1
|
Yu A, He X, Shen T, Yu X, Mao W, Chi W, Liu X, Wu H. Design strategies for tetrazine fluorogenic probes for bioorthogonal imaging. Chem Soc Rev 2025; 54:2984-3016. [PMID: 39936362 DOI: 10.1039/d3cs00520h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Tetrazine fluorogenic probes play a critical role in bioorthogonal chemistry, selectively activating fluorescence upon reaction to enhance precision in imaging and sensing within complex biological environments. Recent structural innovations-such as varied fluorophore choices, spacer optimization, and direct tetrazine integration within a fluorophore's π-conjugated system-have expanded their spectral range from visible to NIR, enhancing adaptability across various applications. This review examines advancements in the rational design and synthesis of these probes. We examine key fluorogenic mechanisms, such as energy transfer, internal conversion, and electron/charge transfer, that significantly influence fluorescence activation. We also highlight representative applications in live-cell imaging, super-resolution microscopy, and therapeutic monitoring, underscoring the expanding role of tetrazine probes in biomedical research and diagnostics. Collectively, these insights provide a strategic foundation for developing next-generation tetrazine probes with tailored properties to address evolving diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Aiwen Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianruo Shen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Xinyu Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaogang Liu
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Yang S, Zhang M, Loredo A, Soares D, Wu Y, Xiao H. Sulfur-tetrazine as highly efficient visible-light activatable photo-trigger for designing photoactivatable fluorescence biomolecules. J Mater Chem B 2024; 12:10839-10849. [PMID: 39420843 PMCID: PMC11527557 DOI: 10.1039/d4tb01817f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light-activated fluorescence represents a potent tool for investigating subcellular structures and dynamics, offering enhanced control over the temporal and spatial aspects of the fluorescence signal. While alkyl-substituted tetrazine has previously been reported as a photo-trigger for various fluorophore scaffolds, its limited photochemical efficiency and high activation energy have constrained its widespread application at the biomolecular level. In this study, we demonstrate that a single sulfur atom substitution of tetrazine greatly enhances the photochemical properties of tetrazine conjugates and significantly improves their photocleavage efficiency. Notably, the resulting sulfur-tetrazine can be activated using a lower-energy light source, thus transforming it into a valuable visible-light photo-trigger. To introduce this photo-trigger into biological systems, we have developed a series of visible-light activatable small molecular dyes, along with a photoactivatable noncanonical amino acid containing sulfur-tetrazine. Using the Genetic Code Expansion technology, this novel amino acid is genetically incorporated into fluorescent protein molecules, serving as a phototrigger to create an innovative photoactivatable protein. These advancements in tetrazine-scaffold photo-trigger design open up new avenues for generating photoactivatable biomolecules, promising to greatly facilitate the exploration of biological functions and structures.
Collapse
Affiliation(s)
- Shudan Yang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Mengxi Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - David Soares
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Yulun Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
- SynthX Center, Rice University, 6100 Main Street, Houston, Texas, 77005, USA
| |
Collapse
|
3
|
Sasmal R, Som A, Kumari P, Nair RV, Show S, Barge NS, Pahwa M, Das Saha N, Rao S, Vasu S, Agarwal R, Agasti SS. Supramolecular Guest Exchange in Cucurbit[7]uril for Bioorthogonal Fluorogenic Imaging across the Visible Spectrum. ACS CENTRAL SCIENCE 2024; 10:1945-1959. [PMID: 39463826 PMCID: PMC11503495 DOI: 10.1021/acscentsci.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Fluorogenic probes that unmask fluorescence signals in response to bioorthogonal reactions are a powerful new addition to biological imaging. They can significantly reduce background fluorescence and minimize nonspecific signals, potentially enabling real-time, high-contrast imaging without the need to wash out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are now readily available, integrating them into a bioorthogonal fluorogenic scheme still requires extensive design efforts and customized structural alterations to optimize quenching mechanisms for each specific fluorophore scaffold. Herein, we present a highly generalizable strategy that can produce an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophore without further structural alterations. We designed this strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest exchange reaction within the macrocyclic cavity. We employed this strategy to rapidly create fluorogenic probes across the visible spectrum from diverse fluorophore scaffolds, which enabled no-wash imaging in live cells and tissues with minimal background signal. Finally, we demonstrated that this strategy can be combined with metabolic labeling for fluorogenic detection of metabolically tagged mycobacteria under no-wash conditions and paired with covalently clickable probes for high-contrast super-resolution and multiplexed imaging in cells and tissues.
Collapse
Affiliation(s)
- Ranjan Sasmal
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Arka Som
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Pratibha Kumari
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Resmi V. Nair
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nisha Sanjay Barge
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Meenakshi Pahwa
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushma Rao
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sheeba Vasu
- Evolutionary
and Integrative Biology Unit and Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Rachit Agarwal
- Department
of Bioengineering, Indian Institute of Science, Bengaluru 560012, Karnataka India
| | - Sarit S. Agasti
- New
Chemistry Unit, Chemistry & Physics of Materials Unit, and School
of Advanced Materials (SAMat), Jawaharlal
Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
4
|
Wang Y, Torres-García D, Mostert TP, Reinalda L, Van Kasteren SI. A Bioorthogonal Dual Fluorogenic Probe for the Live-Cell Monitoring of Nutrient Uptake by Mammalian Cells. Angew Chem Int Ed Engl 2024; 63:e202401733. [PMID: 38716701 DOI: 10.1002/anie.202401733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 06/21/2024]
Abstract
Cells rely heavily on the uptake of exogenous nutrients for survival, growth, and differentiation. Yet quantifying the uptake of small molecule nutrients at the single cell level is difficult. Here we present a new approach to studying the nutrient uptake in live single cells using Inverse Electron-Demand Diels Alder (IEDDA) chemistry. We have modified carboxyfluorescein-diacetate-succinimidyl esters (CFSE)-a quenched fluorophore that can covalently react with proteins and is only turned on in the cytosol of a cell following esterase activity-with a tetrazine. This tetrazine serves as a second quencher for the pendant fluorophore. Upon reaction with nutrients modified with an electron-rich or strained dienophile in an IEDDA reaction, this quenching group is destroyed, thereby enabling the probe to fluoresce. This has allowed us to monitor the uptake of a variety of dienophile-containing nutrients in live primary immune cell populations using flow cytometry and live-cell microscopy.
