1
|
Föderl-Höbenreich E, Izadi S, Hofacker L, Kienzl NF, Castilho A, Strasser R, Tarrés-Freixas F, Cantero G, Roca N, Pérez M, Lorca-Oró C, Usai C, Segalés J, Vergara-Alert J, Mach L, Zatloukal K. An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Sci Rep 2025; 15:11307. [PMID: 40175560 PMCID: PMC11965572 DOI: 10.1038/s41598-025-95494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Newly emerging SARS-CoV-2 variants of concern (VOCs) continue to drive COVID-19 waves and are typically associated with immune escape and increased resistance to current therapeutics including monoclonal antibodies. By contrast, VOCs still display strong binding to the host cell receptor ACE2. Consistent with these properties, we have now found that a soluble ACE2-Fc decoy produced in glycoengineered plants effectively neutralizes different SARS-CoV-2 isolates and exhibits even increased potency against VOCs as compared to an ancestral virus strain. In a golden Syrian hamster model, therapeutic intranasal delivery of ACE2-Fc effectively reduced weight loss and SARS-CoV-2 replication in the lungs when administered 24 h post-inoculation. This protective effect was not observed upon treatment of the infected animals with a non-binding ACE2-Fc mutant, demonstrating that the plant-derived ACE2-Fc decoy interferes specifically with the attachment of the virus to host cells. The results obtained provide support for further development of decoy-based antiviral approaches by plant molecular pharming.
Collapse
Affiliation(s)
| | - Shiva Izadi
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Lara Hofacker
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Nikolaus F Kienzl
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Alexandra Castilho
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Richard Strasser
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Ferran Tarrés-Freixas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Roca
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mònica Pérez
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carla Usai
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Lukas Mach
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria.
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Izadi S, Abrantes R, Gumpelmair S, Kunnummel V, Duarte HO, Steinberger P, Reis CA, Castilho A. An engineered PD1-Fc fusion produced in N. benthamiana plants efficiently blocks PD1/PDL1 interaction. PLANT CELL REPORTS 2025; 44:80. [PMID: 40119938 PMCID: PMC11929711 DOI: 10.1007/s00299-025-03475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Plant-made PD1-Fc fusions engineered for optimized glycosylation and Fc-receptor engagement are highly efficient in blocking PD1/PDL1 interactions and can be cost-effective alternatives to antibody-based immune checkpoint inhibitors. Immune checkpoint inhibitors (ICIs) are antibodies to receptors that have pivotal roles during T-cell activation processes. The programmed cell death 1 (PD1) can be regarded as the primary immune checkpoint and antibodies targeting PD1 or its ligand PDL1 have revolutionized immunotherapy of cancer. However, the majority of patients fail to respond, and treatment resistance as well as immune-related adverse events are commonly associated with this therapy. Alternatives to antibody-based ICIs targeting the PD1 pathway may bear the potential to overcome some of these shortcomings. Here, we have used a plant expression platform based on the tobacco relative Nicotiana benthamiana to generate immunoglobulin fusion proteins harboring the wild type or an affinity-enhanced PD1 ectodomain. We have exploited the versatility of our system to generate variants that differed regarding their glycosylation profile as well as their capability to engage Fc-receptors. Unlike its wild-type counterpart, the affinity-enhanced versions showed strongly augmented capabilities to engage PDL1 in both protein- and cell-based assays. Moreover, in contrast with clinical antibodies, their binding is not affected by the glycosylation status of PDL1. Importantly, we could demonstrate that the plant-made PD1 fusion proteins are highly efficient in blocking inhibitory PD1 signaling in a T cell reporter assay. Taken together, our study highlights the utility of our plant-based protein expression platform to generate biologics with therapeutic potential. Targeting PDL1 with plant derived affinity-enhanced PD1 immunoglobulin fusion proteins may reduce overstimulation associated with antibody-based therapies while retaining favorable features of ICIs such as long serum half-life.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rafaela Abrantes
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vinny Kunnummel
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Henrique O Duarte
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celso A Reis
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
| | - Alexandra Castilho
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
3
