Brain MRI and neuropsychologic tests were performed to assess the neurocognitive status of the patients. RESULTS Fifty-two patients (28 males and 24 females) were included in our study. Fifteen of them died during the follow-up. All 37 patients who are alive had partial DGS. The median age of patients was 10 years and 7 months, and the median age at diagnosis was 5 years and 4 months. Bilateral conduction deceleration in the anterior visual pathways in six (20%) of 30 patients was determined by the visual evoked potentials. The auditory brainstem evoked potential test showed sensorineural hearing loss in 11 of 30 (36.6%) patients. Brain MRI disclosed brain parenchymal abnormalities in 18 of 25 (72%) patients. Impairments in executive functions, expressive language, and verbal memory were noted in 18 patients who were neuropsychologically assessed. CONCLUSIONS It is important to keep in mind that patients with DGS may be accompanied by neurocognitive findings. Awareness of the potential for underlying psychiatric and neurodevelopment disorders is key to anticipatory guidance, optimization of therapies, and maximizing life quality.
Collapse
Affiliation(s)
- Zuhal Karali
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Yasin Karali
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sukru Cekic
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Berfin Altinok
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Muhittin Bodur
- Division of Pediatric Neurology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Mustafa Bostanci
- Division of Pediatric Neurology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sara S Kilic
- Division of Pediatric Immunology, Uludag University Faculty of Medicine, Bursa, Turkey.
| |
Collapse
|
4
|
Pogledic I, Mankad K, Severino M, Lerman-Sagie T, Jakab A, Hadi E, Jansen AC, Bahi-Buisson N, Di Donato N, Oegema R, Mitter C, Capo I, Whitehead MT, Haldipur P, Mancini G, Huisman TAGM, Righini A, Dobyns B, Barkovich JA, Milosevic NJ, Kasprian G, Lequin M. Prenatal assessment of brain malformations on neuroimaging: an expert panel review. Brain 2024; 147:3982-4002. [PMID: 39054600 PMCID: PMC11730443 DOI: 10.1093/brain/awae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Brain malformations represent a heterogeneous group of abnormalities of neural morphogenesis, often associated with aberrations of neuronal connectivity and brain volume. Prenatal detection of brain malformations requires a clear understanding of embryology and developmental morphology through the various stages of gestation. This expert panel review is written with the central aim of providing an easy-to-understand road map to improve prenatal detection and characterization of structural malformations based on the current understanding of normal and aberrant brain development. For every developmental stage, the utility of each available neuroimaging modality, including prenatal multiplanar neuro sonography, anatomical MRI and advanced MRI techniques, as well as further insights from post-mortem imaging, has been highlighted.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N3JH, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | | - Tally Lerman-Sagie
- Multidisciplinary foetal Neurology Center, Obstetrics & Gynecology Ultrasound Unit, Obstetrics and Gynecology Department, Wolfson Medical Center, Holon 5822012, Israel
- Faculty of Medicine, Tel Aviv University, 5822012 Tel Aviv, Israel
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Efrat Hadi
- Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, 6436624 Tel Aviv, Israel
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Antwerpen, 2650 EdegemAntwerp, Belgium
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades, University Hospital Imagine Institute, 75015 Paris, France
| | - Natalya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, 01307 Dresden, Germany
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ivan Capo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Matthew T Whitehead
- Division of Neuroradiology, Department of Radiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine of Philadelphia, Philadelphia, PA 19105, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Grazia Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea Righini
- Pediatric Radiology and Neuroradiology Department, Children’s Hospital V. Buzzi, 20154 Milan, Italy
| | - Bill Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN 55454, USA
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Natasa Jovanov Milosevic
- Croatian Institute for Brain Research and Department of Biology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Maarten Lequin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Austin, TX 78717USA
| |
Collapse
|
5
|
Lo Bianco M, Fichera V, Zanghì A, Praticò AD, Falsaperla R, Vecchio M, Marino F, Palmucci S, Belfiore G, Foti P, Polizzi A. Polymicrogyria, Cobblestone Malformations, and Tubulin Mutation (Overmigration beyond Pial Limiting Membrane): Diagnosis, Treatment, and Rehabilitation Approach. JOURNAL OF PEDIATRIC NEUROLOGY 2024; 22:347-358. [DOI: 10.1055/s-0044-1786999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractPolymicrogyria, cobblestone malformations, and tubulinopathies constitute a group of neuronal migration abnormalities beyond the pial limiting membrane. Their etiopathogenesis remains unclear, with proposed environmental and genetic factors, including copy number variations and single-gene disorders, recently categorized.Polymicrogyria features numerous small circumvolutions separated by large, shallow grooves, often affecting the perisylvian cortex with various presentations. Clinical manifestations vary depending on lesion degree, extent, and location, commonly including epilepsy, encephalopathies, spastic tetraparesis, mental retardation, and cortical function deficits.Cobblestone malformations exhibit a Roman-like pavement cortex, affecting both hemispheres symmetrically due to disruption of the glia limitans, frequently linked to glycosyltransferase gene mutations. Classified separately from lissencephaly type II, they are associated with congenital muscular dystrophy syndromes such as Fukuyama congenital muscular dystrophy, Walker–Warburg syndrome, and muscle–eye–brain disease.Tubulinopathies encompass diverse cerebral malformations resulting from α-tubulin isotype gene variants, exhibiting a wide clinical spectrum including motor/cognitive impairment, facial diplegia, strabismus, and epilepsy.Diagnosis relies on magnetic resonance imaging (MRI) with age-specific protocols, highlighting the gray–white junction as a polymicrogyria marker, though neonatal diagnosis may be challenging due to technical and brain maturity issues.To date, no effective treatments are available and management include physiotherapy, speech and language therapy, and vision training program for oculomotor disabilities; antiepileptic drugs are commonly necessary, and most severe forms usually require specific nutritional support.
Collapse
Affiliation(s)
- Manuela Lo Bianco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Fichera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Michele Vecchio
- Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesco Marino
- Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Giuseppe Belfiore
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Pietro Foti
- Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Smerconish S, Schmitt JE. Neuroanatomical Correlates of Cognitive Dysfunction in 22q11.2 Deletion Syndrome. Genes (Basel) 2024; 15:440. [PMID: 38674375 PMCID: PMC11050060 DOI: 10.3390/genes15040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
22q11.2 Deletion Syndrome (22q11.2DS), the most common chromosomal microdeletion, presents as a heterogeneous phenotype characterized by an array of anatomical, behavioral, and cognitive abnormalities. Individuals with 22q11.2DS exhibit extensive cognitive deficits, both in overall intellectual capacity and focal challenges in executive functioning, attentional control, perceptual abilities, motor skills, verbal processing, as well as socioemotional operations. Heterogeneity is an intrinsic factor of the deletion's clinical manifestation in these cognitive domains. Structural imaging has identified significant changes in volume, thickness, and surface area. These alterations are closely linked and display region-specific variations with an overall increase in abnormalities following a rostral-caudal gradient. Despite the extensive literature developing around the neurocognitive and neuroanatomical profiles associated with 22q11.2DS, comparatively little research has addressed specific structure-function relationships between aberrant morphological features and deficient cognitive processes. The current review attempts to categorize these limited findings alongside comparisons to populations with phenotypic and structural similarities in order to answer to what degree structural findings can explain the characteristic neurocognitive deficits seen in individuals with 22q11.2DS. In integrating findings from structural neuroimaging and cognitive assessments, this review seeks to characterize structural changes associated with the broad neurocognitive challenges faced by individuals with 22q11.2DS.
Collapse
|
7
|
Genovese AC, Butler MG. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sci 2024; 14:343. [PMID: 38671997 PMCID: PMC11048128 DOI: 10.3390/brainsci14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Syndromic autism refers to autism spectrum disorder diagnosed in the context of a known genetic syndrome. The specific manifestations of any one of these syndromic autisms are related to a clinically defined genetic syndrome that can be traced to certain genes and variants, genetic deletions, or duplications at the chromosome level. The genetic mutations or defects in single genes associated with these genetic disorders result in a significant elevation of risk for developing autism relative to the general population and are related to recurrence with inheritance patterns. Additionally, these syndromes are associated with typical behavioral characteristics or phenotypes as well as an increased risk for specific behavioral or psychiatric disorders and clinical findings. Knowledge of these associations helps guide clinicians in identifying potentially treatable conditions that can help to improve the lives of affected patients and their families.
