1
|
Gast D, Neidig S, Reindl M, Hoffmann-Röder A. Synthesis of Fluorinated Glycotope Mimetics Derived from Streptococcus pneumoniae Serotype 8 CPS. Int J Mol Sci 2025; 26:1535. [PMID: 40004000 PMCID: PMC11855009 DOI: 10.3390/ijms26041535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic vaccine candidates for cancer, HIV and bacterial infections. Despite their attractiveness, the synthesis of fluorinated oligosaccharides is still challenging, emphasizing the need for efficient protocols that allow for the site-specific incorporation of fluorine atoms (especially at late stages of the synthesis). This is particularly true for the development of fully synthetic vaccine candidates, whose (modified) carbohydrate antigen structures (glycotopes) per se comprise multistep synthesis routes. Based on a known minimal protective epitope from the capsular polysaccharide of S. pneumoniae serotype 8, a panel of six novel F-glycotope mimetics was synthesized, equipped with amine linkers for subsequent conjugation to immunogens. Next to the stepwise assembly via fluorinated building blocks, the corresponding 6F-substituted derivatives could be obtained by microwave-assisted, nucleophilic late-stage fluorination of tri- and tetrasaccharidic precursors in high yields. The described synthetic strategy allowed for preparation of the targeted fluorinated oligosaccharides in sufficient quantities for future immunological studies.
Collapse
Affiliation(s)
| | | | | | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
2
|
Cai D, He F, Wu S, Wang Z, Bian Y, Wen C, Ding K. Functional structural domain synthesis of anti-pancreatic carcinoma pectin-like polysaccharide RN1. Carbohydr Polym 2024; 327:121668. [PMID: 38171659 DOI: 10.1016/j.carbpol.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The great structural and functional diversity supports polysaccharides as favorable candidates for new drug development. Previously we reported that a drug candidate pectin-like natural polysaccharide, RN1 might target galectin-3 (Gal-3) to impede pancreatic cancer cell growth in vivo. However, the quality control of polysaccharide-based drug research faces great challenges due to the heterogeneity. A potential solution is to synthesize structurally identified subfragments of this polysaccharide as alternatives. In this work, we took RN1 as an example, and synthesized five subfragments derived from the putative repeating units of RN1. Among them, pentasaccharide 4 showed an approximative binding affinity to Gal-3 in vitro, as well as an antiproliferative activity against pancreatic BxPC-3 cells comparable to that of RN1. Further, we scaled up pentasaccharide 4 to gram-scale in an efficient synthetic route with a 6.9 % yield from D-galactose. Importantly, pentasaccharide 4 significantly suppressed the growth of pancreatic tumor in vivo. Based on the mechanism complementarity of galactin-3 inhibitor and docetaxel, the combination administration of pentasaccharide 4 and docetaxel afforded better result. The result suggested pentasaccharide 4 was one of the functional structural domains of polysaccharide RN1 and might be a leading compound for anti-pancreatic cancer new drug development.
Collapse
Affiliation(s)
- Deqin Cai
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei He
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Wu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Wang
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Wen
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan 528400, China.
| |
Collapse
|
3
|
Mei R, Heng X, Liu X, Chen G. Glycopolymers for Antibacterial and Antiviral Applications. Molecules 2023; 28:molecules28030985. [PMID: 36770653 PMCID: PMC9919862 DOI: 10.3390/molecules28030985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Diseases induced by bacterial and viral infections are common occurrences in our daily life, and the main prevention and treatment strategies are vaccination and taking antibacterial/antiviral drugs. However, vaccines can only be used for specific viral infections, and the abuse of antibacterial/antiviral drugs will create multi-drug-resistant bacteria and viruses. Therefore, it is necessary to develop more targeted prevention and treatment methods against bacteria and viruses. Proteins on the surface of bacteria and viruses can specifically bind to sugar, so glycopolymers can be used as potential antibacterial and antiviral drugs. In this review, the research of glycopolymers for bacterial/viral detection/inhibition and antibacterial/antiviral applications in recent years are summarized.