Collapse
Affiliation(s)
- Yixuan Wang
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Diana Torres-García
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Thijmen P Mostert
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Luuk Reinalda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I Van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
5
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
6
|
Işık M, Kısaçam MA. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S NAr Reactions. J Org Chem 2024; 89:6513-6519. [PMID: 38598957 PMCID: PMC11077493 DOI: 10.1021/acs.joc.3c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
We describe SNAr reactions of some commercial amino-tetrazines and halo-dyes, which give efficiently quenched BODIPY/NBD-tetrazines (ΦFl < 0.01) in high yields and, importantly, with high purities affordable via simple silica gel chromatography only. The dyes exhibit large Stokes shifts, moderate environmental sensitivity, and emission enhancements (up to 193-fold) upon Tz ligation with BCN─a strained dienophile. They successfully serve as labels for HSA protein premodified with BCN, resulting in bright blue-green emission upon ligation.
Collapse
Affiliation(s)
- Murat Işık
- Department
of Food Engineering, Bingöl University, 12000 Bingöl, Türkiye
| | - Mehmet Ali Kısaçam
- Department
of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, 31060 Hatay, Türkiye
| |
Collapse
|
7
|
Kozma E, Kele P. Bioorthogonal Reactions in Bioimaging. Top Curr Chem (Cham) 2024; 382:7. [PMID: 38400853 PMCID: PMC10894152 DOI: 10.1007/s41061-024-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
8
|
Pfeuffer B, Geng P, Wagenknecht HA. Two-Factor Fluorogenic Cyanine-Styryl Dyes with Yellow and Red Fluorescence for Bioorthogonal Labelling of DNA. Chembiochem 2024; 25:e202300739. [PMID: 38050918 DOI: 10.1002/cbic.202300739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
An orange- and a red-emitting tetrazine-modified cyanine-styryl dyes were synthesized for bioorthogonal labelling of DNA by means of the Diels-Alder reaction with inverse electron demand. Both dyes use the concept of the "two-factor" fluorogenicity for nucleic acids: (i) The dyes are nucleic-acid sensitive by their non-covalent binding to DNA, and (ii) their covalently attached tetrazine moiety quench the fluorescence. As a result, the reaction with bicyclononyne- and spirohexene-modified DNA is significantly accelerated up to k2 =280,000 M-1 s-1 , and the fluorescence turn-on is enhanced up to 305. Both dyes are cell permeable even in low concentrations and undergo fluorogenic reactions with spirohexene-modified DNA in living HeLa cells. The fluorescence is enhanced in living cells to such an extent that washing procedures before cell imaging are not required. Their large Stokes shifts (up to 0.77 eV) also makes them well suited for imaging because the wavelength ranges for excitation and emission can be best possible separated. Furthermore, the spirohexene-modified nucleosides and DNA extend and improve the toolbox of already existing "clickable" dyes for live cell imaging.
Collapse
Affiliation(s)
- Bastian Pfeuffer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| | - Philipp Geng
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
9
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Albitz E, Németh K, Knorr G, Kele P. Evaluation of bioorthogonally applicable tetrazine-Cy3 probes for fluorogenic labeling schemes. Org Biomol Chem 2023; 21:7358-7366. [PMID: 37646224 DOI: 10.1039/d3ob01204b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The fluorogenic features of three sets of tetrazine-Cy3 probes were evaluated in bioorthogonal tetrazine-cyclooctyne ligation schemes. These studies revealed that the more efficient, internal conversion-based quenching of fluorescence by the tetrazine modul is translated to improved fluorogenicity compared to the more conventional, energy transfer-enabled design. Furthermore, a comparison of directly conjugated probes and vinylene-linked tetrazine-Cy3 probes revealed that more intimate conjugation of the tetrazine and the chromophore results in more efficient IC-based quenching even in spectral ranges where tetrazine exhibits diminished modulation efficiency. The applicability of these tetrazine-quenched fluorogenic Cy3 probes was demonstrated in the fluorogenic labeling schemes of the extra- and intracellular proteins of live cells.
Collapse
Affiliation(s)
- Evelin Albitz
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117, Budapest, Hungary
| | - Krisztina Németh
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Gergely Knorr
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| |
Collapse
|
11
|
Auvray M, Naud-Martin D, Fontaine G, Bolze F, Clavier G, Mahuteau-Betzer F. Ultrabright two-photon excitable red-emissive fluorogenic probes for fast and wash-free bioorthogonal labelling in live cells. Chem Sci 2023; 14:8119-8128. [PMID: 37538830 PMCID: PMC10395273 DOI: 10.1039/d3sc01754k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Fluorogenic bioorthogonal reactions are promising tools for tracking small molecules or biomolecules in living organisms. Two-photon excitation, by shifting absorption towards the red, significantly increases the signal-to-noise ratio and decreases photodamage, while allowing imaging about 10 times deeper than with a confocal microscope. However, efficient two-photon excitable fluorogenic probes are currently lacking. We report here the design and synthesis of fluorogenic probes based on a two-photon excitable fluorophore and a tetrazine quenching moiety. These probes react with bicyclo[6.1.0]no-4-yn-9ylmethanol (BCN) with a good to impressive kinetic rate constant (up to 1.1 × 103 M-1 s-1) and emit in the red window with moderate to high turn-on ratios. TDDFT allowed the rationalization of both the kinetic and fluorogenic performance of the different probes. The best candidate displays a 13.8-fold turn-on measured by quantifying fluorescence intensities in live cells under one-photon excitation, whereas a value of 3 is sufficient for high contrast live-cell imaging. In addition, live-cell imaging under two-photon excitation confirmed that there was no need for washing to monitor the reaction between BCN and this probe since an 8.0-fold turn-on was measured under two-photon excitation. Finally, the high two-photon brightness of the clicked adduct (>300 GM) allows the use of a weak laser power compatible with in vivo imaging.