Collapse
Affiliation(s)
- Ann C. Genovese
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | | |
Collapse
|
8
|
Neurological manifestation of 22q11.2 deletion syndrome. Neurol Sci 2022; 43:1695-1700. [DOI: 10.1007/s10072-021-05825-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
|
9
|
Neuhaus E, Hattingen E, Breuer S, Steidl E, Polomac N, Rosenow F, Rüber T, Herrmann E, Ecker C, Kushan L, Lin A, Vajdi A, Bearden CE, Jurcoane A. Heterotopia in Individuals with 22q11.2 Deletion Syndrome. AJNR Am J Neuroradiol 2021; 42:2070-2076. [PMID: 34620586 PMCID: PMC8583271 DOI: 10.3174/ajnr.a7283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE MR imaging studies and neuropathologic findings in individuals with 22q11.2 deletion syndrome show anomalous early brain development. We aimed to retrospectively evaluate cerebral abnormalities, focusing on gray matter heterotopia, and to correlate these with subjects' neuropsychiatric impairments. MATERIALS AND METHODS Three raters assessed gray matter heterotopia and other morphologic brain abnormalities on 3D T1WI and T2*WI in 75 individuals with 22q11.2 deletion syndrome (27 females, 15.5 [SD, 7.4] years of age) and 53 controls (24 females, 12.6 [SD, 4.7] years of age). We examined the association among the groups' most frequent morphologic findings, general cognitive performance, and comorbid neuropsychiatric conditions. RESULTS Heterotopia in the white matter were the most frequent finding in individuals with 22q11.2 deletion syndrome (n = 29; controls, n = 0; between-group difference, P < .001), followed by cavum septi pellucidi and/or vergae (n = 20; controls, n = 0; P < .001), periventricular cysts (n = 10; controls, n = 0; P = .007), periventricular nodular heterotopia (n = 10; controls, n = 0; P = .007), and polymicrogyria (n = 3; controls, n = 0; P = .3). However, individuals with these morphologic brain abnormalities did not differ significantly from those without them in terms of general cognitive functioning and psychiatric comorbidities. CONCLUSIONS Taken together, our findings, periventricular nodular heterotopia or heterotopia in the white matter (possibly related to interrupted Arc cells migration), persistent cavum septi pellucidi and/or vergae, and formation of periventricular cysts, give clues to the brain development disorder induced by the 22q11.2 deletion syndrome. There was no evidence that these morphologic findings were associated with differences in psychiatric or cognitive presentation of the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- E Neuhaus
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main (E.N., F.R., T.R.)
- LOEWE Center for Personalized Translational Epilepsy Research (E.N., F.R., T.R.)
| | - E Hattingen
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
| | - S Breuer
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
| | - E Steidl
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
| | - N Polomac
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
| | - F Rosenow
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main (E.N., F.R., T.R.)
- LOEWE Center for Personalized Translational Epilepsy Research (E.N., F.R., T.R.)
| | - T Rüber
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main (E.N., F.R., T.R.)
- LOEWE Center for Personalized Translational Epilepsy Research (E.N., F.R., T.R.)
- Department of Epileptology (T.R.), University Hospital Bonn, Bonn, Germany
| | - E Herrmann
- Institute of Biostatistics and Mathematical Modelling (E. Herrmann)
| | - C Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (C.E.), Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience (C.E.), King's College, London, UK
| | - L Kushan
- Department of Psychiatry and Biobehavioral Sciences (L.K., A.L., A.V., C.E.B.), Semel Institute for Neuroscience and Human Behavior
| | - A Lin
- Department of Psychiatry and Biobehavioral Sciences (L.K., A.L., A.V., C.E.B.), Semel Institute for Neuroscience and Human Behavior
| | - A Vajdi
- Department of Psychiatry and Biobehavioral Sciences (L.K., A.L., A.V., C.E.B.), Semel Institute for Neuroscience and Human Behavior
| | - C E Bearden
- Department of Psychiatry and Biobehavioral Sciences (L.K., A.L., A.V., C.E.B.), Semel Institute for Neuroscience and Human Behavior
- Department of Psychology (C.E.B.), University of California, Los Angeles, Los Angeles, California
| | - A Jurcoane
- From the Institute of Neuroradiology (E.N., E. Hattingen, S.B., E.S., N.P., A.J.)
| |
Collapse
|
10
|
Dobyns WB. The Names of Things: The 2018 Bernard Sachs Lecture. Pediatr Neurol 2021; 122:41-49. [PMID: 34330614 DOI: 10.1016/j.pediatrneurol.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
In 2018, I was honored to receive the Bernard Sachs Award for a lifetime of work expanding knowledge of diverse neurodevelopmental disorders. Summarizing work over more than 30 years is difficult but is an opportunity to chronicle the dramatic changes in the medical and scientific world that have transformed the field of Child Neurology over this time, as reflected in my own work. Here I have chosen to highlight five broad themes of my research beginning with my interest in descriptive terms that drive wider understanding and my choice for the title of this review. From there I will go on to contrast the state of knowledge as I entered the field with the state of knowledge today for four human brain malformations-lissencephaly, megalencephaly, cerebellar malformations, and polymicrogyria. For all, the changes have been dramatic.
Collapse
Affiliation(s)
- William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Kobow K, Baulac S, von Deimling A, Lee JH. Molecular diagnostics in drug-resistant focal epilepsy define new disease entities. Brain Pathol 2021; 31:e12963. [PMID: 34196984 PMCID: PMC8412082 DOI: 10.1111/bpa.12963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 01/16/2023] Open
Abstract
Structural brain lesions, including the broad range of malformations of cortical development (MCD) and glioneuronal tumors, are among the most common causes of drug-resistant focal epilepsy. Epilepsy surgery can provide a curative treatment option in respective patients. The currently available pre-surgical multi-modal diagnostic armamentarium includes high- and ultra-high resolution magnetic resonance imaging (MRI) and intracerebral EEG to identify a focal structural brain lesion as epilepsy underlying etiology. However, specificity and accuracy in diagnosing the type of lesion have proven to be limited. Moreover, the diagnostic process does not stop with the decision for surgery. The neuropathological diagnosis remains the gold standard for disease classification and patient stratification, but is particularly complex with high inter-observer variability. Here, the identification of lesion-specific mosaic variants together with epigenetic profiling of lesional brain tissue became new tools to more reliably identify disease entities. In this review, we will discuss how the paradigm shifts from histopathology toward an integrated diagnostic approach in cancer and the more recent development of the DNA methylation-based brain tumor classifier have started to influence epilepsy diagnostics. Some examples will be highlighted showing how the diagnosis and our mechanistic understanding of difficult to classify structural brain lesions associated with focal epilepsy has improved with molecular genetic data being considered in decision making.
Collapse
Affiliation(s)
- Katja Kobow
- Department of NeuropathologyUniversitätsklinikum ErlangenFriedrich‐Alexander‐University of Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Stéphanie Baulac
- Institut du Cerveau—Paris Brain Institute—ICMInsermCNRSSorbonne UniversitéParisFrance
| | - Andreas von Deimling
- Department of NeuropathologyUniversitätsklinikum HeidelbergHeidelbergGermany
- CCU NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jeong Ho Lee
- Graduate School of Medical Science and EngineeringKAISTDaejeonKorea
- SoVarGen, IncDaejeonRepublic of Korea
| |
Collapse
|
12
|
John HE, Koutsoulieri L, Shaw A, Lin JP, Rahman S, Ferguson L, Timoney N, Atherton D. The importance of neurology and genetic testing in the patient with non-cleft velopharyngeal dysfunction. Int J Pediatr Otorhinolaryngol 2021; 146:110776. [PMID: 34034100 DOI: 10.1016/j.ijporl.2021.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE A significant proportion of the referrals made to a speech investigation clinic in a cleft unit include patients with non-cleft velopharyngeal dysfunction (VPD). This study aims to quantify the underlying diagnoses of these patients and describe the investigative pathway and diagnostic information subsequent to presentation in our clinic. MATERIALS AND METHODS The case notes of 136 consecutive patients with non-cleft VPD who attended our Velopharyngeal Investigation (VPI) clinic from July 2014-December 2019 were reviewed. RESULTS In the paediatric group (n = 118) the most common cause was 22q11 chromosomal anomalies (n = 46), while post palatal tumour resection was the commonest cause of acquired non-cleft VPD in adults (n = 8). Fifty-nine patients were referred to the clinic with a known underlying pathology such as a syndromic diagnosis. Of those presenting without a known aetiology, fifty-eight were referred onto our genetics and/or neurology colleagues. Although a genetic or neurological cause could not be identified in some of those patients, thirty-one patients received a new diagnosis, with subsequent implications for ongoing care. CONCLUSION There are a wide range of diagnoses resulting in non-cleft VPD, but there are very few large-scale studies focusing on investigating these patients for an underlying aetiology. This study highlights the role of genetics and neurology in the diagnosis and management plan for this cohort of patients.