Collapse
Affiliation(s)
- Ruoyao Mei
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xingyu Heng
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
| | - Xiaoli Liu
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| |
Collapse
|
4
|
Zhang J, Liang L, Yang W, Ramadan S, Baryal K, Huo C, Bernard JJ, Liu J, Hsieh‐Wilson L, Zhang F, Linhardt RJ, Huang X. Expedient Synthesis of a Library of Heparan Sulfate-Like "Head-to-Tail" Linked Multimers for Structure and Activity Relationship Studies. Angew Chem Int Ed Engl 2022; 61:e202209730. [PMID: 36199167 PMCID: PMC9675719 DOI: 10.1002/anie.202209730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Heparan sulfate (HS) plays important roles in many biological processes. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of their structure-activity relationship. To facilitate biological studies, a new strategy has been developed to synthesize a HS-like pseudo-hexasaccharide library, where HS disaccharides were linked in a "head-to-tail" fashion from the reducing end of a disaccharide module to the non-reducing end of a neighboring module. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved. This new class of compounds bound with fibroblast growth factor 2 (FGF-2) with similar structure-activity trends as HS oligosaccharides bearing native glycosyl linkages. The ease of synthesis and the ability to mirror natural HS activity trends suggest that the new head-to-tail linked pseudo-oligosaccharides could be an exciting tool to facilitate the understanding of HS biology.
Collapse
Affiliation(s)
- Jicheng Zhang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Li Liang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Weizhun Yang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Kedar Baryal
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Chang‐Xin Huo
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA
| | - Jamie J. Bernard
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMI 48824USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Fuming Zhang
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Robert J. Linhardt
- Department of Chemistry & Chemical BiologyCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNY 12180USA
| | - Xuefei Huang
- Department of ChemistryMichigan State UniversityEast LansingMI 48824USA,Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA,Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
5
|
Anwar MT, Adak AK, Kawade SK, Wu HR, Angata T, Lin CC. Combining CuAAC reaction enables sialylated Bi- and triantennary pseudo mannose N-glycans for investigating Siglec-7 interactions. Bioorg Med Chem 2022; 67:116839. [PMID: 35640379 DOI: 10.1016/j.bmc.2022.116839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Naturally occurring N-glycans display much diversity in modifications, linkages, and peripheral presentation of the oligosaccharide chain. Despite continued advancements in oligosaccharide synthesis, synthetic access to these natural glycans remains challenging. Biologically relevant complex N-glycan mimetics with various natural and unnatural modifications are an alternate way for investigating glycan-protein interactions. Further supporting this pattern, we report here a new class of sialylated bi- and triantennary pseudo mannose N-glycans reproducing orientation of the underlying glycan chain and branching patterns and replacing the two inner mannopyranosyl units with 1,2,3-triazole rings. Such mimetics are straightforwardly generated by implementing multiple intermolecular Cu(I)-catalyzed azide-alkyne cycloaddition between chemoenzymatically synthesized azido sialosides and rationally designed C-3 and C-6 di-O- or C-2, C-3, and C-6 tri-O-alkynylated mannoside. Human recombinant Siglec-7-Fc fusion protein recognizes almost all sialylated pseudo mannose N-glycans in the microarray. However, a differential Sia-binding pattern was also observed. Given the library size, comparison of pairwise mannose N-glycan combinations showed that biantennary linear α(2,3)α(2,8)- and α(2,6)α(2,8)- or branched α(2,3)α(2,6)-, and triantennary branched α(2,3)α(2,6)-sialyl pseudo N-glycans possess similar binding capabilities and affinity to recombinant Siglec-7-Fc. While the full range of topological mannose arms remain elusive, the bi- and triantennary mimics are simpler structures for interrogating Siglec interactions.