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Keshvari T, Melnik S, Sun L, Niazi A, Aram F, Moghadam A, Kogelmann B, Wozniak-Knopp G, Kallolimath S, Ramezani A, Steinkellner H. Efficient Expression of Functionally Active Aflibercept with Designed N-glycans. Antibodies (Basel) 2024; 13:29. [PMID: 38651409 PMCID: PMC11036266 DOI: 10.3390/antib13020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Aflibercept is a therapeutic recombinant fusion protein comprising extracellular domains of human vascular endothelial growth factor receptors (VEGFRs) and IgG1-Fc. It is a highly glycosylated protein with five N-glycosylation sites that might impact it structurally and/or functionally. Aflibercept is produced in mammalian cells and exhibits large glycan heterogeneity, which hampers glycan-associated investigations. Here, we report the expression of aflibercept in a plant-based system with targeted N-glycosylation profiles. Nicotiana benthamiana-based glycoengineering resulted in the production of aflibercept variants carrying designed carbohydrates, namely, N-glycans with terminal GlcNAc and sialic acid residues, herein referred to as AFLIGnGn and AFLISia, respectively. Both variants were transiently expressed in unusually high amounts (2 g/kg fresh leaf material) in leaves and properly assembled to dimers. Mass spectrometric site-specific glycosylation analyses of purified aflibercept showed the presence of two to four glycoforms in a consistent manner. We also demonstrate incomplete occupancy of some glycosites. Both AFLIGnGn and AFLISia displayed similar binding potency to VEGF165, with a tendency of lower binding to variants with increased sialylation. Collectively, we show the expression of functionally active aflibercept in significant amounts with controlled glycosylation. The results provide the basis for further studies in order to generate optimized products in the best-case scenario.
Collapse
Affiliation(s)
- Tahereh Keshvari
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
- Institute of Biotechnology, Shiraz University, Shiraz 71441-65186, Iran; (A.N.); (F.A.); (A.M.)
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
| | - Lin Sun
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz 71441-65186, Iran; (A.N.); (F.A.); (A.M.)
| | - Farzaneh Aram
- Institute of Biotechnology, Shiraz University, Shiraz 71441-65186, Iran; (A.N.); (F.A.); (A.M.)
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz 71441-65186, Iran; (A.N.); (F.A.); (A.M.)
| | - Benjamin Kogelmann
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
- ACIB—Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria
| | - Gordana Wozniak-Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria;
| | - Somanath Kallolimath
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Herta Steinkellner
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences BOKU Vienna, 1190 Vienna, Austria; (T.K.); (L.S.); (B.K.); (S.K.)
| |
Collapse
|
5
|
Santoni M, Gutierrez-Valdes N, Pivotto D, Zanichelli E, Rosa A, Sobrino-Mengual G, Balieu J, Lerouge P, Bardor M, Cecchetto R, Compri M, Mazzariol A, Ritala A, Avesani L. Performance of plant-produced RBDs as SARS-CoV-2 diagnostic reagents: a tale of two plant platforms. FRONTIERS IN PLANT SCIENCE 2024; 14:1325162. [PMID: 38239207 PMCID: PMC10794598 DOI: 10.3389/fpls.2023.1325162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
The COVID-19 pandemic has underscored the need for rapid and cost-effective diagnostic tools. Serological tests, particularly those measuring antibodies targeting the receptor-binding domain (RBD) of the virus, play a pivotal role in tracking infection dynamics and vaccine effectiveness. In this study, we aimed to develop a simple enzyme-linked immunosorbent assay (ELISA) for measuring RBD-specific antibodies, comparing two plant-based platforms for diagnostic reagent production. We chose to retain RBD in the endoplasmic reticulum (ER) to prevent potential immunoreactivity issues associated with plant-specific glycans. We produced ER-retained RBD in two plant systems: a stable transformation of BY-2 plant cell culture (BY2-RBD) and a transient transformation in Nicotiana benthamiana using the MagnICON system (NB-RBD). Both systems demonstrated their suitability, with varying yields and production timelines. The plant-made proteins revealed unexpected differences in N-glycan profiles, with BY2-RBD displaying oligo-mannosidic N-glycans and NB-RBD exhibiting a more complex glycan profile. This difference may be attributed to higher recombinant protein synthesis in the N. benthamiana system, potentially overloading the ER retention signal, causing some proteins to traffic to the Golgi apparatus. When used as diagnostic reagents in ELISA, BY2-RBD outperformed NB-RBD in terms of sensitivity, specificity, and correlation with a commercial kit. This discrepancy may be due to the distinct glycan profiles, as complex glycans on NB-RBD may impact immunoreactivity. In conclusion, our study highlights the potential of plant-based systems for rapid diagnostic reagent production during emergencies. However, transient expression systems, while offering shorter timelines, introduce higher heterogeneity in recombinant protein forms, necessitating careful consideration in serological test development.