Collapse
Affiliation(s)
- Hannah Eliza John
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom.
| | - Leda Koutsoulieri
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Adam Shaw
- Department of Clinical Genetics, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Department of Paediatric Neurology, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Shakeel Rahman
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Louisa Ferguson
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Norma Timoney
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| | - Duncan Atherton
- South Thames Cleft Service, Evelina Children's Hospital, Guys and St Thomas Hospitals NHS Trust, London, United Kingdom
| |
Collapse
|
13
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
14
|
Kobow K, Jabari S, Pieper T, Kudernatsch M, Polster T, Woermann FG, Kalbhenn T, Hamer H, Rössler K, Mühlebner A, Spliet WGM, Feucht M, Hou Y, Stichel D, Korshunov A, Sahm F, Coras R, Blümcke I, von Deimling A. Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathol 2020; 140:881-891. [PMID: 32979071 PMCID: PMC7666281 DOI: 10.1007/s00401-020-02228-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Polymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Samir Jabari
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tom Pieper
- Department of Neurology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
- Research Institute "Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Tilman Polster
- Epilepsy Center Bethel, Krankenhaus Mara, Bielefeld, Germany
| | | | - Thilo Kalbhenn
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Yanghao Hou
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Coras
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Park KB, Chapman T, Aldinger KA, Mirzaa GM, Zeiger J, Beck A, Glass IA, Hevner RF, Jansen AC, Marshall DA, Oegema R, Parrini E, Saneto RP, Curry CJ, Hall JG, Guerrini R, Leventer RJ, Dobyns WB. The spectrum of brain malformations and disruptions in twins. Am J Med Genet A 2020; 185:2690-2718. [PMID: 33205886 DOI: 10.1002/ajmg.a.61972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.
Collapse
Affiliation(s)
- Kaylee B Park
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Teresa Chapman
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Ghayda M Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jordan Zeiger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Anita Beck
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Desiree A Marshall
- Department of Anatomic Pathology and Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Renske Oegema
- University Medical Center Utrecht, Department of Genetics, Utrecht, The Netherlands
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell P Saneto
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, California, USA
| | - Judith G Hall
- Departments of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, Canada
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Jha R, Kovilapu UB, Devgan A, Sondhi V. Two Novel Compound Heterozygous ADGRG1/GPR56 Mutations Associated with Diffuse Cerebral Polymicrogyria. J Pediatr Genet 2020; 11:74-80. [PMID: 35186395 DOI: 10.1055/s-0040-1714716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Background Polymicrogyria (PMG) has environmental or genetic etiologies. We report a 8-year-old boy with diffuse PMG and two novel adhesion G protein-coupled receptor G1 ( ADGRG1 ) / G protein-coupled receptor 56 ( GPR56 ) mutations. Case Report The proband has intellectual disability, spastic quadriparesis, and intractable epilepsy without antenatal or perinatal insults. Brain magnetic resonance imaging revealed PMG involving fronto-polar, parietal and occipital lobes with decreasing antero-posterior gradient, and a thinned-out brain stem. Targeted exome sequencing identified two novel compound heterozygote ADGRG1/GPR56 mutations (c.C209T and c.1010dupT), and each parent carries one of these mutations. Subsequent pregnancy was terminated because the fetus had the same mutations. Conclusion The detected mutations expanded the genetic etiology of PMG and helped the family to avoid another child with this devastating condition.
Collapse
Affiliation(s)
- Ruchika Jha
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Uday B Kovilapu
- Department of Radiodiagnosis, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Devgan
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Vishal Sondhi
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
17
|
Zhang H, Li Y, Liu B, Shen L, Wang S, Yao H. Hypothalamic Hamartoma, Gray Matter Heterotopia, and Polymicrogyria in a Boy: Case Report and Literature Review. World Neurosurg 2020; 142:396-400. [PMID: 32711148 DOI: 10.1016/j.wneu.2020.07.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypothalamic hamartomas (HHs) are rare, and it is even rarer when combined with gray matter heterotopia (GMH) and polymicrogyria (PMG). CASE DESCRIPTION A 5-year-old boy with HH, GMH, and PMG was retrospectively evaluated. The clinical data, including the symptoms, examinations, diagnosis, and treatment, were collected. The patient had a chief complaint of gelastic seizures and intellectual deficiency. Brain magnetic resonance imaging showed HH, paraventricular nodular heterotopia, and PMG. Video electroencephalographs were normal. The patient underwent resection of the HH via transcallosal transseptal interforniceal approach. Seizures disappeared immediately after complete resection of HH, and the intellectual development improved. CONCLUSIONS In this extremely rare case, resection of the HH eliminated the symptoms. Nonetheless, we still need to be cautious about the possible epilepsy that may be caused by GMH and PMG.
Collapse
Affiliation(s)
- Hongwu Zhang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Yu Li
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Baofu Liu
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Lixue Shen
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Shulei Wang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Hongxin Yao
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China.
| |
Collapse
|
18
|
Amrom D, Poduri A, Goldman JS, Dan B, Deconinck N, Pichon B, Nadaf J, Andermann F, Andermann E, Walsh CA, Dobyns WB. Duplication 2p16 is associated with perisylvian polymicrogyria. Am J Med Genet A 2019; 179:2343-2356. [PMID: 31660690 DOI: 10.1002/ajmg.a.61342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 11/07/2022]
Abstract
Polymicrogyria (PMG) is a heterogeneous brain malformation that may result from prenatal vascular disruption or infection, or from numerous genetic causes that still remain difficult to identify. We identified three unrelated patients with polymicrogyria and duplications of chromosome 2p, defined the smallest region of overlap, and performed gene pathway analysis using Cytoscape. The smallest region of overlap in all three children involved 2p16.1-p16.3. All three children have bilateral perisylvian polymicrogyria (BPP), intrauterine and postnatal growth deficiency, similar dysmorphic features, and poor feeding. Two of the three children had documented intellectual disability. Gene pathway analysis suggested a number of developmentally relevant genes and gene clusters that were over-represented in the critical region. We narrowed a rare locus for polymicrogyria to a region of 2p16.1-p16.3 that contains 33-34 genes, 23 of which are expressed in cerebral cortex during human fetal development. Using pathway analysis, we showed that several of the duplicated genes contribute to neurodevelopmental pathways including morphogen, cytokine, hormonal and growth factor signaling, regulation of cell cycle progression, cell morphogenesis, axonal guidance, and neuronal migration. These findings strengthen the evidence for a novel locus associated with polymicrogyria on 2p16.1-p16.3, and comprise the first step in defining the underlying genetic etiology.
Collapse
Affiliation(s)
- Dina Amrom
- Neurogenetics Unit, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Annapurna Poduri
- Division of Epilepsy & Clinical Neurophysiology, Children's Hospital, Boston, Massachusetts.,Department of Neurology, Children's Hospital, Boston, Massachusetts
| | - Jennifer S Goldman
- Ludmer Centre for Neuroinformatics and Mental Health and the Department of Biomedical Engineering, McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | | | - Bruno Pichon
- Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Genome Quebec Innovation Center, McGill University, Montreal, Quebec, Canada
| | - Frederick Andermann
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Epilepsy Research Group, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Epilepsy Research Group, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Christopher A Walsh
- Department of Neurology, Children's Hospital, Boston, Massachusetts.,Division of Genetics and Manton Center for Orphan Disease Research, Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| | - William B Dobyns
- Department of Pediatrics (Genetics) and Neurology, University of Washington, and Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
19
|
Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic Factors of Cerebral Small Vessel Disease and Their Potential Clinical Outcome. Int J Mol Sci 2019; 20:ijms20174298. [PMID: 31484286 PMCID: PMC6747336 DOI: 10.3390/ijms20174298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Cerebral small vessel diseases (SVD) have been causally correlated with ischemic strokes, leading to cognitive decline and vascular dementia. Neuroimaging and molecular genetic tests could improve diagnostic accuracy in patients with potential SVD. Several types of monogenic, hereditary cerebral SVD have been identified: cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL), hereditary diffuse leukoencephalopathy with spheroids (HDLS), COL4A1/2-related disorders, and Fabry disease. These disorders can be distinguished based on their genetics, pathological and imaging findings, clinical manifestation, and diagnosis. Genetic studies of sporadic cerebral SVD have demonstrated a high degree of heritability, particularly among patients with young-onset stroke. Common genetic variants in monogenic disease may contribute to pathological progress in several cerebral SVD subtypes, revealing distinct genetic mechanisms in different subtype of SVD. Hence, genetic molecular analysis should be used as the final gold standard of diagnosis. The purpose of this review was to summarize the recent discoveries made surrounding the genetics of cerebral SVD and their clinical significance, to provide new insights into the pathogenesis of cerebral SVD, and to highlight the possible convergence of disease mechanisms in monogenic and sporadic cerebral SVD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Eva Bagyinszky
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul 06973, Korea.
| | - Seong Soo A An
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 06973, Korea
| |
Collapse
|
20
|
SCN2A mutation in an infant with Ohtahara syndrome and neuroimaging findings: expanding the phenotype of neuronal migration disorders. J Genet 2019. [DOI: 10.1007/s12041-019-1104-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Hopkins SE, Chadehumbe M, Blaine Crowley T, Zackai EH, Bilaniuk LT, McDonald-McGinn DM. Neurologic challenges in 22q11.2 deletion syndrome. Am J Med Genet A 2018; 176:2140-2145. [PMID: 30365873 DOI: 10.1002/ajmg.a.38614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 01/30/2023]
Abstract
Children with 22q11.2 deletion syndrome often come to medical attention due to signs and symptoms of neurologic dysfunction. It is imperative to understand the expected neurologic development of patients with this diagnosis in order to be alert for the potential neurologic complications, including cortical malformations, tethered cord, epilepsy, and movement disorders. We present an update of brain imaging findings from the CHOP 22q and You Center, a review of the current literature, and our current management practices for neurological issues.