Collapse
Affiliation(s)
| | - Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Sachin Kisan Kawade
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
6
|
Vasques ER, Figueira ER, Rocha-Filho JA, Lanchotte C, Ximenes JL, Nader HB, Tersariol IL, Lima MA, Rodrigues T, Cunha JE, Chaib E, D'Albuquerque LA, Galvão FH. A new heparin fragment decreases liver ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2022; 21:190-192. [PMID: 34366197 DOI: 10.1016/j.hbpd.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Enio R Vasques
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Estela Rr Figueira
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Joel A Rocha-Filho
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Disciplina de Anestesiologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Cinthia Lanchotte
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Jorge Ls Ximenes
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Disciplina de Anestesiologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Helena B Nader
- Departamento de Bioquimica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ivarne Ls Tersariol
- Departamento de Bioquimica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo A Lima
- Departamento de Bioquimica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - José Em Cunha
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eleazar Chaib
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Serviço de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Ac D'Albuquerque
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Serviço de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio Hf Galvão
- Laboratorio de Investigaçao Medica 37, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil; Serviço de Transplante de Figado e Orgaos do Aparelho Digestivo, Departamento de Gastroenterologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Liu J, Zhang Z, Xue W, Siriweera WB, Chen G, Wu D. Anaerobic digestion of saline waste activated sludge and recovering raw sulfated polysaccharides. BIORESOURCE TECHNOLOGY 2021; 335:125255. [PMID: 33991881 DOI: 10.1016/j.biortech.2021.125255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This study investigated a new bioresource technology of recovering raw chemicals of sulfated polysaccharides (SPs) from the digested saline waste activated sludge (WASsaline) that naturally contained 3-30% (w/w) of SPs. Two bench-scale anaerobic digestion (AD) experiments were conducted under mesophilic and thermophilic conditions; the effectiveness of extracting SPs from digested WASsaline and the biochemical characteristics of SPs were examined. After 20-days of digestion, the results showed that approximately 54 - 58% of initial total SPs in WASsaline were recoverable, in which 38 - 48% in solid digestate and 10-15% in liquid supernatant). The extracted raw chemicals of SPs were proven to be of high purity (>80%) and demonstrating significant properties such as anti-inflammation, anti-oxidation, and anti-coagulation for potential pharmaceutical-like application.
Collapse
Affiliation(s)
- Jie Liu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zi Zhang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Weiqi Xue
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Withanage B Siriweera
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Research Institute, HKUST Fork Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
8
|
Recent advances on the one-pot synthesis to assemble size-controlled glycans and glycoconjugates and polysaccharides. Carbohydr Polym 2021; 258:117672. [DOI: 10.1016/j.carbpol.2021.117672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
|
9
|
Carse S, Bergant M, Schäfer G. Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means. Int J Mol Sci 2021; 22:2201. [PMID: 33672181 PMCID: PMC7926419 DOI: 10.3390/ijms22042201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Infection by oncogenic human papillomavirus (HPV) is the primary cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle- income countries (LMIC). Concurrent infection with Human Immunodeficiency Virus (HIV) further increases the risk of HPV infection and exacerbates disease onset and progression. Highly effective prophylactic vaccines do exist to combat HPV infection with the most common oncogenic types, but the accessibility to these in LMIC is severely limited due to cost, difficulties in accessing the target population, cultural issues, and maintenance of a cold chain. Alternative preventive measures against HPV infection that are more accessible and affordable are therefore also needed to control cervical cancer risk. There are several efforts in identifying such alternative prophylactics which target key molecules involved in early HPV infection events. This review summarizes the current knowledge of the initial steps in HPV infection, from host cell-surface engagement to cellular trafficking of the viral genome before arrival in the nucleus. The key molecules that can be potentially targeted are highlighted, and a discussion on their applicability as alternative preventive means against HPV infection, with a focus on LMIC, is presented.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Martina Bergant
