1
|
Ma X, Miao E, Sun Y, Sun L, Huang C, Zhang X, Hou KQ, Xu Z, Zang Y, Bi T, Yang W. Divergent Synthesis of Dihydrofuran and Dienol Scaffolds via Pd-Catalyzed Decarboxylative Carbene Cross-Coupling. Org Lett 2025; 27:4753-4761. [PMID: 40272503 DOI: 10.1021/acs.orglett.5c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Herein, we report a novel ligand-switchable Pd-catalyzed carbene coupling reaction employing vinylethylene carbonates and sulfoxonium ylides. By proper choice of ligands, the chemoselectivity of the process could be efficiently regulated, allowing for the availability of dihydrofuran or dienol scaffolds. This method features mild reaction conditions, broad scope, and remarkable synthetic utility. Compound 6f can effectively stimulate the secretion of GLP-1, providing promising insight into the development of small-molecule agonists for the GLP-1 receptor.
Collapse
Affiliation(s)
- Xiaolong Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erfei Miao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chaoying Huang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xun Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Ke-Qiang Hou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongyu Bi
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
2
|
Cheng L, Zhao JL, Zhang XT, Jia QS, Dong N, Peng Y, Kleij AW, Liu XW. Chemo-, Regio- and Stereoselective Preparation of (Z)-2-Butene-1,4-Diol Monoesters via Pd-Catalyzed Decarboxylative Acyloxylation. Chemistry 2024; 30:e202401377. [PMID: 38738789 DOI: 10.1002/chem.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.
Collapse
Affiliation(s)
- Long Cheng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Jia-Li Zhao
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Xiao-Tian Zhang
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Qiao-Sen Jia
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Ni Dong
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Yu Peng
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 -, Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 -, Barcelona, Spain
| | - Xiang-Wei Liu
- School of Chemistry, School of Life Science and Engineering, Southwest Jiaotong University. No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, P. R. China
| |
Collapse
|
3
|
Huang H, Wu YQ, Han LY, Jiang L, Zhang ZZ, Zhang X, Han B, Huang W, Li JL. Palladium-catalyzed ( Z)-selective allylation of phosphine oxides with vinylethylene carbonates to construct phosphorus allyl alcohols. Org Biomol Chem 2024; 22:3068-3072. [PMID: 38546264 DOI: 10.1039/d4ob00354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Allylphosphine oxide compounds are important building blocks with broad applications in organic synthesis and pharmaceutical science. Herein, we report an unprecedented palladium-catalyzed allylation of phosphine oxides with vinylethylene carbonates, producing various phosphorus allyl alcohols in excellent yields with high Z-selectivity. In addition, gram-scale synthesis and further functional group transformations demonstrate the practical utility of this synthetic method.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhuo-Zhuo Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Zhou L, Liu D, Huang H, Zhang K, Ning Y, Chen FE. Palladium-catalyzed decarboxylative allylation of vinyloxazolidin-2-ones with sodium sulfinates: stereoselective assembly of highly functionalized ( Z)-allylic amines. Chem Commun (Camb) 2023; 59:9892-9895. [PMID: 37493523 DOI: 10.1039/d3cc02237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We report a general approach to highly functionalized (Z)-allylic amines by decarboxylative allylation of vinyloxazolidin-2-ones. This process engages sodium sulfinates as nucleophiles to form a new carbon-sulfur bond, utilizing a palladium catalyst generated from Pd(OAc)2 and diphosphine ligand dpppe. The scope of the protocol is illustrated by the synthesis of 30 representative allylic amines with high regio- and stereoselectivity. Mechanistic studies show that the Z-selectivity of the reaction stems from the formation of a palladacycle intermediate through Pd-N chelation. The synthetic utility of this method was further exemplified by the gram-scale synthesis and subsequent transformations to various compounds.
Collapse
Affiliation(s)
- Ledan Zhou
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Ding Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Huashan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Yingtang Ning
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou 350102, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433 Shanghai, China.