Collapse
Affiliation(s)
- Sarah E Hopkins
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Madeline Chadehumbe
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Larissa T Bilaniuk
- Division of Neuroradiology, Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
22
|
Fishel-Bartal M, Watad H, Hoffmann C, Achiron R, Barzilay E, Katorza E. Fetal brain MRI in polyhydramnios: is it justified? J Matern Fetal Neonatal Med 2018; 32:3986-3992. [PMID: 29865922 DOI: 10.1080/14767058.2018.1480605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Despite meticulous investigation of polyhydramnios cases, in many of these cases, congenital anomalies are detected only after birth. The aim of our study was to explore the contribution of fetal brain MRI to the detection of CNS anomalies in cases of polyhydramnios. Materials and methods: This was retrospective cohort study on fetuses referred for the investigation of polyhydramnios at a single tertiary center. All fetuses underwent a detailed sonographic anatomical scan and a fetal brain MRI. Isolated and nonisolated polyhydramnios were differentiated according to associated anomalies. MRI findings were compared between the groups. Results: A total of 46 fetuses were included in the study. Brain anomalies were detected in ultrasound in 12 (26%) cases while MRI detected brain anomalies in 23 (50%) cases. MRI detected more anomalies in fetuses with nonisolated compared to isolated polyhydramnios (62.9% and 31.6%, respectively, p = .019). Conclusions: Fetal brain MRI may contribute to the evaluation of fetuses with polyhydramnios. The clinical value and cost-effectiveness of MRI use in the routine work-up of polyhydramnios should be assessed in future studies.
Collapse
Affiliation(s)
- Michal Fishel-Bartal
- Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Hadel Watad
- Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Chen Hoffmann
- Diagnostic Radiology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Reuven Achiron
- Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Eran Barzilay
- Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Eldad Katorza
- Antenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
23
|
Zou Z, Huang L, Lin S, He Z, Zhu H, Zhang Y, Fang Q, Luo Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat Diagn 2018; 38:91-98. [PMID: 29171036 DOI: 10.1002/pd.5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the relationship between copy number variations (CNVs) detected by high-resolution chromosomal microarray analysis (CMA) and the type of prenatal posterior fossa anomalies (PFAs), especially cerebellar hypoplasia (CH). METHODS This study involved 77 pregnancies with PFAs who underwent CMA. RESULTS Chromosomal aberrations including pathogenic CNVs and variants of unknown significance were detected in 31.2% (24/77) of all cases by CMA and in 18.5% (12/65) in fetuses with normal karyotypes. The high detection rate of clinically significant CNVs was evident in fetuses with cerebellar hypoplasia (54.6%, 6/11), vermis hypoplasia (33.3%, 1/3), and Dandy-Walker malformation (25.0%, 3/12). Compare with fetuses without other anomalies, cases with CH and additional malformations had the higher CMA detection rate (33.3% vs 88.9%). Three cases of isolated unilateral CH with intact vermis and normal CMA result had normal outcomes. The deletion of 5p15, 6q terminal deletion, and X chromosome aberrations were the most frequent genetic defects associated with cerebellar hypoplasia. CONCLUSION Among fetuses with PFA, those with cerebellar hypoplasia, vermis hypoplasia, or Dandy-Walker malformation are at the highest risk of clinically significant CNVs. Chromosomal microarray analysis revealed the most frequent chromosomal aberrations associated with CH.
Collapse
Affiliation(s)
- Zhiyong Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Mudigoudar B, Nune S, Fulton S, Dayyat E, Wheless JW. Epilepsy in 22q11.2 Deletion Syndrome: A Case Series and Literature Review. Pediatr Neurol 2017; 76:86-90. [PMID: 28969878 DOI: 10.1016/j.pediatrneurol.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The 22q11.2 deletion syndrome affects multiple organ systems, and the neurological manifestations are an important aspect of this disorder. Many are aware of cardiac anomalies associated with this uncommon genetic disorder. However, the different types of seizures, electroencephalography (EEG), and brain magnetic resonance imaging (MRI) findings seen in this condition are not appreciated. METHODS Medical records of four patients with epilepsy due to 22q11.2 deletion syndrome were retrospectively reviewed for documentation of seizure types, EEG, and brain MRI findings. In addition, we also did a literature review of previously reported individuals with unprovoked seizures in this condition. RESULTS A review of all published cases including our patients reveals that focal epilepsy (39 of 88, 44%) is the most common type followed by genetic generalized epilepsy (24 of 88, 27%). Diffuse cerebral atrophy and polymicrogyria were the most frequent MRI findings. CONCLUSIONS Patients with structural brain abnormalities, especially polymicrogyria and associated epilepsy should have a chromosomal microarray (CMA) performed to screen for the 22q11.2 deletion syndrome. Focal epilepsy and genetic generalized epilepsy are the most frequent epilepsy types reported in this condition.
Collapse
Affiliation(s)
- Basanagoud Mudigoudar
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee; Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee.
| | - Sunitha Nune
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Stephen Fulton
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee; Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Ehab Dayyat
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee; Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - James W Wheless
- Department of Pediatrics, Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, Tennessee; Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
25
|
Bohm LA, Zhou TC, Mingo TJ, Dugan SL, Patterson RJ, Sidman JD, Roby BB. Neuroradiographic findings in 22q11.2 deletion syndrome. Am J Med Genet A 2017; 173:2158-2165. [PMID: 28577347 DOI: 10.1002/ajmg.a.38304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorder with enormous phenotypic heterogeneity. Despite the established prevalence of developmental and neuropsychiatric issues in this syndrome, its neuroanatomical correlates are not as well understood. A retrospective chart review was performed on 111 patients diagnosed with 22q11.2DS. Of the 111 patients, 24 with genetically confirmed 22q11.2 deletion and brain MRI or MRA were included in this study. The most common indications for imaging were unexplained developmental delay (6/24), seizures of unknown etiology (5/24), and unilateral weakness (3/24). More than half (13/24) of the patients had significant radiographic findings, including persistent cavum septi pellucidi and/or cavum vergae (8/24), aberrant cortical veins (6/24), polymicrogyria or cortical dysplasia (4/24), inner ear deformities (3/24), hypoplastic internal carotid artery (2/24), and hypoplastic cerebellum (1/24). These findings reveal the types and frequencies of brain malformations in this case series, and suggest that the prevalence of neuroanatomical abnormalities in 22q11.2DS may be underestimated. Understanding indications for imaging and frequently encountered brain malformations will result in early diagnosis and intervention in an effort to optimize patient outcomes.
Collapse
Affiliation(s)
- Lauren A Bohm
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota.,Division of Pediatric Otolaryngology, University of Michigan, Ann Arbor, Michigan
| | - Tom C Zhou
- University of Minnesota, Minneapolis, Minnesota
| | | | - Sarah L Dugan
- Medical Genetics, Children's Minnesota, Minneapolis, Minnesota.,Division of Pediatric Genetics, University of Utah, Salt Lake City, Utah
| | | | - James D Sidman
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota
| | - Brianne B Roby
- University of Minnesota, Minneapolis, Minnesota.,ENT and Facial Plastic Surgery, Children's Minnesota, Children's Specialty Center, Minneapolis, Minnesota
| |
Collapse
|
26
|
Flore G, Cioffi S, Bilio M, Illingworth E. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb Cortex 2017; 27:2210-2225. [PMID: 27005988 DOI: 10.1093/cercor/bhw076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm.