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
10
|
Salta J, Arp FF, Kühne C, Reissig H. Multivalent 1,2,3‐Triazole‐Linked Carbohydrate Mimetics by Huisgen–Meldal‐Sharpless Cycloadditions of an Azidopyran. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joana Salta
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Fabian F. Arp
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Christian Kühne
- Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Hans‐Ulrich Reissig
- Institut für Chemie und Biochemie Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
11
|
Enotarpi J, Tontini M, Balocchi C, van der Es D, Auberger L, Balducci E, Carboni F, Proietti D, Casini D, Filippov DV, Overkleeft HS, van der Marel GA, Colombo C, Romano MR, Berti F, Costantino P, Codeé JDC, Lay L, Adamo R. A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A. Nat Commun 2020; 11:4434. [PMID: 32895393 PMCID: PMC7477203 DOI: 10.1038/s41467-020-18279-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis serogroup A capsular polysaccharide (MenA CPS) consists of (1 → 6)-2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate repeating units, O-acetylated at position C3 or C4. Glycomimetics appear attractive to overcome the CPS intrinsic lability in physiological media, due to cleavage of the phosphodiester bridge, and to develop a stable vaccine with longer shelf life in liquid formulation. Here, we generate a series of non-acetylated carbaMenA oligomers which are proven more stable than the CPS. An octamer (DP8) inhibits the binding of a MenA specific bactericidal mAb and polyclonal serum to the CPS, and is selected for further in vivo testing. However, its CRM197 conjugate raises murine antibodies towards the non-acetylated CPS backbone, but not the natural acetylated form. Accordingly, random O-acetylation of the DP8 is performed, resulting in a structure (Ac-carbaMenA) showing improved inhibition of anti-MenA CPS antibody binding and, after conjugation to CRM197, eliciting anti-MenA protective murine antibodies, comparably to the vaccine benchmark.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Neutralizing/chemistry
- Bacterial Capsules/immunology
- Biomimetics/methods
- Glycoconjugates/chemical synthesis
- Glycoconjugates/immunology
- Mice
- Neisseria meningitidis, Serogroup A/chemistry
- Neisseria meningitidis, Serogroup A/drug effects
- Neisseria meningitidis, Serogroup A/immunology
- Polysaccharides, Bacterial/chemical synthesis
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/microbiology
Collapse
Affiliation(s)
- Jacopo Enotarpi
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | | | | | - Daan van der Es
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | - Ludovic Auberger
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
| | | | | | | | | | - Dmitri V Filippov
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands
| | | | - Cinzia Colombo
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy
| | | | | | | | - Jeroen D C Codeé
- Department of Bioorganic Synthesis, Leiden University, 2333, Leiden, The Netherlands.
| | - Luigi Lay
- Department of Chemistry and CRC Polymeric Materials (LaMPo), University of Milan, Milan, Italy.
| | | |
Collapse
|
12
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
13
|
Kobayashi Y, Takemoto Y. Regio- and stereoselective glycosylation of 1,2-O-unprotected sugars using organoboron catalysts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Revuelta J, Aranaz I, Acosta N, Civera C, Bastida A, Peña N, Monterrey DT, Doncel-Pérez E, Garrido L, Heras Á, García-Junceda E, Fernández-Mayoralas A. Unraveling the Structural Landscape of Chitosan-Based Heparan Sulfate Mimics Binding to Growth Factors: Deciphering Structural Determinants for Optimal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25534-25545. [PMID: 32426965 DOI: 10.1021/acsami.0c03074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chitosan sulfates have demonstrated the ability to mimic heparan sulfate (HS) function. In this context, it is crucial to understand how the specific structural properties of HS domains determine their functionalities and biological activities. In this study, several HS-mimicking chitosans have been prepared to mimic the structure of HS domains that have proved to be functionally significant in cell processes. The results presented herein are in concordance with the hypothesis that sulfated chitosan-growth factor (GF) interactions are controlled by a combination of two effects: the electrostatic interactions and the conformational adaptation of the polysaccharide. Thus, we found that highly charged O-sulfated S-CS and S-DCS polysaccharides with a low degree of contraction interacted more strongly with GFs than N-sulfated N-DCS, with a higher degree of contraction and a low charge. Finally, the evidence gathered suggests that N-DCS would be able to bind to an allosteric zone and is likely to enhance GF signaling activity. This is because the bound protein remains able to bind to its cognate receptor, promoting an effect on cell proliferation as has been shown for PC12 cells. However, S-CS and S-DCS would sequester the protein, decreasing the GF signaling activity by depleting the protein or locally blocking its active site.