Collapse
Affiliation(s)
- Marie Auvray
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Delphine Naud-Martin
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Gaëlle Fontaine
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| | - Frédéric Bolze
- UMR7199, Faculté de Pharmacie 67401 Illkirch-Graffenstaden France
| | | | - Florence Mahuteau-Betzer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie, Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay 91400 Orsay France
| |
Collapse
|
12
|
Teng Y, Zhang R, Yang B, Yang H, Li X, Yin D, Feng X, Tian Y. Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes. J Mater Chem B 2022; 10:8642-8649. [PMID: 36254898 DOI: 10.1039/d2tb01893d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetrazine-based bio-orthogonally activated fluorogenic probes have drawn great attention due to their excellent performance in bioimaging; however, most of them suffer from aggregation-caused quenching (ACQ) problems. Herein, we developed a set of novel tetrazine-modified tetraphenylenes (TPEs) as bio-orthogonally activated aggregation-induced emission (AIE) fluorogenic probes. Both the fluorescence and AIE features are quenched by tetrazine, which is mediated by the through-bond energy-transfer (TBET) mechanism, and are activated upon converting tetrazine to pyridazine via the inverse electron-demand Diels-Alder (iEDDA) reaction. The activated cycloadducts displayed a notable fluorescence enhancement, a large Stokes shift, a high fluorescence quantum yield, and evident AIE-active features. Manipulating the length and position of the π-linker enables fine-tuning of the photophysical properties of the probes, while an overlong planar π-linker leads to AIE-to-ACQ transformation. We also designed bi-tetrazyl-substituted probes, which exhibited a higher turn-on ratio than the mono-tetrazyl analogs owing to the 'double-quenched' function. When they reacted with double-clickable linkers, fluorescent macrocycles were obtained because of the restriction of the free rotation of the phenyl rings of TPE. Using an organelle-pretargeting strategy, we succeeded in applying these probes for mitochondria-specific bio-orthogonal imaging in live cells under no-wash conditions, which is expected to provide a powerful tool for biomedical applications.
Collapse
Affiliation(s)
- Yu Teng
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Rongrong Zhang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Bingbing Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hong Yang
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xiang Li
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Dali Yin
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yulin Tian
- Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
13
|
Yu H, Wang S, Huang J, Fu Y, Wagner M, Weil T, Zhong F, Zhao W, Wu Y. Light-Controlled Traceless Protein Labeling via Decaging Thio- o-naphthoquinone Methide Chemistry. Org Lett 2022; 24:6816-6821. [PMID: 36099167 DOI: 10.1021/acs.orglett.2c02742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the molecular design of a novel multifunctional reagent and its application for light-controlled selective protein labeling. This molecule integrates functions of protein-ligand recognition, bioconjugation, ligand cleavage, and photoactivation by merging the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand and fluorescein. Highly electrophilic o-naphthoquinone methide was photochemically released and underwent proximity-driven selective labeling with the protein of interest (e.g., carbonic anhydrases), which retains its native function after labeling.
Collapse
Affiliation(s)
- Huaibin Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Shuangshuang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Jianjian Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yu Fu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuzhou Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
14
|
Xiao M, Zhang YK, Li R, Li S, Wang D, An P. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe. Chem Asian J 2022; 17:e202200634. [PMID: 35819362 DOI: 10.1002/asia.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- Yunnan University, chemistry, CHINA
| | - Peng An
- Yunnan University, school of chemical science and technology, South Outer Ring Road, 650500, Kunming, CHINA
| |
Collapse
|
15
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far-Red and Near-Infrared Ultra-Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022; 61:e202117386. [PMID: 35167188 DOI: 10.1002/anie.202117386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 02/05/2023]
Abstract
Bioorthogonal fluorogenic dyes are indispensable tools in wash-free bioimaging of specific biological targets. However, the fluorogenicity of existing tetrazine-based bioorthogonal probes deteriorates as the emission wavelength shifts towards the NIR window, greatly limiting their applications in live cells and tissues. Herein, we report a generalizable molecular design strategy to construct ultra-fluorogenic dyes via a simple substitution at the meso-positions of various far-red and NIR fluorophores. Our probes demonstrate significant fluorescence turn-on ratios (102 -103 -fold) in the range 586-806 nm. These results will greatly expand the applications of bioorthogonal chemistry in NIR bioimaging and biosensing.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xinyu He
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Xueyi Wang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Haojie Yang
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan road, 610041, Chengdu, China
| |
Collapse
|
16
|
Ros E, Bellido M, Matarin JA, Gallen A, Martínez M, Rodríguez L, Verdaguer X, Ribas de Pouplana L, Riera A. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification. RSC Adv 2022; 12:14321-14327. [PMID: 35702248 PMCID: PMC9096626 DOI: 10.1039/d2ra02531k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
A set of 3-bromo-1,2,4,5-tetrazines with three distinct substitutions have been used as reagents for late-stage functionalization of small molecules through nucleophilic aromatic substitution. Spectroscopic studies of the products obtained proved that tetrazine ethers are intrinsically fluorescent. This fluorescence is lost upon inverse Electron-Demand Diels–Alder (iEDDA) cycloaddition with strained alkenes. Tetrazine-phenol ethers are rather interesting because they can undergo rapid iEDDA reactions with a second order rate constant (k2) compatible with bioorthogonal ligations. As a showcase, l-tyrosine was derivatized with 3-bromo-6-methyl-1,2,4,5-tetrazine and coupled to the peptide drug octreotide. This peptide was detected in cellular flow cytometry, and its fluorescence turned off through a bioorthogonal iEDDA cycloaddition with a strained alkene, showing for the first time the detection and reactivity of intrinsically fluorescent tetrazines in a biologically relevant context. The synthesis and characterization of fluorescent tetrazine ethers with bioorthogonal applicability pave the way for the generation of useful compounds for both detection and bioconjugation in vivo. Octreotide derivatized with the fluorogenic amino acid 6-methyltetratrazinyl tryosine. Emission spectra before and after the iEDDA cycloaddition.![]()
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Marina Bellido
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain
| | - Joan A Matarin
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,BCN Peptides S.A., Pol. Ind. Els Vinyets-Els Fogars Sector II, Ctra. Comarcal 244, Km. 22, 08777 Sant Quintí de Mediona Barcelona Spain
| | - Albert Gallen
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain.,Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona 08028. Barcelona Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology Baldiri Reixac 10 08028 Barcelona Spain .,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica. Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| |
Collapse
|
17
|
Schultz M, Müller R, Ermakova Y, Hoffmann J, Schultz C. Membrane-Permeant, Bioactivatable Coumarin Derivatives for In-Cell Labelling. Chembiochem 2022; 23:e202100699. [PMID: 35199435 PMCID: PMC9305936 DOI: 10.1002/cbic.202100699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Indexed: 11/29/2022]
Abstract
The delivery of small molecule fluorophores with minimal compartmentalization is currently one of the most critical technical problems in intracellular labelling. Here we introduce sulfonated and phosphonated coumarin dyes, demonstrate rapid cell entry via a prodrug approach, and show a lack of interaction with membranes, organelles, or other compartments. The dyes show no specific localization and are evenly distributed in the cells. Our fluorogenic, clickable phosphonate derivatives successfully tagged model targets in intact cells and the increase in brightness upon click reaction was around 60-fold.