Collapse
Affiliation(s)
- Gemma Flore
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Bio-Ker srl, c/o Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Elizabeth Illingworth
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
27
|
Wither RG, Borlot F, MacDonald A, Butcher NJ, Chow EWC, Bassett AS, Andrade DM. 22q11.2 deletion syndrome lowers seizure threshold in adult patients without epilepsy. Epilepsia 2017; 58:1095-1101. [PMID: 28448680 DOI: 10.1111/epi.13748] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Previous studies examining seizures in patients with 22q11.2 deletion syndrome (22q11.2DS) have focused primarily on children and adolescents. In this study we investigated the prevalence and characteristics of seizures and epilepsy in an adult 22q11.2DS population. METHODS The medical records of 202 adult patients with 22q11.2DS were retrospectively reviewed for documentation of seizures, electroencephalography (EEG) reports, and magnetic resonance imaging (MRI) findings. Epilepsy status was assigned in accordance with 2010 International League Against Epilepsy Classification. RESULTS Of 202 patients, 32 (15.8%) had a documented history of seizure. Of these 32, 23 (71.8%) had acute symptomatic seizures, usually associated with hypocalcemia and/or antipsychotic or antidepressant use. Nine patients (9/32, 28%; 9/202, 4%) met diagnostic criteria for epilepsy. Two patients had genetic generalized epilepsy; two patients had focal seizures of unknown etiology; two had epilepsy due to malformations of cortical development; in two the epilepsy was due to acquired structural changes; and in one patient the epilepsy could not be further classified. SIGNIFICANCE Similarly to children, the prevalence of epilepsy and acute symptomatic seizures in adults with 22q11.2DS is higher than in the general population. Hypocalcemia continues to be a risk factor for adults, but differently from kids, the main cause of seizures in adults with 22q11.2DS is exposure to antipsychotics and antidepressants. Further prospective studies are warranted to investigate how 22q11.2 microdeletion leads to an overall decreased seizure threshold.
Collapse
Affiliation(s)
- Robert G Wither
- Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada
| | - Felippe Borlot
- Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, U.S.A.,Krembil Neurosciences Epilepsy Genetics Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Alex MacDonald
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eva W C Chow
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Department of Medicine, Dalglish Family Hearts and Minds Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Psychiatry, University Health Network, Toronto, Ontario, Canada.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Danielle M Andrade
- Division of Neurology, Department of Medicine, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, Ontario, Canada.,Krembil Neurosciences Epilepsy Genetics Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Chaoui R, Heling KS, Zhao Y, Sinkovskaya E, Abuhamad A, Karl K. Dilated cavum septi pellucidi in fetuses with microdeletion 22q11. Prenat Diagn 2016; 36:911-915. [DOI: 10.1002/pd.4911] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Rabih Chaoui
- Center for Prenatal Diagnosis and Human Genetics; Berlin Germany
| | - Kai-Sven Heling
- Center for Prenatal Diagnosis and Human Genetics; Berlin Germany
| | - Yili Zhao
- Division of Maternal-Fetal Medicine of the Department of Obstetrics & Gynecology; Eastern Virginia Medical School; Norfolk VA USA
| | - Elena Sinkovskaya
- Division of Maternal-Fetal Medicine of the Department of Obstetrics & Gynecology; Eastern Virginia Medical School; Norfolk VA USA
| | - Alfred Abuhamad
- Division of Maternal-Fetal Medicine of the Department of Obstetrics & Gynecology; Eastern Virginia Medical School; Norfolk VA USA
| | - Katrin Karl
- Center for Prenatal Diagnosis; Munich Germany
| |
Collapse
|
29
|
Abstract
Malformations of cortical development (MCD) represent a major cause of developmental disabilities, severe epilepsy, and reproductive disadvantage. Genes that have been associated to MCD are mainly involved in cell proliferation and specification, neuronal migration, and late cortical organization. Lissencephaly-pachygyria-severe band heterotopia are diffuse neuronal migration disorders causing severe global neurological impairment. Abnormalities of the LIS1, DCX, ARX, RELN, VLDLR, ACTB, ACTG1, TUBG1, KIF5C, KIF2A, and CDK5 genes have been associated with these malformations. More recent studies have also established a relationship between lissencephaly, with or without associated microcephaly, corpus callosum dysgenesis as well as cerebellar hypoplasia, and at times, a morphological pattern consistent with polymicrogyria with mutations of several genes (TUBA1A, TUBA8, TUBB, TUBB2B, TUBB3, and DYNC1H1), regulating the synthesis and function of microtubule and centrosome key components and hence defined as tubulinopathies. MCD only affecting subsets of neurons, such as mild subcortical band heterotopia and periventricular heterotopia, have been associated with abnormalities of the DCX, FLN1A, and ARFGEF2 genes and cause neurological and cognitive impairment that vary from severe to mild deficits. Polymicrogyria results from abnormal late cortical organization and is inconstantly associated with abnormal neuronal migration. Localized polymicrogyria has been associated with anatomo-specific deficits, including disorders of language and higher cognition. Polymicrogyria is genetically heterogeneous, and only in a small minority of patients, a definite genetic cause has been identified. Megalencephaly with normal cortex or polymicrogyria by MRI imaging, hemimegalencephaly and focal cortical dysplasia can all result from mutations in genes of the PI3K-AKT-mTOR pathway. Postzygotic mutations have been described for most MCD and can be limited to the dysplastic tissue in the less diffuse forms.
Collapse
Affiliation(s)
- Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Wash., USA
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
31
|
Kim EH, Yum MS, Lee BH, Kim HW, Lee HJ, Kim GH, Lee YJ, Yoo HW, Ko TS. Epilepsy and Other Neuropsychiatric Manifestations in Children and Adolescents with 22q11.2 Deletion Syndrome. J Clin Neurol 2016; 12:85-92. [PMID: 26754781 PMCID: PMC4712291 DOI: 10.3988/jcn.2016.12.1.85] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome. Epilepsy and other neuropsychiatric (NP) manifestations of this genetic syndrome are not uncommon, but they are also not well-understood. We sought to identify the characteristics of epilepsy and other associated NP manifestations in patients with 22q11.2DS. Methods We retrospectively analyzed the medical records of 145 child and adolescent patients (72 males and 73 females) with genetically diagnosed 22q11.2DS. The clinical data included seizures, growth chart, psychological reports, development characteristics, school performance, other clinical manifestations, and laboratory findings. Results Of the 145 patients with 22q11.2DS, 22 (15.2%) had epileptic seizures, 15 (10.3%) had developmental delay, and 5 (3.4%) had a psychiatric illness. Twelve patients with epilepsy were classified as genetic epilepsy whereas the remaining were classified as structural, including three with malformations of cortical development. Patients with epilepsy were more likely to display developmental delay (odds ratio=3.98; 95% confidence interval=1.5-10.5; p=0.005), and developmental delay was more common in patients with structural epilepsy than in those with genetic epilepsy. Conclusions Patients with 22q11.2DS have a high risk of epilepsy, which in these cases is closely related to other NP manifestations. This implies that this specific genetic locus is critically linked to neurodevelopment and epileptogenesis.
Collapse
Affiliation(s)
- Eun Hee Kim
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Mi Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Won Kim
- Department of Psychiatry, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Jeoung Lee
- Department of Psychiatry, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu Hwan Kim
- Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Wook Yoo
- Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Abnormal gait, reduced locomotor activity and impaired motor coordination in Dgcr2-deficient mice. Biochem Biophys Rep 2015; 5:120-126. [PMID: 28955813 PMCID: PMC5600435 DOI: 10.1016/j.bbrep.2015.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022] Open
Abstract
It has been suggested that the DGCR2 gene plays a role in the pathogenesis of 22q11.2 deletion syndrome. To analyze its function, we used our Dgcr2-knock-out/EGFP-knock-in mice (Dgcr2-KO mice). At 20-26 weeks of age, approximately 20% of Dgcr2-KO mice showed gait abnormalities with trembling and difficulty in balancing. Footprint test revealed awkward movements in Dgcr2-KO mice soon after they were placed on the floor. Once they started walking, their stride lengths were not different from wild-type mice. In short-term open field test, Dgcr2-KO mice travelled a significantly shorter distance and walked more slowly than wild-type mice during the initial 5 min after being placed in a new environment. In long-term open field test, Dgcr2-KO mice exhibited reduced cage activity compared to wild-type mice on the first day, but not on later days. Dgcr2-KO mice showed reduced latency to fall in the rotarod test, and the latency was not improved in the 3-day test. Histology revealed sparseness of cerebellar Purkinje cells in Dgcr2-KO mice. Our results suggest that Dgcr2 plays a role in motor control related to Purkinje cell function and that the deficiency of DGCR2 contributes at least to some of the symptoms of patients of 22q11.2 deletion syndrome. Dgcr2-KO mice showed abnormal behavior and gaits in footprint analysis. Locomotor activity was significantly reduced in Dgcr2-KO mice in open field tests. Dgcr2-KO mice showed impaired motor coordination in the rotarod test. Dgcr2-KO mice had sparseness of cerebellar Purkinje cells. Loss of DGCR2 may contribute to neuronal dysfunction in humans.