Collapse
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Inmaculada Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Niuris Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Concepción Civera
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Agatha Bastida
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nerea Peña
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Dianelis T Monterrey
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Leoncio Garrido
- Departamento de Química Física, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ángeles Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 28040 Madrid, Spain
| | - Eduardo García-Junceda
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
15
|
Soria-Martinez L, Bauer S, Giesler M, Schelhaas S, Materlik J, Janus K, Pierzyna P, Becker M, Snyder NL, Hartmann L, Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J Am Chem Soc 2020; 142:5252-5265. [PMID: 32105452 DOI: 10.1021/jacs.9b13484] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we investigate the potential of highly sulfated synthetic glycomimetics to act as inhibitors of viral binding/infection. Our results indicate that both long-chain glycopolymers and short-chain glycooligomers are capable of preventing viral infection. Notably, glycopolymers efficiently inhibit Human Papillomavirus (HPV16) infection in vitro and maintain their antiviral activity in vivo, while the glycooligomers exert their inhibitory function post attachment of viruses to cells. Moreover, when we tested the potential for broader activity against several other human pathogenic viruses, we observed broad-spectrum antiviral activity of these compounds beyond our initial assumptions. While the compounds tested displayed a range of antiviral efficacies, viruses with rather diverse glycan specificities such as Herpes Simplex Virus (HSV), Influenza A Virus (IAV), and Merkel Cell Polyomavirus (MCPyV) could be targeted. This opens new opportunities to develop broadly active glycomimetic inhibitors of viral entry and infection.
Collapse
Affiliation(s)
- Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Sebastian Bauer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Markus Giesler
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| | - Jennifer Materlik
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Kevin Janus
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Pierzyna
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Miriam Becker
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Nicole L Snyder
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| |
Collapse
|
16
|
Fan F, Zhang P, Wang L, Sun T, Cai C, Yu G. Synthesis and Properties of Functional Glycomimetics through Click Grafting of Fucose onto Chondroitin Sulfates. Biomacromolecules 2019; 20:3798-3808. [PMID: 31361469 DOI: 10.1021/acs.biomac.9b00878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fucosylated chondroitin sulfate (fCS), a representative marine polysaccharide isolated from sea cucumber, possesses diverse biological functions especially as a promising anticoagulant. However, its supply suffers from the challenges of high-cost materials, different species, and batch-to-batch variability. In the present study, we designed a concise route for the synthesis of functional glycomimetics by natural fCS as a template. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride-mediated amidation was applied on chondroitin sulfates for site-selective alkynylation with controllable ratios between 0.15 and 0.78. A small library of 12 fCS glycomimetics with specific sulfation patterns and fucose branches was prepared through copper-catalyzed azide-alkyne cycloaddition, which was fully characterized by nuclear magnetic resonance spectroscopy and size-exclusion chromatography with multiangle light scattering and refractive index. Through screening of their biological activities, CSE-F1 and CSE-SF1 exhibited anticoagulant activities through intrinsic pathway and inhibition of factor Xa by antithrombin III. The concise approach developed herein supplies novel glycopolymers to mimic the distinct functions of natural polysaccharides and promote the development of marine carbohydrate-based drugs.
Collapse
Affiliation(s)
| | | | | | | | - Chao Cai
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| | - Guangli Yu
- Laboratory for Marine Drugs and Bioproducts , Pilot National Laboratory for Marine Science and Technology (Qingdao) , Qingdao 266003 , China
| |
Collapse
|
17
|
Liu K, Wang L, Guo Z. An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part III: synthetic studies and biological applications of arabinofuranosyl oligosaccharides and their analogs, derivatives and conjugates. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji′nan, Shandong, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Vucko T, Pellegrini Moïse N, Lamandé-Langle S. Value-added carbohydrate building blocks by regioselective O-alkylation of C-glucosyl compounds. Carbohydr Res 2019; 477:1-10. [DOI: 10.1016/j.carres.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
19
|
Terada Y, Hoshino Y, Miura Y. Glycopolymers Mimicking GM1 Gangliosides: Cooperativity of Galactose and Neuraminic Acid for Cholera Toxin Recognition. Chem Asian J 2019; 14:1021-1027. [DOI: 10.1002/asia.201900053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/21/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yuhei Terada
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Systems and EngineeringKyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
20
|
Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Sci Rep 2019; 9:2309. [PMID: 30783159 PMCID: PMC6381138 DOI: 10.1038/s41598-019-38921-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.