Collapse
Affiliation(s)
- Madeleine Schultz
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Rainer Müller
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Yulia Ermakova
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Jan‐Erik Hoffmann
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
| | - Carsten Schultz
- Cell Biology & Biophysics UnitEuropean Molecular Biology LaboratoryMeyerhofstr. 1HeidelbergGermany
- Dept. of Chemical Physiology and BiochemistryOregon Health & Science UniversityPortland, ORUSA
| |
Collapse
|
18
|
Mao W, Chi W, He X, Wang C, Wang X, Yang H, Liu X, Wu H. Overcoming Spectral Dependence: A General Strategy for Developing Far‐Red and Near‐Infrared Ultra‐Fluorogenic Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Weijie Chi
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xinyu He
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Xueyi Wang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Haojie Yang
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road 487372 Singapore Singapore
| | - Haoxing Wu
- Huaxi MR Research Center Department of Radiology Functional and Molecular Imaging Key Laboratory of Sichuan Province Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Huaxi Research Building, 001 4th Keyuan road 610041 Chengdu China
| |
Collapse
|
19
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Chen L, Li F, Li Y, Yang J, Li Y, He B. Red-emitting fluorogenic BODIPY-tetrazine probes for biological imaging. Chem Commun (Camb) 2021; 58:298-301. [PMID: 34889325 DOI: 10.1039/d1cc05863k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of new BODIPY-tetrazine derivatives have been developed with a twist intramolecular charge transfer (TICT) state in polar solvents, which is an electron transfer process that occurs upon photoexcitation in a molecule that usually consists of an electron donor and acceptor linked by a single bond. Among them, the BODIPY-tetrazine derivative 6i was stable towards long-term storage and red-emitting with excellent performance, and was further used to image trans-cyclooctene-labeled lipids in mammalian cells and cyclopropene-labeled sugars in cancer cells under no-wash conditions.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Fei Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus: No. 620, West Chang'an Avenue, Chang'an, Xi'an, 710119, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Jun Yang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang'an Campus: No. 620, West Chang'an Avenue, Chang'an, Xi'an, 710119, China.
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
21
|
Graziotto ME, Adair LD, Kaur A, Vérité P, Ball SR, Sunde M, Jacquemin D, New EJ. Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chem Biol 2021; 2:1491-1498. [PMID: 34704054 PMCID: PMC8496007 DOI: 10.1039/d1cb00128k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
Fluorescent probes for biological imaging have revealed much about the functions of biomolecules in health and disease. Fluorogenic probes, which are fluorescent only upon a bioorthogonal reaction with a specific partner, are particularly advantageous as they ensure that fluorescent signals observed in biological imaging arise solely from the intended target. In this work, we report the first series of naphthalimide tetrazines for bioorthogonal fluorogenic labelling. We establish that all of these compounds can be used for imaging through photophysical, analytical and biological studies. The best candidate was Np6mTz, where the tetrazine ring is appended to the naphthalimide at its 6-position via a phenyl linker in a meta configuration. Taking our synthetic scaffold, we generated two targeted variants, LysoNpTz and MitoNpTz, which successfully localized within the lysosomes and mitochondria respectively, without the requirement of genetic modification. In addition, the naphthalimide tetrazine system was used for the no-wash imaging of insulin amyloid fibrils in vitro, providing a new method that can monitor their growth kinetics and morphology. Since our synthetic approach is simple and modular, these new naphthalimide tetrazines provide a novel scaffold for a range of bioorthogonal tetrazine-based imaging agents for selective staining and sensing of biomolecules.
Collapse
Affiliation(s)
- Marcus E Graziotto
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Liam D Adair
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
| | - Amandeep Kaur
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Sarah R Ball
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| | | | - Elizabeth J New
- The University of Sydney, School of Chemistry NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney NSW 2006 Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney NSW 2006 Australia
| |
Collapse
|
22
|
Handula M, Chen KT, Seimbille Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021; 26:molecules26154640. [PMID: 34361793 PMCID: PMC8347371 DOI: 10.3390/molecules26154640] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.
Collapse
Affiliation(s)
- Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Kuo-Ting Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan;
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Correspondence: ; Tel.: +31-10-703-8961
| |
Collapse
|
23
|
Kumar P, Shirke RP, Yadav S, Ramasastry SSV. Catalytic Enantioselective Synthesis of Axially Chiral Diarylmethylidene Indanones. Org Lett 2021; 23:4909-4914. [PMID: 34100619 DOI: 10.1021/acs.orglett.1c01671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the first atropselective Suzuki-Miyaura cross-coupling of β-keto enol triflates to access axially chiral (Z)-diarylmethylidene indanones (DAIs). The chemical, physical, and biological properties of DAIs are unknown, despite their being structurally similar to arylidene indanones, primarily due to the lack of racemic or chiral methods. Through this work, we demonstrate a general and efficient protocol for the racemic as well as the atropselective synthesis of (Z)-DAIs. An unusual intramolecular Morita-Baylis-Hillman reaction is utilized for the Z-selective synthesis of β-keto enol triflates.
Collapse
Affiliation(s)
- Prashant Kumar
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Rajendra P Shirke
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Sonu Yadav
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
24
|
Juhasz B, Pech-Puch D, Tabudravu JN, Cautain B, Reyes F, Jiménez C, Kyeremeh K, Jaspars M. Dermacozine N, the First Natural Linear Pentacyclic Oxazinophenazine with UV-Vis Absorption Maxima in the Near Infrared Region, along with Dermacozines O and P Isolated from the Mariana Trench Sediment Strain Dermacoccus abyssi MT 1.1 T. Mar Drugs 2021; 19:325. [PMID: 34205180 PMCID: PMC8226881 DOI: 10.3390/md19060325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
Three dermacozines, dermacozines N-P (1-3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV-Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)-UV-Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 μM, respectively.