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, 200433 Shanghai, China
| |
Collapse
|
5
|
Krinochkin AP, Valieva MI, Starnovskaya ES, Shtaitz YK, Rybakova SS, Sharafieva ER, Kopchuk DS, Zyryanov GV, Rusinov VL. The Synthetic Approaches to (3-Thienyl)-Containing 2,2'-Bipyridines as Potential Monomers for Electropolymerization. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822700100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Zhao JQ, Rao HW, Qian HL, Zhang XM, Zhou S, Zhang YP, You Y, Wang ZH, Yuan WC. Palladium-catalyzed stereoselective decarboxylative allylation of azlactones: access to ( Z)-trisubstituted allylic amino acid derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed stereoselective decarboxylative allylation of azlactones with vinyl methylene cyclic carbonates affords a series of trisubstituted allylic amino acid derivatives in good yields with an exclusive (Z)-configuration.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xue-Man Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Huang QW, Qi T, Liu Y, Zhang X, Li QZ, Gou C, Tao YM, Leng HJ, Li JL. Lewis Acid/Brønsted Base-Assisted Palladium Catalysis: Stereoselective Construction of Skeletally Diverse Spiro-Ketolactams from Vinylethylene Carbonates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Ke M, Liu Z, Zhang K, Zuo S, Chen F. Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Marine furanocembranoids-inspired macrocycles enabled by Pd-catalyzed unactivated C(sp 3)-H olefination mediated by donor/donor carbenes. Nat Commun 2021; 12:1304. [PMID: 33637703 PMCID: PMC7910576 DOI: 10.1038/s41467-021-21484-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Biomimetic modularization and function-oriented synthesis of structurally diversified natural product-like macrocycles in a step-economical fashion is highly desirable. Inspired by marine furanocembranoids, herein, we synthesize diverse alkenes substituted furan-embedded macrolactams via a modular biomimetic assembly strategy. The success of this assembly is the development of crucial Pd-catalyzed carbene coupling between ene-yne-ketones as donor/donor carbene precursors and unactivated Csp3‒H bonds which represents a great challenge in organic synthesis. Notably, this method not only obviates the use of unstable, explosive, and toxic diazo compounds, but also can be amenable to allenyl ketones carbene precursors. DFT calculations demonstrate that a formal 1,4-Pd shift could be involved in the mechanism. Moreover, the collected furanocembranoids-like macrolactams show significant anti-inflammatory activities against TNF-α, IL-6, and IL-1β and the cytotoxicity is comparable to Dexamethasone. Furanocembranoid-like natural products with the alkene-substituted furan scaffold display a range of biological activities, but are difficult to access. Here, the authors report a modular biomimetic strategy to synthesise diverse alkene-substituted furan-containing macrolactams via palladium-catalysed unactivated Csp3-H olefination.
Collapse
|
12
|
Liu Z, Ke M, Zhang K, Zuo S, Jiang M, Chen F. Stereoselective Synthesis of (
Z
)‐Dihomoallylic Phosphonates with Quaternary Carbon Center by Palladium‐Catalyzed Bisallylation of Vinylethyene Carbonates with
β
‐Ketophosphonates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| |
Collapse
|
13
|
Palladium‐Catalyzed Allylation of Vinylethylene Carbonates with
β
‐Ketophosphonates: Stereoselective Synthesis of (
Z
)‐Homoallylic Phosphonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202001925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Sun T, He S, Xu Z, Zuo J, Yu Y, Yang W. Rh-Catalyzed C-H alkylation enabling modular synthesis of CF 3-substituted benzannulated macrocyclic inhibitors of B cell responses. Org Biomol Chem 2021; 19:3589-3594. [PMID: 33908550 DOI: 10.1039/d1ob00296a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by aspirin and chalcone, herein, we describe a modular biomimetic strategy to achieve a new class of CF3-bearing benzannulated macrolactams. The key to the success of macrolactams was the utilization of a highly chemoselective Rh(iii)-catalyzed native carboxylic acid-directed C-H alkylation. Moreover, the unique CF3-containing benzannulated macrocycles showed decent immunosuppressive effects on B cells in vitro, including proliferation, activation, and antibody production upon specific stimulation implicating TLR and BCR signaling.