Collapse
Affiliation(s)
| | | | - Denise Pivotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Zanichelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Guillermo Sobrino-Mengual
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
- Applied Plant Biotechnology Group, Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIM, Rouen, France
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Monica Compri
- Azienda Ospedaliera Universitaria, UOC Microbiologia e Virologia, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Zare H, Farkhondeh T, Bakherad H, Sharifi H, Shirzeyli MH, Samarghandian S, Ghasemi F. Covid-19 Prevention and Treatment by Targeting Fc-fusion Proteins: An Experience to Fight Emerging Diseases. Curr Mol Med 2024; 24:428-434. [PMID: 37038291 DOI: 10.2174/1566524023666230410093243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic has been considered a major threat to human health. Effective therapeutic approaches are urgently required. Spike protein and the Angiotensin-converting enzyme 2 (ACE2) receptors have critical roles in SARS-CoV-2 infection. As a result, these two proteins are considered potential targets for the development of a wide variety of biotherapeutics and vaccines for controlling Covid-19. The fusion proteins have desirable medicinal properties, including high serum half-life, stability, and solubility in the body. Moreover, other Fc-fusion proteins used to treat other diseases have no known side effects. These Fc-fusion proteins are valuable biopharmaceuticals and have been proposed as therapeutic candidates for the treatment and prevention of Covid-19 owing to their potential therapeutic benefits.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hengame Sharifi
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Hosseinzade Shirzeyli
- Department of Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Ruocco V, Vavra U, König-Beihammer J, Bolaños−Martínez OC, Kallolimath S, Maresch D, Grünwald-Gruber C, Strasser R. Impact of mutations on the plant-based production of recombinant SARS-CoV-2 RBDs. FRONTIERS IN PLANT SCIENCE 2023; 14:1275228. [PMID: 37868317 PMCID: PMC10588190 DOI: 10.3389/fpls.2023.1275228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.
Collapse
Affiliation(s)
- Valentina Ruocco
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Omayra C. Bolaños−Martínez
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
8
|
Strasser R. Plant glycoengineering for designing next-generation vaccines and therapeutic proteins. Biotechnol Adv 2023; 67:108197. [PMID: 37315875 DOI: 10.1016/j.biotechadv.2023.108197] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.
Collapse
Affiliation(s)
- Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
9
|
Song L, Shan H, Huang J. Development of HEK293T-produced recombinant receptor-Fc proteins as potential candidates against canine distemper virus. Front Vet Sci 2023; 10:1180673. [PMID: 37215466 PMCID: PMC10196245 DOI: 10.3389/fvets.2023.1180673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Canine distemper (CD) is a highly contagious viral disease worldwide. Although live attenuated vaccine is available as a preventive measure against the disease, cases of vaccination failure highlight the importance of potential alternative agent against canine distemper virus (CDV). CDV infects cells mainly by binding signaling lymphocyte activation molecule (SLAM) and Nectin-4 receptor. Here, to develop a new and safe antiviral biological agent for CD, we constructed and expressed CDV receptor proteins fused with Fc region of canine IgG-B, namely, SLAM-Fc, Nectin-Fc and SLAM-Nectin-Fc in HEK293T cells, and antiviral activity of these receptor-Fc proteins was subsequently evaluated. The results showed that the receptor-Fc proteins efficiently bound to receptor binding domain (RBD) of CDV-H, meanwhile, these receptor-Fc proteins competitively inhibited the binding of His-tagged receptor proteins (SLAM-His or Nectin-His) to CDV-H-RBD-Flag protein. Importantly, receptor-Fc proteins exhibited potent anti-CDV activity in vitro. Treatment with receptor-Fc proteins at the pre-entry stage dramatically suppressed CDV infectivity in Vero cells stably expressing canine SLAM. The minimum effective concentration (MEC) of SLAM-Fc, Nectin-Fc and SLAM-Nectin-Fc was 0.2 μg/mL, 0.2 μg/mL, 0.02 μg/mL. The 50% inhibition concentration (IC50) of three proteins was 0.58 μg/mL, 0.32 μg/mL and 0.18 μg/mL, respectively. Moreover, treatment with receptor-Fc proteins post viral infection can also inhibit CDV reproduction, the MEC of SLAM-Fc, Nectin-Fc and SLAM-Nectin-Fc was same as pre-treatment, and the IC50 of receptor-Fc proteins was 1.10 μg/mL, 0.99 μg/mL and 0.32 μg/mL, respectively. The results suggested that the receptor-Fc proteins were more effective for pre-entry treatment than post-infection treatment, furthermore, SLAM-Nectin-Fc was more effective than SLAM-Fc and Nectin-Fc. These findings revealed the receptor-Fc proteins were promising candidates as inhibitor against CDV.