Collapse
Affiliation(s)
- Bertalan Juhasz
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, UK;
| | - Dawrin Pech-Puch
- Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, Mérida 97100, Yucatán, Mexico;
| | - Jioji N. Tabudravu
- School of Natural Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, Edificio Centro de Desarrollo Farmacéutico y Alimentario, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (B.C.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, Edificio Centro de Desarrollo Farmacéutico y Alimentario, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (B.C.); (F.R.)
| | - Carlos Jiménez
- Centro de Investigacións Científicas Avanzadas (CICA) e Departmento de Química, Facultade de Ciencias, AE CICA-INIBIC, Universidad da Coruña, 15071 A Coruña, Spain;
| | - Kwaku Kyeremeh
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, Legon-Accra P.O. Box LG 56, Ghana;
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, UK;
| |
Collapse
|
25
|
Reinkemeier CD, Koehler C, Sauter PF, Shymanska NV, Echalier C, Rutkowska A, Will DW, Schultz C, Lemke EA. Synthesis and Evaluation of Novel Ring-Strained Noncanonical Amino Acids for Residue-Specific Bioorthogonal Reactions in Living Cells. Chemistry 2021; 27:6094-6099. [PMID: 33577120 PMCID: PMC8049044 DOI: 10.1002/chem.202100322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels-Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)-a method that allows to incorporate noncanonical amino acids (ncAAs) site-specifically into proteins in vivo. These reactions enable residue-specific fluorophore attachment to proteins in living mammalian cells. Several SPIEDAC capable ncAAs have been presented and studied under diverse conditions, revealing different instabilities ranging from educt decomposition to product loss due to β-elimination. To identify which compounds yield the best labeling inside living mammalian cells has frequently been difficult. In this study we present a) the synthesis of four new SPIEDAC reactive ncAAs that cannot undergo β-elimination and b) a fluorescence flow cytometry based FRET-assay to measure reaction kinetics inside living cells. Our results, which at first sight can be seen conflicting with some other studies, capture GCE-specific experimental conditions, such as long-term exposure of the ring-strained ncAA to living cells, that are not taken into account in other assays.
Collapse
Affiliation(s)
- Christopher D. Reinkemeier
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
- Biocentre, Departments of Biology and Chemistry JohannesGutenberg-University MainzHanns-Dieter-Hüsch-Weg 1755128MainzGermany
- Institute of Molecular BiologyAckermannweg 455128MainzGermany
| | - Christine Koehler
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
- Biocentre, Departments of Biology and Chemistry JohannesGutenberg-University MainzHanns-Dieter-Hüsch-Weg 1755128MainzGermany
- Institute of Molecular BiologyAckermannweg 455128MainzGermany
- ARAXA Biosciences GmbHMeyerhofstraße 169117HeidelbergGermany
| | - Paul F. Sauter
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
- ARAXA Biosciences GmbHMeyerhofstraße 169117HeidelbergGermany
| | | | - Cecile Echalier
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
| | - Anna Rutkowska
- Cellzome GmbHGlaxoSmithKlineMeyerhofstrasse 169117HeidelbergGermany
| | - David W. Will
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
| | - Carsten Schultz
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health & Science University (OHSU)PortlandOregon97239-3098USA
| | - Edward A. Lemke
- European Molecular Biology LaboratoryMeyerhofstr.169117HeidelbergGermany
- Biocentre, Departments of Biology and Chemistry JohannesGutenberg-University MainzHanns-Dieter-Hüsch-Weg 1755128MainzGermany
- Institute of Molecular BiologyAckermannweg 455128MainzGermany
| |
Collapse
|
26
|
Choi SK, Kim J, Kim E. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes. Molecules 2021; 26:1868. [PMID: 33810254 PMCID: PMC8037913 DOI: 10.3390/molecules26071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels-Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and "Pinner-like" reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C-C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.
Collapse
Affiliation(s)
- Sang-Kee Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, Seoul 06978, Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
27
|
Lipunova GN, Nosova EV, Zyryanov GV, Charushin VN, Chupakhin ON. 1,2,4,5-Tetrazine derivatives as components and precursors of photo- and electroactive materials. Org Chem Front 2021. [DOI: 10.1039/d1qo00465d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic approaches to 3,6-disubstituted-1,2,4,5-tetrazine systems are analyzed, and their properties attractive to practical applications in photo- and electroactive materials are overviewed.
Collapse
Affiliation(s)
- Galina N. Lipunova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
| | - Emiliya V. Nosova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Grigory V. Zyryanov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| | - Oleg N. Chupakhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya st./20 Akademicheskaya st., Ekaterinburg 620137, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 19 Mira st., Ekaterinburg 620002, Russia
| |
Collapse
|
28
|
Pinto‐Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brismar Pinto‐Pacheco
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - William P. Carbery
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Sameer Khan
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Daniel B. Turner
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
- Current address: Micron School of Materials Science and Engineering Boise State University Boise ID 83725 USA
| | - Daniela Buccella
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
29
|
Mao W, Tang J, Dai L, He X, Li J, Cai L, Liao P, Jiang R, Zhou J, Wu H. A General Strategy to Design Highly Fluorogenic Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2020; 60:2393-2397. [PMID: 33079440 DOI: 10.1002/anie.202011544] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/05/2020] [Indexed: 02/05/2023]
Abstract
Highly fluorogenic tetrazine bioorthogonal probes emitting at near-infrared wavelengths are in strong demand for biomedical imaging applications. Herein, we have developed a strategy for forming a palette of novel Huaxi-Fluor probes in situ, whose fluorescence increases hundreds of times upon forming the bioorthogonal reaction product, pyridazine. The resulting probes show large Stokes shifts and high quantum yields. Manipulating the conjugate length and pull-push strength in the fluorophore skeleton allows the emission wavelength to be fine-tuned from 556 to 728 nm. The highly photo-stable and biocompatible probes are suitable for visualizing organelles in live cells without a washing step and for imaging of tumors in live small animals to depths of 500 μm by two-photon excitation.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Liqun Dai
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu He
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Li
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610000, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610000, China
| | - Jingwei Zhou
- Institute of clinical pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
30
|
Pinto-Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020; 59:22140-22149. [PMID: 33245600 DOI: 10.1002/anie.202008757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.