Collapse
Affiliation(s)
- Tao Sun
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Shijun He
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.
| | - Jianping Zuo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China. and University of Chinese Academy of Sciences, Beijing 100049, China and School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Xia C, Wang DC, Qu GR, Guo HM. Palladium-catalyzed asymmetric allylic amination of a vinylethylene carbonate with N-heteroaromatics. Org Chem Front 2021. [DOI: 10.1039/d1qo00272d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly enantioselective allylic amination of a vinylethylene carbonate with N-heteroaromatics is enabled by asymmetric palladium catalysis for the synthesis of chiral acyclic nucleosides and isonucleosides.
Collapse
Affiliation(s)
- Chao Xia
- School of Environment
- Henan Normal University
- Xinxiang
- China
| | - Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- China
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
| |
Collapse
|
16
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|
17
|
Chen P, Zhou Q, Chen Z, Liu YK, Liang Y, Tang KW, Liu Y. Silver-promoted oxidative sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates leading to dihydronaphthalene derivatives. Org Biomol Chem 2020; 18:7345-7354. [PMID: 32909577 DOI: 10.1039/d0ob01570a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silver-promoted sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates is established for the construction of 1-sulfonylmethylated 3,4-dihydronaphthalenes. This sulfonylation process involves a radical pathway, including sulfonyl radical formation, radical addition, ring-opening and cyclization. The 1-sulfonylmethylated 3,4-dihydronaphthalenes can be converted into other useful products.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu-Kui Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
18
|
Zhang MN, Khan S, Zhang J, Khan A. Palladium nanoparticles as efficient catalyst for C-S bond formation reactions. RSC Adv 2020; 10:31022-31026. [PMID: 35520647 PMCID: PMC9056434 DOI: 10.1039/d0ra05848c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
The development of green, economical and sustainable chemical processes is one of the primary challenges in organic synthesis. Herein, we report an efficient and heterogeneous palladium-catalyzed sulfonylation of vinyl cyclic carbonates with sodium sulfinates via decarboxylative cross-coupling. Both aliphatic and aromatic sulfinate salts react with various vinyl cyclic carbonates to deliver the desired allylic sulfones featuring tri- and even tetrasubstituted olefin scaffolds in high yields with excellent selectivity. The process needs only 2 mol% of Pd2(dba)3 and the in situ formed palladium nano-particles are found to be the active catalyst.
Collapse
Affiliation(s)
- Mei-Na Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
19
|
Zhang H, Gao X, Jiang F, Shi W, Wang W, Wu Y, Zhang C, Shi X, Guo H. Palladium-Catalyzed Asymmetric [3+2] Cycloaddition of Vinylethylene Carbonates with 2-Arylidene-1,3-Indandiones: Synthesis of Tetrahydrofuran-Fused Spirocyclic 1,3-Indandiones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huihui Zhang
- College of Plant Protection; China Agricultural University; 100193 Beijing P. R. China
| | - Xing Gao
- Department of Chemistry; China Agricultural University; 100193 Beijing P. R. China
| | - Feng Jiang
- Department of Chemistry; China Agricultural University; 100193 Beijing P. R. China
| | - Wangyu Shi
- Department of Chemistry; China Agricultural University; 100193 Beijing P. R. China
| | - Wei Wang
- College of Public Health; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Yongjun Wu
- College of Public Health; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Cheng Zhang
- Department of Chemistry; China Agricultural University; 100193 Beijing P. R. China
| | - Xueyan Shi
- College of Plant Protection; China Agricultural University; 100193 Beijing P. R. China
| | - Hongchao Guo
- Department of Chemistry; China Agricultural University; 100193 Beijing P. R. China
| |
Collapse
|
20
|
Xiong W, Zhang S, Li H, Zhang Z, Xu T. Pd-Catalyzed Decarboxylative Cycloaddition of Vinylethylene Carbonates with Isothiocyanates. J Org Chem 2020; 85:8773-8779. [DOI: 10.1021/acs.joc.0c00243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wei Xiong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127, P. R. China
| | - Shengjun Zhang
- State Energy Key Lab of Clean Coal Grading Conversion Modern Chemical Technology Department, Shaanxi Key Laboratory of Low Rank Coal Pyrolysis, Shaanxi Coal and Chemical Technology Institute Co., Ltd., 2 Jinye Road, Xi’an 710065, P. R. China
| | - Huijun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127, P. R. China
| | - Zhifeng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an 710127, P. R. China
| |
Collapse
|
21
|
Ke M, Liu Z, Huang G, Wang J, Tao Y, Chen F. Palladium-Catalyzed Regio- and Stereoselective Cross-Coupling of Vinylethylene Carbonates with Ketimine Esters to Generate ( Z)-Tri- and Tetra-substituted Allylic Amino Acid Derivatives. Org Lett 2020; 22:4135-4140. [PMID: 32383610 DOI: 10.1021/acs.orglett.0c01211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein we report the palladium-catalyzed regio- and stereoselective cross-coupling of vinylethylene carbonates with ketimine esters to construct allylic amino acid scaffolds. This operationally simple protocol furnished (Z)-tri- and tetra-substituted allylic amino acid derivatives in good to excellent yields with distinguished geometric control under mild reaction conditions and proved to be sufficient in large-scale synthesis while retaining excellent reactivity and stereoselectivity, highlighting the practical value of this transformation.