Collapse
|
33
|
Moffat JJ, Ka M, Jung EM, Kim WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015; 8:72. [PMID: 26541977 PMCID: PMC4635534 DOI: 10.1186/s13041-015-0164-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023] Open
Abstract
Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| |
Collapse
|
34
|
Mirzaa GM, Conti V, Timms AE, Smyser CD, Ahmed S, Carter M, Barnett S, Hufnagel RB, Goldstein A, Narumi-Kishimoto Y, Olds C, Collins S, Johnston K, Deleuze JF, Nitschké P, Friend K, Harris C, Goetsch A, Martin B, Boyle EA, Parrini E, Mei D, Tattini L, Slavotinek A, Blair E, Barnett C, Shendure J, Chelly J, Dobyns WB, Guerrini R. Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study. Lancet Neurol 2015; 14:1182-95. [PMID: 26520804 PMCID: PMC4672724 DOI: 10.1016/s1474-4422(15)00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Background Bilateral perisylvian polymicrogyria (BPP), the most common form of
regional polymicrogyria, causes the congenital bilateral perisylvian
syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy.
BPP is etiologically heterogeneous, but only a few genetic causes have been
reported. The aim of this study was to identify additional genetic
etiologies of BPP and delineate their frequency in this patient
population. Methods We performed child-parent (trio)-based whole exome sequencing (WES)
on eight children with BPP. Following the identification of mosaic
PIK3R2 mutations in two of these eight children, we
performed targeted screening of PIK3R2 in a cohort of 118
children with BPP who were ascertained from 1980 until 2015 using two
methods. First, we performed targeted sequencing of the entire
PIK3R2 gene by single molecule molecular inversion
probes (smMIPs) on 38 patients with BPP with normal-large head size. Second,
we performed amplicon sequencing of the recurrent PIK3R2
mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria
including BPP. One additional patient underwent clinical WES independently,
and was included in this study given the phenotypic similarity to our
cohort. All patients included in this study were children (< 18 years of
age) with polymicrogyria enrolled in our research program. Findings Using WES, we identified a mosaic mutation (p.Gly373Arg) in the
regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in
two children with BPP. Of the 38 patients with BPP and normal-large head
size who underwent targeted next generation sequencing by smMIPs, we
identified constitutional and mosaic PIK3R2 mutations in 17
additional children. In parallel, one patient was found to have the
recurrent PIK3R2 mutation by clinical WES. Seven patients
had BPP alone, and 13 had BPP in association with features of the
megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH).
Nineteen patients had the same mutation (Gly373Arg), and one had a nearby
missense mutation (p.Lys376Glu). Across the entire cohort, mutations were
constitutional in 12 and mosaic in eight patients. Among mosaic patients, we
observed substantial variation in alternate (mutant) allele levels ranging
from 2·5% (10/377) to 36·7% (39/106) of
reads, equivalent to 5–73·4% of cells analyzed.
Levels of mosaicism varied from undetectable to 17·1%
(37/216) of reads in blood-derived compared to 29·4%
(2030/6889) to 43·3% (275/634) in saliva-derived DNA. Interpretation Constitutional and mosaic mutations in the PIK3R2
gene are associated with a spectrum of developmental brain disorders ranging
from BPP with a normal head size to the
megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The
phenotypic variability and low-level mosaicism challenging conventional
molecular methods have important implications for genetic testing and
counseling.
Collapse
Affiliation(s)
- Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Christopher D Smyser
- Department of Neurology and Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Ahmed
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Melissa Carter
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Barnett
- Division of Medical Genetics, University of Missouri, St Louis, MO, USA
| | - Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Amy Goldstein
- Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | - Carissa Olds
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kathreen Johnston
- Genetics Department, Permanente Medical Group, San Francisco, CA, USA
| | | | - Patrick Nitschké
- Plateforme de Bioinformatique Paris-Descartes, Institut Imagine, Paris, France
| | - Kathryn Friend
- Genetics and Molecular Pathology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Catharine Harris
- Division of Medical Genetics, University of Missouri, St Louis, MO, USA
| | - Allison Goetsch
- Division of Genetics, Birth Defects and Metabolism, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Evan August Boyle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Lorenzo Tattini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, CA, USA
| | - Ed Blair
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals, Headington, UK
| | - Christopher Barnett
- South Australian Clinical Genetics Service, Women's and Children's Hospital/SA Pathology, North Adelaide, SA, Australia; Discipline of Pediatrics, University of Adelaide, Adelaide, Australia
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jamel Chelly
- Pôle de biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; IGBMC, Translational Medicine and Neurogenetics Department, Illkirch, France
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy; IRCCS Stella Maris Foundation, Pisa, Italy.
| |
Collapse
|
35
|
Schmitt JE, Vandekar S, Yi J, Calkins ME, Ruparel K, Roalf DR, Whinna D, Souders MC, Satterwaite TD, Prabhakaran K, McDonald-McGinn DM, Zackai EH, Gur RC, Emanuel BS, Gur RE. Aberrant Cortical Morphometry in the 22q11.2 Deletion Syndrome. Biol Psychiatry 2015; 78:135-43. [PMID: 25555483 PMCID: PMC4446247 DOI: 10.1016/j.biopsych.2014.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is increased risk of developing psychosis in 22q11.2 deletion syndrome (22q11DS). Although this condition is associated with morphologic brain abnormalities, simultaneous examination of multiple high-resolution measures of cortical structure has not been performed. METHODS Fifty-three patients with 22q11DS, 30 with psychotic symptoms, were compared with demographically matched nondeleted youths: 53 typically developing and 53 with psychotic symptoms. High-resolution magnetic resonance imaging measures of cerebral volume, cortical thickness, surface area, and an index of local gyrification were obtained and compared between groups. RESULTS Patients with 22q11DS demonstrated global increases in cortical thickness associated with reductions in surface area, reduced index of local gyrification, and lower cerebral volumes relative to typically developing controls. Findings were principally in the frontal lobe, superior parietal lobes, and in the paramedian cerebral cortex. Focally decreased thickness was seen in the superior temporal gyrus and posterior cingulate cortex in 22q11DS relative to nondeleted groups. Patterns between nondeleted participants with psychotic symptoms and 22q11DS were similar but with important differences in several regions implicated in schizophrenia. Post hoc analysis suggested that like the 22q11DS group, cortical thickness in nondeleted individuals with psychotic symptoms differed from typically developing controls in the superior frontal gyrus and superior temporal gyrus, regions previously linked to schizophrenia. CONCLUSIONS Simultaneous examination of multiple measures of cerebral architecture demonstrates that differences in 22q11DS localize to regions of the frontal, superior parietal, superior temporal, and paramidline cerebral cortex. The overlapping patterns between nondeleted participants with psychotic symptoms and 22q11DS suggest partially shared neuroanatomic substrates.
Collapse
Affiliation(s)
- J. Eric Schmitt
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Vandekar
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Yi
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Monica E. Calkins
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosha Ruparel
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R. Roalf
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daneen Whinna
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret C. Souders
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D. Satterwaite
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthik Prabhakaran
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C. Gur
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly S. Emanuel
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Brain Behavior Laboratory, Department of Psychiatry, Neuropsychiatry Section, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding Author: Brain Behavior Laboratory, 10th Floor, Gates Building, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA. (R.E. Gur). Phone: (215) 662-2915, Fax: (215) 662-7903
| |
Collapse
|
36
|
Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 2015; 5:a022392. [PMID: 25934463 DOI: 10.1101/cshperspect.a022392] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malformations of cortical development (MCDs) are an important cause of epilepsy and an extremely interesting group of disorders from the perspective of brain development and its perturbations. Many new MCDs have been described in recent years as a result of improvements in imaging, genetic testing, and understanding of the effects of mutations on the ability of their protein products to correctly function within the molecular pathways by which the brain functions. In this review, most of the major MCDs are reviewed from a clinical, embryological, and genetic perspective. The most recent literature regarding clinical diagnosis, mechanisms of development, and future paths of research are discussed.
Collapse
Affiliation(s)
- A James Barkovich
- Department of Radiology and Biomedical Imaging, Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, San Francisco, California 94143-0628
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer, University of Florence, Florence 50139, Italy
| |
Collapse
|
37
|
Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015; 130:1-28. [PMID: 25866365 DOI: 10.1016/j.pneurobio.2015.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic "model" syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that "modeling a model", in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development.