Collapse
Affiliation(s)
- Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Sameer Khan
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.,Current address: Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
31
|
Mao W, Tang J, Dai L, He X, Li J, Cai L, Liao P, Jiang R, Zhou J, Wu H. A General Strategy to Design Highly Fluorogenic Far‐Red and Near‐Infrared Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center Department of Nuclear Medicine Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland, St Lucia Brisbane QLD 4072 Australia
| | - Liqun Dai
- Huaxi MR Research Center Department of Nuclear Medicine Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 China
| | - Xinyu He
- Huaxi MR Research Center Department of Nuclear Medicine Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 China
| | - Jie Li
- Huaxi MR Research Center Department of Nuclear Medicine Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 China
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland, St Lucia Brisbane QLD 4072 Australia
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine Department of Anesthesiology West China Hospital of Sichuan University Chengdu Sichuan 610000 China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine Department of Anesthesiology West China Hospital of Sichuan University Chengdu Sichuan 610000 China
| | - Jingwei Zhou
- Institute of clinical pharmacology Science and Technology Innovation Center Guangzhou University of Chinese Medicine Guangzhou 510405 Guangdong China
| | - Haoxing Wu
- Huaxi MR Research Center Department of Nuclear Medicine Frontiers Science Center for Disease-related Molecular Network National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
32
|
Ros E, Prades A, Forson D, Smyth J, Verdaguer X, Pouplana LRD, Riera A. Synthesis of 3-alkyl-6-methyl-1,2,4,5-tetrazines via a Sonogashira-type cross-coupling reaction. Chem Commun (Camb) 2020; 56:11086-11089. [PMID: 32812558 DOI: 10.1039/d0cc03482g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,2,4,5-Tetrazines have become extremely useful tools in chemical biology. However, the synthesis of some challenging substrates such as asymmetrically disubstituted alkyltetrazines is still a limitation for the widespread use of this class of compounds. Herein we describe an efficient route to these compounds based on the Sonogashira coupling of 3-bromo-6-methyl-1,2,4,5-tetrazine and 3-bromo-6-phenyl-1,2,4,5-tetrazine with terminal alkynes. The preparation of the starting reagents has also been optimized. The alkynyl products have been used as intermediates for the synthesis of dialkyl-tetrazines through a sequence of hydrogenation and re-oxidation with unprecedented yields. The synthetic applicability of this new approach is showcased through the preparation of several unnatural amino acids bearing alkynyl- and alkyl-1,2,4,5-tetrazine fragments.
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
33
|
Li H, Conde J, Guerreiro A, Bernardes GJL. Tetrazine Carbon Nanotubes for Pretargeted In Vivo “Click‐to‐Release” Bioorthogonal Tumour Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- He Li
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - João Conde
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| | - Gonçalo J. L. Bernardes
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Av. Prof. Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
34
|
Li H, Conde J, Guerreiro A, Bernardes GJL. Tetrazine Carbon Nanotubes for Pretargeted In Vivo "Click-to-Release" Bioorthogonal Tumour Imaging. Angew Chem Int Ed Engl 2020; 59:16023-16032. [PMID: 32558207 PMCID: PMC7540421 DOI: 10.1002/anie.202008012] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/26/2022]
Abstract
The bioorthogonal inverse‐electron‐demand Diels–Alder (IEDDA) cleavage reaction between tetrazine and trans‐cyclooctene (TCO) is a powerful way to control the release of bioactive agents and imaging probes. In this study, a pretargeted activation strategy using single‐walled carbon nanotubes (SWCNTs) that bear tetrazines (TZ@SWCNTs) and a TCO‐caged molecule was used to deliver active effector molecules. To optimize a turn‐on signal by using in vivo fluorescence imaging, we developed a new fluorogenic near‐infrared probe that can be activated by bioorthogonal chemistry and image tumours in mice by caging hemicyanine with TCO (tHCA). With our pretargeting strategy, we have shown selective doxorubicin prodrug activation and instantaneous fluorescence imaging in living cells. By combining a tHCA probe and a pretargeted bioorthogonal approach, real‐time, non‐invasive tumour visualization with a high target‐to‐background ratio was achieved in a xenograft mice tumour model. The combined advantages of enhanced stability, kinetics and biocompatibility, and the superior pharmacokinetics of tetrazine‐functionalised SWCNTs could allow application of targeted bioorthogonal decaging approaches with minimal off‐site activation of fluorophore/drug.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - João Conde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
35
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Loredo A, Tang J, Wang L, Wu KL, Peng Z, Xiao H. Tetrazine as a general phototrigger to turn on fluorophores. Chem Sci 2020; 11:4410-4415. [PMID: 33384859 PMCID: PMC7690217 DOI: 10.1039/d0sc01009j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Light-activated fluorescence affords a powerful tool for monitoring subcellular structures and dynamics with enhanced temporal and spatial control of the fluorescence signal. Here, we demonstrate a general and straightforward strategy for using a tetrazine phototrigger to design photoactivatable fluorophores that emit across the visible spectrum. Tetrazine is known to efficiently quench the fluorescence of various fluorophores via a mechanism referred to as through-bond energy transfer. Upon light irradiation, restricted tetrazine moieties undergo a photolysis reaction that generates two nitriles and molecular nitrogen, thus restoring the fluorescence of fluorophores. Significantly, we find that this strategy can be successfully translated and generalized to a wide range of fluorophore scaffolds. Based on these results, we have used this mechanism to design photoactivatable fluorophores targeting cellular organelles and proteins. Compared to widely used phototriggers (e.g., o-nitrobenzyl and nitrophenethyl groups), this study affords a new photoactivation mechanism, in which the quencher is photodecomposed to restore the fluorescence upon light irradiation. Because of the exclusive use of tetrazine as a photoquencher in the design of fluorogenic probes, we anticipate that our current study will significantly facilitate the development of novel photoactivatable fluorophores.
Collapse
Affiliation(s)
- Axel Loredo
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Juan Tang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Lushun Wang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Kuan-Lin Wu
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Zane Peng
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| | - Han Xiao
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
- Department of Bioengineering , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| |
Collapse
|
37
|
Kormos A, Kern D, Egyed A, Söveges B, Németh K, Kele P. Microscope laser assisted photooxidative activation of bioorthogonal ClickOx probes. Chem Commun (Camb) 2020; 56:5425-5428. [PMID: 32292970 DOI: 10.1039/d0cc01512a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A photoactivatable fluorogenic tetrazine-rhodaphenothiazine probe was synthesized and studied in light-assisted, bioorthogonal labeling schemes. Experimental results revealed that the bioorthogonally conjugated probe efficiently sensitizes 1O2 generation upon illumination with green or orange light and undergoes self-oxidation leading to an intensely fluorescent sulfoxide product. An added value of the present probe is that it is also suitable for STED super-resolution microscopy using a 660 nm depletion laser.