Collapse
Affiliation(s)
- Lingling Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China
| | - Juan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China
| |
Collapse
|
10
|
Izadi S, Vavra U, Melnik S, Grünwald-Gruber C, Föderl-Höbenreich E, Sack M, Zatloukal K, Glössl J, Stöger E, Mach L, Castilho A, Strasser R. In planta deglycosylation improves the SARS-CoV-2 neutralization activity of recombinant ACE2-Fc. Front Bioeng Biotechnol 2023; 11:1180044. [PMID: 37207124 PMCID: PMC10190127 DOI: 10.3389/fbioe.2023.1180044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection.
Collapse
Affiliation(s)
- Shiva Izadi
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Ulrike Vavra
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | | | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Josef Glössl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva Stöger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alexandra Castilho
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
11
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Assessment of transient expression strategies to sialylate recombinant proteins in N. benthamiana. J Biotechnol 2023; 365:48-53. [PMID: 36805356 DOI: 10.1016/j.jbiotec.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
There is a demand for increasing the current manufacturing capacities for recombinant protein-based drugs. Novel expression systems such as plants are being explored as faster, more flexible, and possibly cheaper platforms. Many of these therapeutic proteins are glycosylated and require terminal sialylation to attain full biological activity. In planta protein sialylation has been achieved by the introduction of an entire mammalian biosynthetic pathway in Nicotiana benthamiana, comprising the coordinated expression of the genes for (i) biosynthesis, (ii) activation, (iii) transport, and (iv) transfer of Neu5Ac to terminal galactose. Here we address technical issues that can compromise the efficacy of protein sialylation and how they can be overcome. We used the same reporter protein to compared three strategies to transiently deliver the sialylation pathway-genes evaluating efficacy, heterogeneity and batch-to-batch consistency. In addition, we assess the ability of the single-step method to sialylated additional recombinant proteins with different complexity and number of glycosylation sites. Finally, we show that efficient protein sialylation can be up-scaled for large-scale production of sialylated proteins in plants.
Collapse
|
13
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
14
|
Köchl K, Schopper T, Durmaz V, Parigger L, Singh A, Krassnigg A, Cespugli M, Wu W, Yang X, Zhang Y, Wang WWS, Selluski C, Zhao T, Zhang X, Bai C, Lin L, Hu Y, Xie Z, Zhang Z, Yan J, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations. Sci Rep 2023; 13:774. [PMID: 36641503 PMCID: PMC9840421 DOI: 10.1038/s41598-023-27636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.