Collapse
|
21
|
Zhu F, Rodriguez J, O’Neill S, Walczak MA. Acyl Glycosides through Stereospecific Glycosyl Cross-Coupling: Rapid Access to C(sp 3)-Linked Glycomimetics. ACS CENTRAL SCIENCE 2018; 4:1652-1662. [PMID: 30648149 PMCID: PMC6311691 DOI: 10.1021/acscentsci.8b00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 05/04/2023]
Abstract
Replacement of a glycosidic bond with hydrolytically stable C-C surrogates is an efficient strategy to access glycomimetics with improved physicochemical and pharmacological properties. We describe here a stereoretentive cross-coupling reaction of glycosyl stannanes with C(sp2)- and C(sp3)-thio(seleno)esters suitable for the preparation C-acyl glycosides as synthetic building blocks to obtain C(sp3)-linked and fluorinated glycomimetics. First, we identified a set of standardized conditions employing a Pd(0) precatalyst, CuCl additive, and phosphite ligand that provided access to C-acyl glycosides without deterioration of anomeric integrity and decarbonylation of the acyl donors (>40 examples). Second, we demonstrated that C(sp3)-glycomimetics could be introduced into the anomeric position via a direct conversion of C1 ketones. Specifically, the conversion of the carbonyl group into a CF2 mimetic is an appealing method to access valuable fluorinated analogues. We also illustrate that the introduction of other carbonyl-based groups into the C1 position of mono- and oligosaccharides can be accomplished using the corresponding acyl donors. This protocol is amenable to late-stage glycodiversification and programmed mutation of the C-O bond into hydrolytically stable C-C bonds. Taken together, stereoretentive anomeric acylation represents a convenient method to prepare a diverse set of glycan mimetics with minimal synthetic manipulations and with absolute control of anomeric configuration.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Sloane O’Neill
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Revuelta J, Fuentes R, Lagartera L, Hernáiz MJ, Bastida A, García-Junceda E, Fernández-Mayoralas A. Assembly of glycoamino acid building blocks: a new strategy for the straightforward synthesis of heparan sulfate mimics. Chem Commun (Camb) 2018; 54:13455-13458. [PMID: 30431033 DOI: 10.1039/c8cc08067d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new strategy that enables a modular straightforward synthesis of heparan sulfate oligosaccharide mimics by the assembly of simple glycoamino acid building blocks is described. The coupling between units is readily carried out by an amidation reaction. Several glycoamino acid oligomers were prepared and their interaction with the FGF2 protein was analyzed.
Collapse
Affiliation(s)
- Julia Revuelta
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General (IQOG-CSIC), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ennist JH, Termuehlen HR, Bernhard SP, Fricke MS, Cloninger MJ. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjug Chem 2018; 29:4030-4039. [DOI: 10.1021/acs.bioconjchem.8b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica H. Ennist
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Henry R. Termuehlen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mackenzie S. Fricke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
24
|
|
25
|
Zhang GL, Wei MM, Song C, Ma YF, Zheng XJ, Xiong DC, Ye XS. Chemical synthesis and biological evaluation of penta- to octa- saccharide fragments of Vi polysaccharide fromSalmonella typhi. Org Chem Front 2018. [DOI: 10.1039/c8qo00471d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The penta- to octa-saccharide fragments of Vi polysaccharide were synthesized efficiently, and the hexasaccharide might be the minimum epitope of Vi antigen based on ELISA analysis.
Collapse
Affiliation(s)
- Gao-Lan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Meng-Man Wei
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Chengcheng Song
- School of Life Sciences
- Northeast Normal University
- Changchun 130024
- China
| | - Yu-Feng Ma
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|