Collapse
Affiliation(s)
- Attila Kormos
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest H-1117, Hungary.
| | | | | | | | | | | |
Collapse
|
38
|
Németh E, Knorr G, Németh K, Kele P. A Bioorthogonally Applicable, Fluorogenic, Large Stokes-Shift Probe for Intracellular Super-Resolution Imaging of Proteins. Biomolecules 2020; 10:biom10030397. [PMID: 32143419 PMCID: PMC7175155 DOI: 10.3390/biom10030397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/02/2023] Open
Abstract
Herein, we present the synthesis and application of a fluorogenic, large Stokes-shift (>100 nm), bioorthogonally conjugatable, membrane-permeable tetrazine probe, which can be excited at common laser line 488 nm and detected at around 600 nm. The applied design enabled improved fluorogenicity in the orange/red emission range, thus efficient suppression of background and autofluorescence upon imaging biological samples. Moreover, unlike our previous advanced probes, it does not require the presence of special target platforms or microenvironments to achieve similar fluorogenicity and can be generally applied, e.g., on translationally bioorthogonalized proteins. Live-cell labeling schemes revealed that the fluorogenic probe is suitable for specific labeling of intracellular proteins, site-specifically modified with a cyclooctynylated, non-canonical amino acid, even under no-wash conditions. Furthermore, the probe was found to be applicable in stimulated emission depletion (STED) super-resolution microscopy imaging using a 660 nm depletion laser. Probably the most salient feature of this new probe is that the large Stokes-shift allows dual-color labeling schemes of cellular structures using distinct excitation and the same detection wavelengths for the combined probes, which circumvents chromatic aberration related problems.
Collapse
|
39
|
Egyed A, Kormos A, Söveges B, Németh K, Kele P. Bioothogonally applicable, π-extended rhodamines for super-resolution microscopy imaging for intracellular proteins. Bioorg Med Chem 2020; 28:115218. [DOI: 10.1016/j.bmc.2019.115218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023]
|
40
|
Kim E, Koo H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem Sci 2019; 10:7835-7851. [PMID: 31762967 PMCID: PMC6855312 DOI: 10.1039/c9sc03368h] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022] Open
Abstract
Recently, click chemistry has provided important advances in biomedical research fields. Particularly, copper-free click chemistry including strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse-electron-demand Diels-Alder (iEDDA) reactions enable fast and specific chemical conjugation under aqueous conditions without the need for toxic catalysts. Click chemistry has resulted in a change of paradigm, showing that artificial chemical reactions can occur on cell surfaces, in cell cytosol, or within the body, which is not easy with most other chemical reactions. Click chemistry in vitro allows specific labelling of cellular target proteins and studying of drug target engagement with drug surrogates in live cells. Furthermore, cellular membrane lipids and proteins could be selectively labelled with click chemistry in vitro and cells could be adhered together using click chemistry. Click chemistry in vivo enables efficient and effective molecular imaging and drug delivery for diagnosis and therapy. Click chemistry ex vivo can be used to develop molecular tools to understand tissue development, diagnosis of diseases, and therapeutic monitoring. Overall, the results from research to date suggest that click chemistry has emerged as a valuable tool in biomedical fields as well as in organic chemistry.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 16499 , Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea .
- Department of Biomedicine & Health Sciences , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
- Catholic Photomedicine Research Institute , College of Medicine , The Catholic University of Korea , 222 Banpo-daero, Seocho-gu , Seoul , 06591 , Republic of Korea
| |
Collapse
|
41
|
Siegl SJ, Galeta J, Dzijak R, Dračínský M, Vrabel M. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products. Chempluschem 2019; 84:493-497. [PMID: 31245251 PMCID: PMC6582594 DOI: 10.1002/cplu.201900176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Fluorogenic bioorthogonal reactions enable visualization of biomolecules with excellent signal-to-noise ratio. A bicyclononyne-tetrazine ligation that produces fluorescent pyridazine products has been developed. In stark contrast to previous approaches, the formation of the dye is an inherent result of the chemical reaction and no additional fluorophores are needed in the reagents. The crucial structural elements that determine dye formation are electron-donating groups present in the starting tetrazine unit. The newly formed pyridazine fluorophores show interesting photophysical properties the fluorescence intensity increase in the reaction can reach an excellent 900-fold. Model imaging experiments demonstrate the application potential of this new fluorogenic bioorthogonal reaction.