Collapse
Affiliation(s)
- Daniel W Meechan
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Thomas M Maynard
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Eric S Tucker
- Department of Neurobiology and Anatomy, Neuroscience Graduate Program, and Center for Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alejandra Fernandez
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Beverly A Karpinski
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States
| | - Lawrence A Rothblat
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States; Department of Psychology, The George Washington University, Washington, DC, United States
| | - Anthony-S LaMantia
- Institute for Neuroscience, Department of Pharmacology & Physiology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
38
|
Pagnamenta AT, Howard MF, Wisniewski E, Popitsch N, Knight SJL, Keays DA, Quaghebeur G, Cox H, Cox P, Balla T, Taylor JC, Kini U. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet 2015; 24:3732-41. [PMID: 25855803 PMCID: PMC4459391 DOI: 10.1093/hmg/ddv117] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome. In these regions, the only plausibly pathogenic mutations were compound heterozygous variants in PI4KA, which Sanger sequencing confirmed segregated consistent with autosomal recessive inheritance. The paternally transmitted variant predicted a premature stop mutation (c.2386C>T; p.R796X), whereas the maternally transmitted variant predicted a missense substitution (c.5560G>A; p.D1854N) at a conserved residue within the catalytic domain. Functional studies using expressed wild-type or mutant PI4KA enzyme confirmed the importance of p.D1854 for kinase activity. Our results emphasize the importance of phosphoinositide signalling in early brain development.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Malcolm F Howard
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niko Popitsch
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Samantha J L Knight
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - David A Keays
- Institute of Molecular Pathology, Vienna 1030, Austria
| | | | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Clinical Genetics Unit and
| | - Phillip Cox
- Department of Histopathology, Birmingham Women's Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny C Taylor
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK,
| |
Collapse
|
39
|
Meuwissen MEC, Halley DJJ, Smit LS, Lequin MH, Cobben JM, de Coo R, van Harssel J, Sallevelt S, Woldringh G, van der Knaap MS, de Vries LS, Mancini GMS. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med 2015; 17:843-53. [PMID: 25719457 DOI: 10.1038/gim.2014.210] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as "COL4A1 mutation-related disorders." Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.
Collapse
Affiliation(s)
- Marije E C Meuwissen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Genetics, University Hospital Antwerp, Antwerp, Belgium
| | - Dicky J J Halley
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Liesbeth S Smit
- Department of Neurology, Division of Pediatric Neurology, Child Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten H Lequin
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan M Cobben
- Department of Pediatric Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - René de Coo
- Department of Neurology, Division of Pediatric Neurology, Child Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeske van Harssel
- Department of Clinical Genetics, University Medical Center, University of Utrecht, Utrecht, The Netherlands
| | - Suzanne Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gwendolyn Woldringh
- Department of Clinical Genetics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | - Linda S de Vries
- Department of Neonatology, University Medical Center, University of Utrecht, Utrecht, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Forstner AJ, Basmanav FB, Mattheisen M, Böhmer AC, Hollegaard MV, Janson E, Strengman E, Priebe L, Degenhardt F, Hoffmann P, Herms S, Maier W, Mössner R, Rujescu D, Ophoff RA, Moebus S, Mortensen PB, Børglum AD, Hougaard DM, Frank J, Witt SH, Rietschel M, Zimmer A, Nöthen MM, Miró X, Cichon S. Investigation of the involvement of MIR185 and its target genes in the development of schizophrenia. J Psychiatry Neurosci 2014; 39:386-96. [PMID: 24936775 PMCID: PMC4214873 DOI: 10.1503/jpn.130189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex neuropsychiatric disorder of unclear etiology. The strongest known genetic risk factor is the 22q11.2 microdeletion. Research has yet to confirm which genes within the deletion region are implicated in schizophrenia. The minimal 1.5 megabase deletion contains MIR185, which encodes microRNA 185. METHODS We determined miR-185 expression in embryonic and adult mouse brains. Common and rare variants at this locus were then investigated using a human genetics approach. First, we performed gene-based analyses for MIR185 common variants and target genes using Psychiatric Genomics Consortium genome-wide association data. Second, MIR185 was resequenced in German patients (n = 1000) and controls (n = 500). We followed up promising variants by genotyping an additional European sample (patients, n = 3598; controls, n = 4082). RESULTS In situ hybridization in mice revealed miR-185 expression in brain regions implicated in schizophrenia. Gene-based tests revealed association between common variants in 3 MIR185 target genes (ATAT1, SH3PXD2A, NTRK3) and schizophrenia. Further analyses in mice revealed overlapping expression patterns for these target genes and miR-185. Resequencing identified 2 rare patient-specific novel variants flanking MIR185. However, follow-up genotyping provided no further evidence of their involvement in schizophrenia. LIMITATIONS Power to detect rare variant associations was limited. CONCLUSION Human genetic analyses generated no evidence of the involvement of MIR185 in schizophrenia. However, the expression patterns of miR-185 and its target genes in mice, and the genetic association results for the 3 target genes, suggest that further research into the involvement of miR-185 and its downstream pathways in schizophrenia is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Markus M. Nöthen
- Correspondence to: M.M. Nöthen, Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany;
| | | | | |
Collapse
|
41
|
Evers LJM, van Amelsvoort TAMJ, Candel MJJM, Boer H, Engelen JJM, Curfs LMG. Psychopathology in adults with 22q11 deletion syndrome and moderate and severe intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2014; 58:915-925. [PMID: 24528781 DOI: 10.1111/jir.12117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND 22q11 deletion syndrome (22q11DS) is associated with mild or borderline intellectual disability (ID). There are hardly any reports on subjects with 22q11DS with moderate or severe ID, and therefore its behavioural and psychiatric characteristics are unknown. METHOD We describe behavioural and psychiatric characteristics of 33 adults with 22q11DS and a Full-Scale IQ (FSIQ) below 55. Participants were divided into two groups: one group having a FSIQ ≤ 55 caused by intellectual decline (n = 21) and one group with a FSIQ ≤ 55 who had always functioned at this level (n = 12). RESULTS High scores on psychopathology sub-scales were found for both subgroups. 22q11DS patients with intellectual decline showed higher rates of co-morbid psychopathology, particularly psychosis. Furthermore, psychosis and intellectual decline were positive correlated. CONCLUSION This is the first report addressing adult patients with 22q11DS and moderate to severe ID. Overall we found high levels of psychopathology with higher scores of psychopathology in the intellectual decline group. Life time psychosis seems to be related to deterioration.
Collapse
Affiliation(s)
- L J M Evers
- MFCG, Koraalgroup, Heel, The Netherlands; Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
De Ciantis A, Barkovich AJ, Cosottini M, Barba C, Montanaro D, Costagli M, Tosetti M, Biagi L, Dobyns WB, Guerrini R. Ultra-high-field MR imaging in polymicrogyria and epilepsy. AJNR Am J Neuroradiol 2014; 36:309-16. [PMID: 25258368 DOI: 10.3174/ajnr.a4116] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Polymicrogyria is a malformation of cortical development that is often identified in children with epilepsy or delayed development. We investigated in vivo the potential of 7T imaging in characterizing polymicrogyria to determine whether additional features could be identified. MATERIALS AND METHODS Ten adult patients with polymicrogyria previously diagnosed by using 3T MR imaging underwent additional imaging at 7T. We assessed polymicrogyria according to topographic pattern, extent, symmetry, and morphology. Additional imaging sequences at 7T included 3D T2* susceptibility-weighted angiography and 2D tissue border enhancement FSE inversion recovery. Minimum intensity projections were used to assess the potential of the susceptibility-weighted angiography sequence for depiction of cerebral veins. RESULTS At 7T, we observed perisylvian polymicrogyria that was bilateral in 6 patients, unilateral in 3, and diffuse in 1. Four of the 6 bilateral abnormalities had been considered unilateral at 3T. While 3T imaging revealed 2 morphologic categories (coarse, delicate), 7T susceptibility-weighted angiography images disclosed a uniform ribbonlike pattern. Susceptibility-weighted angiography revealed numerous dilated superficial veins in all polymicrogyric areas. Tissue border enhancement imaging depicted a hypointense line corresponding to the gray-white interface, providing a high definition of the borders and, thereby, improving detection of the polymicrogyric cortex. CONCLUSIONS 7T imaging reveals more anatomic details of polymicrogyria compared with 3T conventional sequences, with potential implications for diagnosis, genetic studies, and surgical treatment of associated epilepsy. Abnormalities of cortical veins may suggest a role for vascular dysgenesis in pathogenesis.