Collapse
Affiliation(s)
- Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Zhigang Liu
- School of Environment and Chemical Engineering, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an, Shanxi 710048, People's Republic of China
| | - Guanxin Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Jiaqi Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
22
|
Chen L, Quan H, Xu Z, Wang H, Xia Y, Lou L, Yang W. A modular biomimetic strategy for the synthesis of macrolide P-glycoprotein inhibitors via Rh-catalyzed C-H activation. Nat Commun 2020; 11:2151. [PMID: 32358512 PMCID: PMC7195407 DOI: 10.1038/s41467-020-16084-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/09/2020] [Indexed: 11/09/2022] Open
Abstract
One of the key challenges to overcome multidrug resistance (MDR) in cancer is the development of more effective and general strategies to discover bioactive scaffolds. Inspired by natural products, we describe a strategy to achieve this goal by modular biomimetic synthesis of scaffolds of (Z)-allylic-supported macrolides. Herein, an Rh(III)-catalyzed native carboxylic acid-directed and solvent-free C−H activation allylation with high stereoselectivity and chemoselectivity is achieved. The generated poly-substituted allylic alcohol as a multifunctional and biomimetic building block is crucial for the synthesis of (Z)-allylic-supported macrolides. Moreover, the unique allylic-supported macrolides significantly potentiate the sensitivity of tumor cells to cytotoxic agents such as vinorelbine and doxetaxel by reversing p170-glycoprotein-mediated MDR. Our findings will inspire the evolution of synthetic chemistry and open avenues for expedient and diversified synthesis of bioactive macrocyclic molecules. One strategy to address multidrug resistance in cancer is the development of modular methods to access bioactive scaffolds. Here, the authors report a Rh(III)-catalyzed carboxylic acid-directed C(sp2)−H allylation and apply it to the modular synthesis of (Z)-allylic macrolides which enhance antitumoral drug activity.
Collapse
Affiliation(s)
- Lu Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitian Quan
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Liguang Lou
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, 114051, China.
| |
Collapse
|
23
|
Song B, Xie P, Li Y, Hao J, Wang L, Chen X, Xu Z, Quan H, Lou L, Xia Y, Houk KN, Yang W. Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors. J Am Chem Soc 2020; 142:9982-9992. [DOI: 10.1021/jacs.0c00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bichao Song
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yingzi Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jiping Hao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
24
|
Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of N-Allyl-N-methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Evgueni Kirillov
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kosuke Higashida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koya Shoji
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Valentin Boiteau
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
25
|
Li QZ, Liu Y, Li MZ, Zhang X, Qi T, Li JL. Palladium-catalysed decarboxylative annulations of vinylethylene carbonates leading to diverse functionalised heterocycles. Org Biomol Chem 2020; 18:3638-3648. [DOI: 10.1039/d0ob00458h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review provides an overview of the palladium-catalysed diverse cyclisations of VECs over the past five years, which could offer powerful synthetic tools to access various functionalised heterocycles.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Mu-Ze Li
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| |
Collapse
|
26
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019; 59:1340-1345. [DOI: 10.1002/anie.201910378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
27
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
28
|
Zuo L, Liu T, Chang X, Guo W. An Update of Transition Metal-Catalyzed Decarboxylative Transformations of Cyclic Carbonates and Carbamates. Molecules 2019; 24:E3930. [PMID: 31683557 PMCID: PMC6864628 DOI: 10.3390/molecules24213930] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/06/2023] Open
Abstract
Functionalized cyclic organic carbonates and carbamates are frequently used in a number of transition metal-catalyzed decarboxylative reactions for the construction of interesting molecules. These decarboxylative transformations have attracted more and more research attention in recent years mainly due to their advantages of less waste generation and versatile reactivities. On the basis of previous reviews on this hot topic, the present review will focus on the development of transition metal-catalyzed decarboxylative transformations of functionalized cyclic carbonates and carbamates in the last two years.