Collapse
Affiliation(s)
- Sebastian J. Siegl
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Juraj Galeta
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of theCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
42
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
43
|
Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Organocatalytic and Scalable Syntheses of Unsymmetrical 1,2,4,5-Tetrazines by Thiol-Containing Promotors. Angew Chem Int Ed Engl 2018; 58:1106-1109. [PMID: 30488591 DOI: 10.1002/anie.201812550] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Despite the growing application of tetrazine bioorthogonal chemistry, it is still challenging to access tetrazines conveniently from easily available materials. Described here is the de novo formation of tetrazine from nitriles and hydrazine hydrate using a broad array of thiol-containing catalysts, including peptides. Using this facile methodology, the syntheses of 14 unsymmetric tetrazines, containing a range of reactive functional groups, on the gram scale were achieved with satisfactory yields. Using tetrazine methylphosphonate as a building block, a highly efficient Horner-Wadsworth-Emmons reaction was developed for further derivatization under mild reaction conditions. Tetrazine probes with diverse functions can be scalably produced in yields of 87-93 %. This methodology may facilitate the widespread application of tetrazine bioorthogonal chemistry.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Wei Shi
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Dunyan Su
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaomeng Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lyuye Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
44
|
Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Organocatalytic and Scalable Syntheses of Unsymmetrical 1,2,4,5‐Tetrazines by Thiol‐Containing Promotors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Wei Shi
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Jie Li
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Dunyan Su
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Xiaomeng Wang
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Lyuye Zhang
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Lili Pan
- Department of Nuclear MedicineWest China HospitalSichuan University Chengdu 610041 China
| | - Xiaoai Wu
- Department of Nuclear MedicineWest China HospitalSichuan University Chengdu 610041 China
| | - Haoxing Wu
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| |
Collapse
|
45
|
Qin LH, Hu W, Long YQ. Bioorthogonal chemistry: Optimization and application updates during 2013–2017. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Wu H. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Acc Chem Res 2018; 51:1249-1259. [PMID: 29638113 PMCID: PMC6225996 DOI: 10.1021/acs.accounts.8b00062] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistry has found increased application in living systems over the past decade. In particular, tetrazine bioorthogonal chemistry has become a powerful tool for imaging, detection, and diagnostic purposes, as reflected in the increased number of examples reported in the literature. The popularity of tetrazine ligations are likely due to rapid and tunable kinetics, the existence of high quality fluorogenic probes, and the selectivity of reaction. In this Account, we summarize our recent efforts to advance tetrazine bioorthogonal chemistry through improvements in synthetic methodology, with an emphasis on developing new routes to tetrazines and expanding the range of useful dienophiles. These efforts have removed specific barriers that previously limited tetrazine ligations and have broadened their potential applications. Among other advances, this Account describes how our group discovered new methodology for tetrazine synthesis by developing a Lewis acid-promoted, one-pot method for generating diverse symmetric and asymmetric alkyl tetrazines with functional substituents in satisfactory yields. We attached these tetrazines to microelectrodes and succeeded in controlling tetrazine ligation by changing the redox state of the reactants. Using this electrochemical control process, we were able to modify an electrode surface with redox probes and enzymes in a site-selective fashion. This Account also describes how our group improved the ability of tetrazines to act as fluorogenic probes by developing a novel elimination-Heck cascade reaction to synthesize alkenyl tetrazine derivatives. In this approach, tetrazine was conjugated to fluorophores to produce strongly quenched probes that, after bioorthogonal reaction, are "turned on" to enhance fluorescence, in many cases by >100-fold. These probes have allowed no-wash fluorescence imaging in living cells and intact animals. Finally, this Account reviews our efforts to expand the range of dienophile substrates to make tetrazine bioorthogonal chemistry compatible with specific biochemical and biomedical applications. We found that methylcyclopropene is sufficiently stable and reactive in the biological milieu to act as an efficient dienophile. The small size of the reactive tag minimizes steric hindrance, allowing cyclopropene to serve as a metabolic reporter group to reveal biological dynamics and function. We also used norbornadiene derivatives as strained dienophiles to undergo tetrazine-mediated transfer (TMT) reactions involving tetrazine ligation followed by a retro-Diels-Alder process. This TMT reaction generates a pair of nonligating products. Using nucleic acid-templated chemistry, we have combined the TMT reaction with our fluorogenic tetrazine probes to detect endogenous oncogenic microRNA at picomolar concentrations. In a further display of dienophile versatility, we used a novel vinyl ether to cage a near-infrared fluorophore in a nonfluorescent form. Then we opened the cage in a "click to release" tetrazine bioorthogonal reaction, restoring the fluorescent form of the fluorophore. Combining this label with a corresponding nucleic acid probe allowed fluorogenic detection of target mRNA. In summary, this Account describes improvements in tetrazine and dienophile synthesis and application to advance tetrazine bioorthogonal chemistry. These advances have further enabled application of tetrazine ligation chemistry, not only in fundamental research but also in diagnostic studies.
Collapse
Affiliation(s)
- Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - 0000-0002-8033-9973
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
47
|
Serfling R, Seidel L, Böttke T, Coin I. Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells. J Vis Exp 2018. [PMID: 29683449 DOI: 10.3791/57069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) via amber stop codon suppression is a powerful technique to install artificial probes and reactive moieties onto proteins directly in the live cell. Each ncAA is incorporated by a dedicated orthogonal suppressor-tRNA/amino-acyl-tRNA-synthetase (AARS) pair that is imported into the host organism. The incorporation efficiency of different ncAAs can greatly differ, and be unsatisfactory in some cases. Orthogonal pairs can be improved by manipulating either the AARS or the tRNA. However, directed evolution of tRNA or AARS using large libraries and dead/alive selection methods are not feasible in mammalian cells. Here, a facile and robust fluorescence-based assay to evaluate the efficiency of orthogonal pairs in mammalian cells is presented. The assay allows screening tens to hundreds of AARS/tRNA variants with a moderate effort and within a reasonable time. Use of this assay to generate new tRNAs that significantly improve the efficiency of the pyrrolysine orthogonal system is described, along with the application of ncAAs to the study of G-protein coupled receptors (GPCRs), which are challenging objects for ncAA mutagenesis. First, by systematically incorporating a photo-crosslinking ncAA throughout the extracellular surface of a receptor, binding sites of different ligands on the intact receptor are mapped directly in the live cell. Second, by incorporating last-generation ncAAs into a GPCR, ultrafast catalyst-free receptor labeling with a fluorescent dye is demonstrated, which exploits bioorthogonal strain-promoted inverse Diels Alder cycloaddition (SPIEDAC) on the live cell. As ncAAs can be generally applied to any protein independently on its size, the method is of general interest for a number of applications. In addition, ncAA incorporation does not require any special equipment and is easily performed in standard biochemistry labs.
Collapse
Affiliation(s)
- Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Lisa Seidel
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Thore Böttke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig;
| |
Collapse
|
48
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
49
|
Kozma E, Estrada Girona G, Paci G, Lemke EA, Kele P. Bioorthogonal double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chem Commun (Camb) 2018; 53:6696-6699. [PMID: 28530747 DOI: 10.1039/c7cc02212c] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of double-fluorogenic siliconrhodamine probes were synthesized. These tetrazine-functionalized, membrane-permeable labels allowed site-specific bioorthogonal tagging of genetically manipulated intracellular proteins and subsequent imaging using super-resolution microscopy.
Collapse
Affiliation(s)
- E Kozma
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary.
| | - G Estrada Girona
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - G Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - E A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, D-69117, Germany
| | - P Kele
- "Lendület" Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary.
| |
Collapse
|
50
|
Knorr G, Kozma E, Schaart JM, Németh K, Török G, Kele P. Bioorthogonally Applicable Fluorogenic Cyanine-Tetrazines for No-Wash Super-Resolution Imaging. Bioconjug Chem 2018; 29:1312-1318. [DOI: 10.1021/acs.bioconjchem.8b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|