Collapse
Affiliation(s)
- A De Ciantis
- From the Pediatric Neurology Unit (A.D.C., C.B., R.G.), Meyer Children's Hospital, University of Florence, Florence, Italy
| | - A J Barkovich
- Department of Radiology and Biomedical Imaging (A.J.B.), University of California San Francisco, San Francisco, California
| | - M Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery (M. Cosottini), University of Pisa, Pisa, Italy IMAGO7 Foundation (M. Cosottini), Pisa, Italy
| | - C Barba
- From the Pediatric Neurology Unit (A.D.C., C.B., R.G.), Meyer Children's Hospital, University of Florence, Florence, Italy
| | - D Montanaro
- Fondazione Consiglio Nazionale delle Ricerche/Regione Toscana (D.M.), Unità Operativa Semplice Neuroradiologia, Pisa, Italy
| | - M Costagli
- Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (M. Costagli, M.T., L.B., R.G.), Pisa, Italy
| | - M Tosetti
- Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (M. Costagli, M.T., L.B., R.G.), Pisa, Italy
| | - L Biagi
- Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (M. Costagli, M.T., L.B., R.G.), Pisa, Italy
| | - W B Dobyns
- Center for Integrative Brain Research (W.B.D.), Seattle Children's Hospital, Seattle, Washington
| | - R Guerrini
- From the Pediatric Neurology Unit (A.D.C., C.B., R.G.), Meyer Children's Hospital, University of Florence, Florence, Italy Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris Foundation (M. Costagli, M.T., L.B., R.G.), Pisa, Italy
| |
Collapse
|
43
|
Fountain DM, Schaer M, Mutlu AK, Schneider M, Debbané M, Eliez S. Congenital heart disease is associated with reduced cortical and hippocampal volume in patients with 22q11.2 deletion syndrome. Cortex 2014; 57:128-42. [DOI: 10.1016/j.cortex.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 11/24/2022]
|
44
|
Squier W, Jansen A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun 2014; 2:80. [PMID: 25047116 PMCID: PMC4149230 DOI: 10.1186/s40478-014-0080-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/28/2023] Open
Abstract
Polymicrogyria (PMG) is a complex cortical malformation which has so far defied any mechanistic or genetic explanation. Adopting a broad definition of an abnormally folded or festooned cerebral cortical neuronal ribbon, this review addresses the literature on PMG and the mechanisms of its development, as derived from the neuropathological study of many cases of human PMG, a large proportion in fetal life. This reveals the several processes which appear to be involved in the early stages of formation of polymicrogyric cortex. The most consistent feature of developing PMG is disruption of the brain surface with pial defects, over-migration of cells, thickening and reduplication of the pial collagen layers and increased leptomeningeal vascularity. Evidence from animal models is consistent with our observations and supports the notion that disturbance in the formation of the leptomeninges or loss of their normal signalling functions are potent contributors to cortical malformation. Other mechanisms which may lead to PMG include premature folding of the neuronal band, abnormal fusion of adjacent gyri and laminar necrosis of the developing cortex. The observation of PMG in association with other and better understood forms of brain malformation, such as cobblestone cortex, suggests mechanistic pathways for some forms of PMG. The role of altered physical properties of the thickened leptomeninges in exerting mechanical constraints on the developing cortex is also considered.
Collapse
|
45
|
Abstract
Malformations of cortical development are common causes of developmental delay and epilepsy. Some patients have early, severe neurological impairment, but others have epilepsy or unexpected deficits that are detectable only by screening. The rapid evolution of molecular biology, genetics, and imaging has resulted in a substantial increase in knowledge about the development of the cerebral cortex and the number and types of malformations reported. Genetic studies have identified several genes that might disrupt each of the main stages of cell proliferation and specification, neuronal migration, and late cortical organisation. Many of these malformations are caused by de-novo dominant or X-linked mutations occurring in sporadic cases. Genetic testing needs accurate assessment of imaging features, and familial distribution, if any, and can be straightforward in some disorders but requires a complex diagnostic algorithm in others. Because of substantial genotypic and phenotypic heterogeneity for most of these genes, a comprehensive analysis of clinical, imaging, and genetic data is needed to properly define these disorders. Exome sequencing and high-field MRI are rapidly modifying the classification of these disorders.
Collapse
Affiliation(s)
- Renzo Guerrini
- Department of Neuroscience, Pharmacology and Child Health, Children's Hospital A Meyer and University of Florence, Florence, Italy; Stella Maris Foundation Research Institute, Pisa, Italy.
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
46
|
Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:227-39. [PMID: 24888723 DOI: 10.1002/ajmg.c.31399] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polymicrogyria (PMG) is one of the most common malformations of cortical development. It is characterized by overfolding of the cerebral cortex and abnormal cortical layering. It is a highly heterogeneous malformation with variable clinical and imaging features, pathological findings, and etiologies. It may occur as an isolated cortical malformation, or in association with other malformations within the brain or body as part of a multiple congenital anomaly syndrome. Polymicrogyria shows variable topographic patterns with the bilateral perisylvian pattern being most common. Schizencephaly is a subtype of PMG in which the overfolded cortex lines full-thickness clefts connecting the subarachnoid space with the cerebral ventricles. Both genetic and non-genetic causes of PMG have been identified. Non-genetic causes include congenital cytomegalovirus infection and in utero ischemia. Genetic causes include metabolic conditions such as peroxisomal disorders and the 22q11.2 and 1p36 continguous gene deletion syndromes. Mutations in over 30 genes have been found in association with PMG, especially mutations in the tubulin family of genes. Mutations in the (PI3K)-AKT pathway have been found in association PMG and megalencephaly. Despite recent genetic advances, the mechanisms by which polymicrogyric cortex forms and causes of the majority of cases remain unknown, making diagnostic and prenatal testing and genetic counseling challenging. This review summarizes the clinical, imaging, pathologic, and etiologic features of PMG, highlighting recent genetic advances.
Collapse
|
47
|
Abstract
BACKGROUND Patients with chromosome 22q11.2 deletion syndrome (22q11DS) are at a seven fold increased risk of developing seizures. However, only a fraction of these patients exhibit structural abnormalities such as polymicrogyria (PMG) and periventricular nodular heterotopia (PNH) that are known to cause seizures and to be associated with 22q11DS. In this study we used a dedicated seizure imaging protocol to look for additional structural abnormalities in these individuals that may explain the elevated risk of seizure disorder in this patient group. METHODS Nineteen consecutive adult subjects with 22q11DS underwent a 3 Tesla MRI with a dedicated high-resolution seizure protocol. Neurological exam was performed in all patients. Genome-wide analysis excluded the presence of other pathogenic microdeletions or duplications. RESULTS Structural abnormalities were found in 11 of 14 subjects with sufficient image quality. These included three patients with PNH, one of whom had associated PMG. In addition, there was a surprisingly high prevalence of unilateral hippocampal malrotation (HIMAL), observed in 9 of 14 cases (64%). EEG findings showed interictal epileptiform discharges with focal distribution in four patients and generalized discharges in one patient. CONCLUSION The results suggest that, in addition to other known structural abnormalities, 22q11DS is associated with HIMAL. It has been suggested that this developmental abnormality of the hippocampus may predispose or otherwise contribute to epileptogenesis. However in this study we observed HIMAL in a large proportion of patients, with and without epilepsy. Therefore, other as yet unknown factors may contribute to the high prevalence of epilepsy in this population.
Collapse
|
48
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
49
|
Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLoS Genet 2013; 9:e1003823. [PMID: 24098143 PMCID: PMC3789824 DOI: 10.1371/journal.pgen.1003823] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 08/08/2013] [Indexed: 01/08/2023] Open
Abstract
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10−3; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89–5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69–5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10−4; OR = 7.55; 95% CI = 2.40–23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG. Here, we systematically test the genetic etiology of three common developmental brain malformations: agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) by copy number variation (CNV) analysis in a large cohort of brain malformation patients and controls. We found significantly more ACC but not CBLH or PMG patients with rare genic CNVs over one megabase and with rare CNVs impacting over 20 genes when compared with controls. De novo CNVs were found in 9.4% of ACC patients, and interestingly many such CNVs overlapped with de novo CNVs observed in autism. Notably, numerous studies have demonstrated a reduction in the corpus callosum area in autistic brains. Our analysis also refined previously known large CNVs that cause these malformations, and identified six novel CNVs that are likely deleterious. One ACC patient had inherited a deletion from the father which, through exome sequencing, was found to uncover a recessive nonsense mutation in NDE1 on the non-deleted allele inherited from the mother. Our study is the first to systematically evaluate the burden of rare genic CNVs in congenital brain malformations and shows that large gene-rich CNVs are more common in ACC than in CBLH and PMG.
Collapse
|
50
|
Villalon-Reina J, Jahanshad N, Beaton E, Toga AW, Thompson PM, Simon TJ. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging. Neuroimage 2013; 81:441-454. [PMID: 23602925 DOI: 10.1016/j.neuroimage.2013.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022] Open
Abstract
Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.
Collapse
Affiliation(s)
- Julio Villalon-Reina
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Elliott Beaton
- Stress, Cognition, and Affective Neuroscience Laboratory, Department of Psychology, University of New Orleans, New Orleans, LA, 70148
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA.
| | - Tony J Simon
- Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA; MIND Institute, Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA
| |
Collapse
|