Collapse
Affiliation(s)
- Katharina Köchl
- Innophore GmbH, 8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria
| | | | | | | | - Amit Singh
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
| | | | | | - Wei Wu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xiaoli Yang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yanchong Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Welson Wen-Shang Wang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Crystal Selluski
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Tiehan Zhao
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xin Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Caihong Bai
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Leon Lin
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yuxiang Hu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zhiwei Xie
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zaihui Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Jun Yan
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| | - Christian C Gruber
- Innophore GmbH, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
15
|
Eidenberger L, Eminger F, Castilho A, Steinkellner H. Comparative analysis of plant transient expression vectors for targeted N-glycosylation. Front Bioeng Biotechnol 2022; 10:1073455. [PMID: 36619384 PMCID: PMC9812561 DOI: 10.3389/fbioe.2022.1073455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
While plant-based transient expression systems have demonstrated their potency to rapidly express economically feasible quantities of complex human proteins, less is known about their compatibility with posttranslational modification control. Here we investigated three commonly used transient expression vectors, pEAQ, magnICON and pTra for their capability to express a multi-component protein with controlled and modified N-glycosylation. Cetuximab (Cx), a therapeutic IgG1 monoclonal antibody, which carries next to the conserved Fc an additional N-glycosylation site (GS) in the Fab-domain, was used as model. While pEAQ and pTra produce fully assembled Cx at similar levels in N. benthamiana, the yield of magnICON-Cx was twice as high. When expressed in wild type plants, both Cx-GSs exhibited typical plant N-glycans decorated with plant-specific xylose and fucose. Likewise, Cx generated in the glycoengineered ΔXTFT line carried mainly complex N-glycans lacking plant specific residues. Exposure to different engineering settings (encompassing stable lines and transient approaches) towards human galactosylation and sialylation resulted in Cx carrying targeted N-glycans at similar quantities using all three expression vectors. Collectively, our results exhibit the universal application of plant-based glycoengineering, thereby increasing the attractivity of the ambitious expression platform.
Collapse
Affiliation(s)
| | | | | | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
16
|
Matthews AM, Biel TG, Ortega-Rodriguez U, Falkowski VM, Bush X, Faison T, Xie H, Agarabi C, Rao VA, Ju T. SARS-CoV-2 spike protein variant binding affinity to an angiotensin-converting enzyme 2 fusion glycoproteins. PLoS One 2022; 17:e0278294. [PMID: 36472974 PMCID: PMC9725131 DOI: 10.1371/journal.pone.0278294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the Coronavirus disease 2019 (Covid-19) pandemic, continues to evolve and circulate globally. Current prophylactic and therapeutic countermeasures against Covid-19 infection include vaccines, small molecule drugs, and neutralizing monoclonal antibodies. SARS-CoV-2 infection is mainly mediated by the viral spike glycoprotein binding to angiotensin converting enzyme 2 (ACE2) on host cells for viral entry. As emerging mutations in the spike protein evade efficacy of spike-targeted countermeasures, a potential strategy to counter SARS-CoV-2 infection is to competitively block the spike protein from binding to the host ACE2 using a soluble recombinant fusion protein that contains a human ACE2 and an IgG1-Fc domain (ACE2-Fc). Here, we have established Chinese Hamster Ovary (CHO) cell lines that stably express ACE2-Fc proteins in which the ACE2 domain either has or has no catalytic activity. The fusion proteins were produced and purified to partially characterize physicochemical properties and spike protein binding. Our results demonstrate the ACE2-Fc fusion proteins are heavily N-glycosylated, sensitive to thermal stress, and actively bind to five spike protein variants (parental, alpha, beta, delta, and omicron) with different affinity. Our data demonstrates a proof-of-concept production strategy for ACE2-Fc fusion glycoproteins that can bind to different spike protein variants to support the manufacture of potential alternative countermeasures for emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alicia M. Matthews
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Thomas G. Biel
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Uriel Ortega-Rodriguez
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vincent M. Falkowski
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xin Bush
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Talia Faison
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hang Xie
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Cyrus Agarabi
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
18
|
Klausberger M, Kienzl NF, Stadlmayr G, Grünwald‐Gruber C, Laurent E, Stadlbauer K, Stracke F, Vierlinger K, Hofner M, Manhart G, Gerner W, Grebien F, Weinhäusel A, Mach L, Wozniak‐Knopp G. Designed SARS‐CoV‐2 receptor binding domain variants form stable monomers. Biotechnol J 2022; 17:e2100422. [PMID: 35078277 PMCID: PMC9011732 DOI: 10.1002/biot.202100422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
The receptor binding domain (RBD) of the SARS‐CoV‐2 spike (S)‐protein is a prime target of virus‐neutralizing antibodies present in convalescent sera of COVID‐19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293‐6E cells towards a stable homogeneous preparation and addressed its O‐glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319‐541) sequence. The authors found that an intact O‐glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead‐based and enzyme‐linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS‐CoV‐2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS‐CoV‐2 tests and inform the design of RBD‐based vaccine candidates.
