1
|
Sangani S, Patel D, Dabhi RC, Sutariya TR, Ahmed S, Ameta RK. Purine-Functionalized Ferrocene Derivatives: Efficient Redox Catalysts for Oxidation of Methyl Blue and Reduction of Trinitrophenol. ACS ORGANIC & INORGANIC AU 2025; 5:47-61. [PMID: 39927102 PMCID: PMC11803470 DOI: 10.1021/acsorginorgau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 02/11/2025]
Abstract
Herein, we report a novel organometallic series of potent purine-functionalized ferrocene derivatives (PFD) as redox catalysts. The synthesized PFDs were characterized through FTIR, H/CNMR, and liquid chromatography-mass spectrometry (LCMS). Their thermogravimetric analysis (TGA) revealed the thermal stability up to 250 °C, and degradation was noted in the range of 300-500 °C. Their catalytic performance was tested and found for oxidative degradation of methyl blue (MB) up to 99% and reductive conversion of trinitrophenol (TNP) into triaminophenol (TAP) up to 92%, which is supported by their band gap analysis (2.7 eV). The highest unoccupied molecular orbital (HUMO) and lowest unoccupied molecular orbital (LUMO) calculations confirmed the stable geometry of PFDs, and negative values of HOMO and LUMO have supported the oxidation and reduction performance of PFDs as they were noted as Vb > Va > Vc > Vd > Ve due functions of variable substitution. The analysis of the Lagergren pseudo-first-order kinetic model, in support of catalytic performance, revealed that the mobility of dye/phenol molecules with the PFD is what regulates the catalytic conversion rate.
Collapse
Affiliation(s)
- Sagar
R. Sangani
- Department
of Chemistry, SMMPISR, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382023, India
- Piramal
Pharma Solutions, Plot
No. 18, Pharmez, Matoda Village, Ahmedabad, Gujarat 382213, India
| | - Dax Patel
- Department
of Chemistry, SMMPISR, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382023, India
| | - Ranjitsinh C. Dabhi
- Department
of Chemistry, University School of Sciences,
Gujarat University, Ahmedabad, Gujarat 382213, India
| | - Tushar R. Sutariya
- Department
of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388120, India
| | - Sarfaraz Ahmed
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rakesh Kumar Ameta
- Department
of Chemistry, Gandhinagar Institute of Science, Gandhinagar University, Gandhinagar, Gujarat 382721, India
| |
Collapse
|
2
|
Mashentseva AA, Sutekin DS, Rakisheva SR, Barsbay M. Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers (Basel) 2024; 16:2616. [PMID: 39339079 PMCID: PMC11435613 DOI: 10.3390/polym16182616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains. In environmental remediation, CTeMs effectively capture and decompose pollutants, offering both separation and detoxification. In sensor technology, they have the potential to provide high sensitivity and selectivity, essential for accurate detection in medical and environmental applications. For energy storage, CTeMs may be promising in enhancing ion transport, flexibility, and mechanical stability, addressing key issues in battery and supercapacitor performance. Biomedical applications may benefit from the versality of CTeMs, potentially supporting advanced drug delivery systems and tissue engineering scaffolds. Despite their numerous advantages, challenges remain in the fabrication and scalability of CTeMs, requiring sophisticated techniques and meticulous optimization. Future research directions include the development of cost-effective production methods and the exploration of new materials to further enhance the capabilities of CTeMs. This review underscores the transformative potential of CTeMs across various applications and highlights the need for continued innovation to fully realize their benefits.
Collapse
Affiliation(s)
- Anastassiya A. Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Nuclear Physics, New Materials, and Technologies, L. N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan;
| | - Duygu S. Sutekin
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Saniya R. Rakisheva
- Department of Nuclear Physics, New Materials, and Technologies, L. N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan;
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| |
Collapse
|
3
|
Pîrțac A, Nechifor AC, Tanczos SK, Oprea OC, Grosu AR, Matei C, Grosu VA, Vasile BȘ, Albu PC, Nechifor G. Emulsion Liquid Membranes Based on Os-NP/n-Decanol or n-Dodecanol Nanodispersions for p-Nitrophenol Reduction. Molecules 2024; 29:1842. [PMID: 38675662 PMCID: PMC11055161 DOI: 10.3390/molecules29081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.
Collapse
Affiliation(s)
- Andreia Pîrțac
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (B.Ș.V.)
- National Research Center for Food Safety, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University POLITEHNICA of Bucharest, 061071 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (B.Ș.V.)
