1
|
Xu H, Ma S. Palladium-Catalyzed [6+2] Double Allene Annulation for Benzazocines Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213676. [PMID: 36372784 DOI: 10.1002/anie.202213676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
An efficient double allene protocol for the formation of benzazocines has been developed. The reaction constitutes a highly regioselective palladium-catalyzed formal [6+2] annulation of allenyl benzoxazinanones with terminal allenes forming the challenging 8-membered cycles. Decent yields and excellent regioselectivity have been observed under mild conditions with a remarkable Z-stereoselectivity for the exo-cyclic C=C bonds. The synthetic potentials of benzazocine products have been demonstrated.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Leverenz M, Masson G, Pardo DG, Cossy J. Synthesis of Azocanes from Piperidines via an Azetidinium Intermediate. Chemistry 2021; 27:16325-16328. [PMID: 34643301 DOI: 10.1002/chem.202102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/11/2022]
Abstract
α-Trifluoromethyl azocanes are accessible from 2-(trifluoropropan-2-ol) piperidines by metal-free ring-expansion involving a bicyclic azetidinium intermediate. The opening of the azetidinium intermediate was achieved by various nucleophiles (amines, alcoholates, carboxylates, phosphonates, halides and pseudo-halides) with an excellent regio- diastereo- and enantioselectivity and in good yields. The relative configuration of the piperidines and azocanes were assigned and the deprotected azocanes offer opportunities for further derivatization.
Collapse
Affiliation(s)
- Malte Leverenz
- Molecular, Macromolecular Chemistry and Materials, UMR 7167 ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Guillaume Masson
- Molecular, Macromolecular Chemistry and Materials, UMR 7167 ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Domingo Gomez Pardo
- Molecular, Macromolecular Chemistry and Materials, UMR 7167 ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, UMR 7167 ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231, Paris Cedex 05, France
| |
Collapse
|
3
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021; 60:12775-12780. [DOI: 10.1002/anie.202102061] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
4
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
5
|
Qiao J, Zhao W, Liang Y, Yao ZJ, Wang S. Diastereoselective Access to Tetracyclic Eight-Membered Lactams through a Dearomative Heck Reaction and an Alkylative Ring-Opening Driven by Photoexcited Spiroindolines. Chemistry 2021; 27:6308-6314. [PMID: 33506517 DOI: 10.1002/chem.202005369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Indexed: 11/05/2022]
Abstract
An external-photocatalyst-free, light-driven alkylative ring-opening of stable spiroindolines was developed to construct indolo- and benzoannulated eight-membered lactams. The spiroindolines were prepared from tetrahydro-β-carbolines by a dearomative Heck reaction. Mechanistic experimental studies on the alkylative ring opening suggested that a photoredox pathway was involved, in which the spiroindoline performed as both reagent and photosensitizer. DFT calculations showed that the radical addition toward a cyclic alkene was the key to the diastereoselective formation of tetracyclic medium-sized lactams.
Collapse
Affiliation(s)
- Jianhui Qiao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratoryof Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratoryof Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratoryof Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhu-Jun Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratoryof Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratoryof Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Zhu X, Wang Z, Hou B, Zhang H, Deng C, Ye L. Zinc‐Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2
H
‐Azepines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Bo‐Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao‐Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Zhu XQ, Wang ZS, Hou BS, Zhang HW, Deng C, Ye LW. Zinc-Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2H-Azepines. Angew Chem Int Ed Engl 2019; 59:1666-1673. [PMID: 31724314 DOI: 10.1002/anie.201912534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5-7-membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl-anion- and triene-type 6π electrocyclizations. Described herein is a zinc-catalyzed formal [4+3] annulation of isoxazoles with 3-en-1-ynol ethers via 6π electrocyclization, leading to the site-selective synthesis of functionalized 2H-azepines and 4H-azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H-azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl-cation-type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo-Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao-Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Dierks A, Tönjes J, Schmidtmann M, Christoffers J. Synthesis of Benzo[b]azocin-2-ones by Aryl Amination and Ring-Expansion of α-(Iodophenyl)-β-oxoesters. Chemistry 2019; 25:14912-14920. [PMID: 31433088 PMCID: PMC6899745 DOI: 10.1002/chem.201903139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 01/16/2023]
Abstract
Transformation of β-oxoesters with PhI(OCOCF3 )2 leads to α-(ortho-iodophenyl)-β-oxoesters. These materials are the starting point for the synthesis of 6-carboxybenzo[b]azocin-2-ones by a sequence of aryl amination and ring transformation. This reaction sequence starts with copper-catalyzed formation of N-alkyl anilines from the iodoarenes and primary amines in the presence of K3 PO4 as stoichiometric base. The intermediate products underwent ring transformation by addition of the nitrogen into the carbonyl group of the cycloalkanone, furnishing benzo-annulated eight-membered ring lactams. Under the same reaction conditions, the cyclohexanone and cycloheptanone derivatives gave no aminated products, but ring-transformed to benzofuran derivatives. The title compounds of this investigation contain two points for further diversification (the lactam nitrogen and the carboxylate function), thus, the suitability of this compound class as a scaffold was proven by appropriate functionalizations. The first series of derivatizations of the scaffold was initiated by hydrogenolytic debenzylation of N-benzyl derivative to provide the NH-congener, which could be deprotonated with LDA and alkylated at nitrogen to give further examples of this compound class. Secondly, the ester function was submitted to saponification and the resulting carboxylic acid could be amidated using HATU as coupling reagent to furnish different amides.
Collapse
Affiliation(s)
- Anna Dierks
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Jan Tönjes
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Marc Schmidtmann
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| | - Jens Christoffers
- Institut für ChemieCarl von Ossietzky Universität Oldenburg26111OldenburgGermany
| |
Collapse
|