Collapse
Affiliation(s)
- Miriam Klausberger
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Nikolaus F. Kienzl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Gerhard Stadlmayr
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Clemens Grünwald‐Gruber
- Institute of Biochemistry, Department of Chemistry and BOKU Core Facility Mass Spectrometry University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Elisabeth Laurent
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- BOKU Core Facility Biomolecular & Cellular Analysis University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Katharina Stadlbauer
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Florian Stracke
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Gabriele Manhart
- Institute of Medical Biochemistry University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Wilhelm Gerner
- Institute of Immunology University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Florian Grebien
- Institute of Medical Biochemistry University of Veterinary Medicine Veterinärplatz 1 Vienna 1210 Austria
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources Austrian Institute of Technology Giefinggasse 4 Vienna 1210 Austria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| | - Gordana Wozniak‐Knopp
- Institute of Molecular Biotechnology, Department of Biotechnology University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
- Christian Doppler Laboratory for Innovative Immunotherapeutics University of Natural Resources and Life Sciences (BOKU) Muthgasse 18 Vienna 1190 Austria
| |
Collapse
|
19
|
Izadi S, Jalali Javaran M, Rashidi Monfared S, Castilho A. Reteplase Fc-fusions produced in N. benthamiana are able to dissolve blood clots ex vivo. PLoS One 2021; 16:e0260796. [PMID: 34847186 PMCID: PMC8631678 DOI: 10.1371/journal.pone.0260796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
Thrombolytic and fibrinolytic therapies are effective treatments to dissolve blood clots in stroke therapy. Thrombolytic drugs activate plasminogen to its cleaved form plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The FDA-approved human tissue plasminogen activator Reteplase (rPA) is a non-glycosylated protein produced in E. coli. rPA is a deletion mutant of the wild-type Alteplase that benefits from an extended plasma half-life, reduced fibrin specificity and the ability to better penetrate into blood clots. Different methods have been proposed to improve the production of rPA. Here we show for the first time the transient expression in Nicotiana benthamiana of rPA fused to the immunoglobulin fragment crystallizable (Fc) domain on an IgG1, a strategy commonly used to improve the stability of therapeutic proteins. Despite our success on the expression and purification of dimeric rPA-Fc fusions, protein instability results in high amounts of Fc-derived degradation products. We hypothesize that the "Y"- shape of dimeric Fc fusions cause steric hindrance between protein domains and leads to physical instability. Indeed, mutations of critical residues in the Fc dimerization interface allowed the expression of fully stable rPA monomeric Fc-fusions. The ability of rPA-Fc to convert plasminogen into plasmin was demonstrated by plasminogen zymography and clot lysis assay shows that rPA-Fc is able to dissolve blood clots ex vivo. Finally, we addressed concerns with the plant-specific glycosylation by modulating rPA-Fc glycosylation towards serum-like structures including α2,6-sialylated and α1,6-core fucosylated N-glycans completely devoid of plant core fucose and xylose residues.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
- Faculty of Agriculture, Department of Plant Genetics and Breeding, Tarbiat Modares University, Tehran, Iran
| | - Mokhtar Jalali Javaran
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
Schwestka J, König-Beihammer J, Shin YJ, Vavra U, Kienzl NF, Grünwald-Gruber C, Maresch D, Klausberger M, Laurent E, Stadler M, Manhart G, Huber J, Hofner M, Vierlinger K, Weinhäusel A, Swoboda I, Binder CJ, Gerner W, Grebien F, Altmann F, Mach L, Stöger E, Strasser R. Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. FRONTIERS IN PLANT SCIENCE 2021; 12:747500. [PMID: 34646292 PMCID: PMC8503525 DOI: 10.3389/fpls.2021.747500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 05/04/2023]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying β1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.