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania;
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University POLITEHNICA of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania; (A.P.); (A.C.N.); (A.R.G.)
| |
Collapse
|
4
|
Birla PN, Arbuj S, Shinde MD, Joseph S, Rane S, Kulkarni S, Kale B. Electroless Ni plated nanostructured TiO 2 as a photocatalyst for solar hydrogen production. RSC Adv 2023; 13:20068-20080. [PMID: 37409038 PMCID: PMC10318574 DOI: 10.1039/d3ra03139j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Herein, we have demonstrated a facile electroless Ni coated nanostructured TiO2 photocatalyst for the first time. More significantly the photocatalytic water splitting shows excellent performance for hydrogen production which is hitherto unattempted. The structural study exhibits majorly the anatase phase along with the minor rutile phase of TiO2. Interestingly, electroless nickel deposited on the TiO2 nanoparticles of size 20 nm shows a cubic structure with nanometer scale Ni coating (1-2 nm). XPS supports the existence of Ni without any oxygen impurity. The FTIR and Raman studies support the formation of TiO2 phases without any other impurities. The optical study shows a red shift in the band gap due to optimum nickel loading. The emission spectra show variation in the intensity of the peaks with Ni concentration. The vacancy defects are pronounced in lower concentrations of Ni loading which shows the formation of a huge number of charge carriers. The electroless Ni loaded TiO2 has been used as a photocatalyst for water splitting under solar light. The primary results manifest that the hydrogen evolution of electroless Ni plated TiO2 is 3.5 times higher (1600 μmol g-1 h-1) than pristine TiO2 (470 μmol g-1 h-1). As shown in the TEM images, nickel is completely electroless plated on the TiO2 surface, which accelerates the fast transport of electrons to the surface. It suppresses the electron-hole recombination drastically which is responsible for higher hydrogen evolution using electroless Ni plated TiO2. The recycling study exhibits a similar amount of hydrogen evolution at similar conditions which shows the stability of the Ni loaded sample. Interestingly, Ni powder loaded TiO2 did not show any hydrogen evolution. Hence, the approach of electroless plating of nickel over the semiconductor surface will have potential as a good photocatalyst for hydrogen evolution.
Collapse
Affiliation(s)
- Priyanka N Birla
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sudhir Arbuj
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Manish D Shinde
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Shany Joseph
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sunit Rane
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Sulabha Kulkarni
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| | - Bharat Kale
- Centre for Materials for Electronics Technology (C-MET), Ministry of Electronics and Information Technology (MeitY) Panchavati Pune 411008 India
| |
Collapse
|
5
|
Gill APS, Kwan JTH, Wilkinson DP. Improved experimental method for electroless deposition of iridium using a platinum sublayer to form a catalyst coated membrane. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-step electroless process to form uniform deposition of Ir on Pt at various loadings. Creation of a functional multi-catalyst layer coated membrane (CCM).
Collapse
Affiliation(s)
- Aseem Partap Singh Gill
- Department of Chemical and Biological Engineering and the Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jason Tai Hong Kwan
- Department of Chemical and Biological Engineering and the Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David P. Wilkinson
- Department of Chemical and Biological Engineering and the Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
6
|
Affiliation(s)
- Falk Muench
- Department of Materials and Earth Sciences Technical University of Darmstadt Alarich-Weiss-Straße 2 64287 Darmstadt Germany
| |
Collapse
|
7
|
Russakova AV, Altynbaeva LS, Barsbay M, Zheltov DA, Zdorovets MV, Mashentseva AA. Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. MEMBRANES 2021; 11:116. [PMID: 33562130 PMCID: PMC7914724 DOI: 10.3390/membranes11020116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated. A comparative study of the applicability of the adsorption models of Langmuir, Freundlich, and Dubinin-Radushkevich was carried out in order to describe the experimental isotherms of the prepared composite TeMs. The constants and parameters of all of the above equations were determined. By comparing the regression coefficients R2, it was shown that the Freundlich model describes the experimental data on the adsorption of arsenic through the studied samples better than others. Free energy of As(III) adsorption on the samples was determined using the Dubinin-Radushkevich isotherm model and was found to be 17.2 and 31.6 kJ/mol for Cu/PET and Cu/Ox_PET samples, respectively. The high EDr value observed for the Cu/Ox_PET composite indicates that the interaction between the adsorbate and the composite is based on chemisorption.
Collapse
Affiliation(s)
- Alyona V. Russakova
- The School of Information Technologies and Intelligent Systems, D.Serikbayev East Kazakhstan State Technical University, 070004 Ust-Kamenogorsk, Kazakhstan;
| | - Liliya Sh. Altynbaeva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, 050032 Almaty, Kazakhstan; (L.S.A.); (D.A.Z.); (M.V.Z.)
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey;
| | - Dmitriy A. Zheltov
- The Institute of Nuclear Physics of the Republic of Kazakhstan, 050032 Almaty, Kazakhstan; (L.S.A.); (D.A.Z.); (M.V.Z.)
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan, 050032 Almaty, Kazakhstan; (L.S.A.); (D.A.Z.); (M.V.Z.)
- Department of Intelligent Information Technologies, The Ural Federal University, 620002 Yekaterinburg, Russia
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan
| | - Anastassiya A. Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, 050032 Almaty, Kazakhstan; (L.S.A.); (D.A.Z.); (M.V.Z.)
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan
| |
Collapse
|