Collapse
Affiliation(s)
- Linhong Zuo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Teng Liu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Xiaowei Chang
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710045, China.
| |
Collapse
|
29
|
Liu Y, Huang QW, Li QZ, Leng HJ, Dai QS, Zeng R, Liu YQ, Zhang X, Han B, Li JL. Highly Chemo- and Diastereoselective Construction of Quaternary Stereocenters through Palladium-Catalyzed [3 + 2] Cyclization of 5-Alkenyl Thiazolones. Org Lett 2019; 21:7478-7483. [DOI: 10.1021/acs.orglett.9b02781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yan-Qing Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
30
|
Ke M, Huang G, Ding L, Fang J, Chen F. Direct Synthesis of Substituted (
Z
)‐Allylic Sulfones by Palladium‐Catalyzed Sulfonylation of Vinylethylene Carbonates with Sodium Sulfinates. ChemCatChem 2019. [DOI: 10.1002/cctc.201901292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guanxin Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Li Ding
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Jingjie Fang
- School of Pharmaceutical SciencesZhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| | - Fen‐er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of ChemistryFudan University 220 Handan Road Shanghai 200433 P. R. China
- School of Pharmaceutical SciencesZhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| |
Collapse
|
31
|
Zhao H, Wang L, Guo J, Ding W, Song X, Wu H, Tang Z, Fan X, Bi X. Formal [5+3] Cycloaddition of Vinylethylene Carbonates with Isatin‐Based α‐(Trifluoromethyl)imines for Diastereoselective Synthesis of Medium‐Heterocycle‐Fused Spirooxindoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong‐Wu Zhao
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Li‐Ru Wang
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Jia‐Ming Guo
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Wan‐Qiu Ding
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Xiu‐Qing Song
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Hui‐Hui Wu
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Zu Fan
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Fan Bi
- College of Life Science and Bio-engineeringBeijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
32
|
Xu Y, Chen L, Yang YW, Zhang Z, Yang W. Vinylethylene Carbonates as α,β-Unsaturated Aldehyde Surrogates for Regioselective [3 + 3] Cycloaddition. Org Lett 2019; 21:6674-6678. [DOI: 10.1021/acs.orglett.9b02266] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-wen Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
33
|
Zeng R, Li JL, Zhang X, Liu YQ, Jia ZQ, Leng HJ, Huang QW, Liu Y, Li QZ. Diastereoselective Construction of 6,8-Dioxabicyclo[3.2.1]octane Frameworks from Vinylethylene Carbonates via Palladium-Organo Relay Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02598] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Yan-Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Zhi-Qiang Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
34
|
Gómez JE, Kleij AW. Catalytic nonreductive valorization of carbon dioxide into fine chemicals. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Hao J, Xu Y, Xu Z, Zhang Z, Yang W. Pd-Catalyzed Three-Component Domino Reaction of Vinyl Benzoxazinanones for Regioselective and Stereoselective Synthesis of Allylic Sulfone-Containing Amino Acid Derivatives. Org Lett 2018; 20:7888-7892. [DOI: 10.1021/acs.orglett.8b03440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiping Hao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yi Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Zhang
- University of Science and Technology Liaoning, Anshan 114051, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|