Collapse
Affiliation(s)
- Jennifer Schwestka
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nikolaus F. Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Biomolecular & Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Jasmin Huber
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Ines Swoboda
- Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
21
|
Development and Optimization of an Enzyme Immunoassay to Detect Serum Antibodies against the Hepatitis E Virus in Pigs, Using Plant-Derived ORF2 Recombinant Protein. Vaccines (Basel) 2021; 9:vaccines9090991. [PMID: 34579228 PMCID: PMC8473109 DOI: 10.3390/vaccines9090991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries. The purpose of this study is to develop an enzyme immunoassay (EIA) for the detection of anti-hepatitis E virus IgG in pig serum, using plant-produced recombinant HEV-3 ORF2 as an antigenic coating protein, and also to evaluate the sensitivity and specificity of this assay. A recombinant HEV-3 ORF2 110-610_6his capsid protein, transiently expressed by pEff vector in Nicotiana benthamiana plants was used to develop an in-house HEV EIA. The plant-derived HEV-3 ORF2 110-610_6his protein proved to be antigenically similar to the HEV ORF2 capsid protein and it can self-assemble into heterogeneous particulate structures. The optimal conditions for the in-house EIA (iEIA) were determined as follows: HEV-3 ORF2 110-610_6his antigen concentration (4 µg/mL), serum dilution (1:50), 3% BSA as a blocking agent, and secondary antibody dilution (1:20 000). The iEIA developed for this study showed a sensitivity of 97.1% (95% Cl: 89.9-99.65) and a specificity of 98.6% (95% Cl: 92.5-99.96) with a Youden index of 0.9571. A comparison between our iEIA and a commercial assay (PrioCHECK™ Porcine HEV Ab ELISA Kit, ThermoFisher Scientific, MA, USA) showed 97.8% agreement with a kappa index of 0.9399. The plant-based HEV-3 ORF2 iEIA assay was able to detect anti-HEV IgG in pig serum with a very good agreement compared to the commercially available kit.
Collapse
|
22
|
Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. PLANT METHODS 2021; 17:83. [PMID: 34321022 PMCID: PMC8316707 DOI: 10.1186/s13007-021-00782-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/11/2021] [Indexed: 05/07/2023]
Abstract
The penetration of substances from the surface to deep inside plant tissues is called infiltration. Although various plant tissues may be effectively saturated with externally applied fluid, most described infiltration strategies have been developed for leaves. The infiltration process can be spontaneous (under normal atmospheric pressure) or forced by a pressure difference generated between the lamina surface and the inside of the leaf. Spontaneous infiltration of leaf laminae is possible with the use of liquids with sufficiently low surface tension. Forced infiltration is most commonly performed using needle-less syringes or vacuum pumps.Leaf infiltration is widely used in plant sciences for both research and application purposes, usually as a starting technique to obtain plant material for advanced experimental procedures. Leaf infiltration followed by gentle centrifugation allows to obtain the apoplastic fluid for further analyses including various omics. In studies of plant-microorganism interactions, infiltration is used for the controlled introduction of bacterial suspensions into leaf tissues or for the isolation of microorganisms inhabiting apoplastic spaces of leaves. The methods based on infiltration of target tissues allow the penetration of dyes, fixatives and other substances improving the quality of microscopic imaging. Infiltration has found a special application in plant biotechnology as a method of transient transformation with the use of Agrobacterium suspension (agroinfiltration) enabling genetic modifications of mature plant leaves, including the local induction of mutations using genome editing tools. In plant nanobiotechnology, the leaves of the target plants can be infiltrated with suitably prepared nanoparticles, which can act as light sensors or increase the plant resistance to environmental stress. In addition the infiltration has been also intensively studied due to the undesirable effects of this phenomenon in some food technology sectors, such as accidental contamination of leafy greens with pathogenic bacteria during the vacuum cooling process.This review, inspired by the growing interest of the scientists from various fields of plant science in the phenomenon of infiltration, provides the description of different infiltration methods and summarizes the recent applications of this technique in plant physiology, phytopathology and plant (nano-)biotechnology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
23
|
Shin YJ, König-Beihammer J, Vavra U, Schwestka J, Kienzl NF, Klausberger M, Laurent E, Grünwald-Gruber C, Vierlinger K, Hofner M, Margolin E, Weinhäusel A, Stöger E, Mach L, Strasser R. N-Glycosylation of the SARS-CoV-2 Receptor Binding Domain Is Important for Functional Expression in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689104. [PMID: 34211491 PMCID: PMC8239413 DOI: 10.3389/fpls.2021.689104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.
Collapse
Affiliation(s)
- Yun-Ji Shin
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Julia König-Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Jennifer Schwestka
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Nikolaus F. Kienzl
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Miriam Klausberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Elisabeth Laurent
- Department of Biotechnology, Core Facility Biomolecular and Cellular Analysis, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Klemens Vierlinger
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Manuela Hofner
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Andreas Weinhäusel
- Competence Unit Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
24
|
Zhang X, Han P, Wang H, Xu Y, Li F, Li M, Fan L, Zhang H, Dai Q, Lin H, Qi X, Liang J, Wang X, Yang X. Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:754-764. [PMID: 34007862 PMCID: PMC8118700 DOI: 10.1016/j.omtm.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The emergence of the novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to the pandemic of coronavirus disease 2019 (COVID-19), which has markedly affected global health and the economy. Both uncontrolled viral replication and a proinflammatory cytokine storm can cause severe tissue damage in patients with COVID-19. SARS-CoV-2 utilizes angiotensin-converting enzyme 2 (ACE2) as its entry receptor. In this study, we generated ACE2 extracellular domain-Fc and single-chain variable fragment-interleukin 6 (IL-6) single-chain variable fragment against IL-6 receptor (scFv-IL6R)-Fc fusion proteins to differentially neutralize viruses and ameliorate the cytokine storm. The human ACE2 (hACE2)1-740-Fc fusion protein showed a potent inhibitory effect on pseudo-typed SARS-CoV-2 entry and a good safety profile in mice. In addition, scFv-IL6R-Fc strongly blocked IL-6 signal activation. We also established a mesenchymal stromal cell (MSC)-based hACE21-740-Fc and scFv-IL6R-Fc delivery system, which could serve as a potential therapy strategy for urgent clinical needs of patients with COVID-19.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Han
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyong Wang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanqin Xu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fanlin Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lilv Fan
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huihui Zhang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Dai
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Lin
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyue Qi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Liang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Wang
- Shanghai Longyao Biotechnology Limited, Shanghai 201203, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Gattinger P, Izadi S, Grünwald-Gruber C, Kallolimath S, Castilho A. The Instability of Dimeric Fc-Fusions Expressed in Plants Can Be Solved by Monomeric Fc Technology. FRONTIERS IN PLANT SCIENCE 2021; 12:671728. [PMID: 34305971 PMCID: PMC8299721 DOI: 10.3389/fpls.2021.671728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/18/2021] [Indexed: 05/18/2023]
Abstract
The potential therapeutic value of many proteins is ultimately limited by their rapid in vivo clearance. One strategy to limit clearance by metabolism and excretion, and improving the stability of therapeutic proteins, is their fusion to the immunoglobulin fragment crystallizable region (Fc). The Fc region plays multiple roles in (i) dimerization for the formation of "Y"-shaped structure of Ig, (ii) Fc-mediated effector functions, (iii) extension of serum half-life, and (iv) a cost-effective purification tag. Plants and in particular Nicotiana benthamiana have proven to be suitable expression platforms for several recombinant therapeutic proteins. Despite the enormous success of their use for the production of full-length monoclonal antibodies, the expression of Fc-fused therapeutic proteins in plants has shown limitations. Many Fc-fusion proteins expressed in plants show different degrees of instability resulting in high amounts of Fc-derived degradation products. To address this issue, we used erythropoietin (EPO) as a reporter protein and evaluated the efforts to enhance the expression of full-length EPO-Fc targeted to the apoplast of N. benthamiana. Our results show that the instability of the fusion protein is independent from the Fc origin or IgG subclass and from the peptide sequence used to link the two domains. We also show that a similar instability occurs upon the expression of individual heavy chains of monoclonal antibodies and ScFv-Fc that mimic the "Y"-shape of antibodies but lack the light chain. We propose that in this configuration, steric hindrance between the protein domains leads to physical instability. Indeed, mutations of critical residues located on the Fc dimerization interface allowed the expression of fully stable EPO monomeric Fc-fusion proteins. We discuss the limitations of Fc-fusion technology in N. benthamiana transient expression systems and suggest strategies to optimize the Fc-based scaffolds on their folding and aggregation resistance in order to improve the stability.
Collapse
Affiliation(s)
- Pia Gattinger
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Clemens Grünwald-Gruber
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- *Correspondence: Alexandra Castilho,
| |
Collapse
|