1
|
Souza JVPD, Kioshima ES, Murase LS, Lima DDS, Seixas FAV, Maigret B, Cardoso RF. Identification of new putative inhibitors of Mycobacterium tuberculosis 3-dehydroshikimate dehydratase from a combination of ligand- and structure-based and deep learning in silico approaches. J Biomol Struct Dyn 2022; 41:2971-2980. [PMID: 35196960 DOI: 10.1080/07391102.2022.2042389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The development of new drugs against Mycobacterium tuberculosis is an essential strategy for fighting drug resistance. Although 3-dehydroquinate dehydratase (MtDHQ) is known to be a highly relevant target for M. tuberculosis, current research shows new putative inhibitors of MtDHQ selected by a large-scale ensemble-docking strategy combining ligand- and target-based chemoinformatic methods to deep learning. Initial chemical library was reduced from 216 million to approximately 460 thousand after pharmacophore, toxicity and molecular weight filters. Final library was subjected to an ensemble-docking protocol in GOLD which selected the top 300 molecules (GHITS). GHITS displayed different structures and characteristics when compared to known inhibitors (KINH). GHITS were further screened by post-docking analysis in AMMOS2 and deep learning virtual screening in DeepPurpose. DeepPurpose predicted that a number of GHITS had comparable or better affinity for the target than KINH. The best molecule was selected by consensus ranking using GOLD, AMMOS2 and DeepPurpose scores. Molecular dynamics revealed that the top hit displayed consistent and stable binding to MtDHQ, making strong interactions with active-site loop residues. Results forward new putative inhibitors of MtDHQ and reinforce the potential application of artificial intelligence methods for drug design. This work represents the first step in the validation of these molecules as inhibitors of MtDHQ.
Collapse
Affiliation(s)
- João Vítor Perez de Souza
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Erika Seki Kioshima
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Letícia Sayuri Murase
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Diego de Souza Lima
- Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| | | | | | - Rosilene Fressatti Cardoso
- Programa de Pós-Graduação em Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
2
|
Ganotra GK, Nunes-Alves A, Wade RC. A Protocol to Use Comparative Binding Energy Analysis to Estimate Drug-Target Residence Time. Methods Mol Biol 2021; 2266:171-186. [PMID: 33759127 DOI: 10.1007/978-1-0716-1209-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comparative Binding Energy (COMBINE) analysis is an approach for deriving a target-specific scoring function to compute binding free energy, drug-binding kinetics, or a related property by exploiting the information contained in the three-dimensional structures of receptor-ligand complexes. Here, we describe the process of setting up and running COMBINE analysis to derive a Quantitative Structure-Kinetics Relationship (QSKR) for the dissociation rate constants (koff) of inhibitors of a drug target. The derived QSKR model can be used to estimate residence times (τ, τ=1/koff) for similar inhibitors binding to the same target, and it can also help to identify key receptor-ligand interactions that distinguish inhibitors with short and long residence times. Herein, we demonstrate the protocol for the application of COMBINE analysis on a dataset of 70 inhibitors of heat shock protein 90 (HSP90) belonging to 11 different chemical classes. The procedure is generally applicable to any drug target with known structural information on its complexes with inhibitors.
Collapse
Affiliation(s)
- Gaurav K Ganotra
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Ariane Nunes-Alves
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Fusani L, Cabrera AC. Active learning strategies with COMBINE analysis: new tricks for an old dog. J Comput Aided Mol Des 2019; 33:287-294. [PMID: 30564994 PMCID: PMC7087723 DOI: 10.1007/s10822-018-0181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022]
Abstract
The COMBINE method was designed to study congeneric series of compounds including structural information of ligand-protein complexes. Although very successful, the method has not received the same level of attention than other alternatives to study Quantitative Structure Active Relationships (QSAR) mainly because lack of ways to measure the uncertainty of the predictions and the need for large datasets. Active learning, a semi-supervised learning approach that makes use of uncertainty to enhance models' performance while reducing the size of the training sets, has been used in this work to address both problems. We propose two estimators of uncertainty: the pool of regressors and the distance to the training set. The performance of the methods has been evaluated by testing the resulting active learning workflows in 3 diverse datasets: HIV-1 protease inhibitors, Taxol-derivatives and BRD4 inhibitors. The proposed strategies were successful in 80% of the cases for the taxol-derivatives and BRD4 inhibitors, while outperformed random selection in the case of the HIV-1 protease inhibitors time-split. Our results suggest that AL-COMBINE might be an effective way of producing consistently superior QSAR models with a limited number of samples.
Collapse
Affiliation(s)
- Lucia Fusani
- Molecular Design UK. GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Alvaro Cortes Cabrera
- Data Science and Computational Chemistry, Galchimia S.A. Severo Ochoa 2, Tres Cantos, 28760, Spain.
| |
Collapse
|
4
|
Lence E, van der Kamp MW, González-Bello C, Mulholland AJ. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Org Biomol Chem 2018; 16:4443-4455. [PMID: 29767194 PMCID: PMC6011038 DOI: 10.1039/c8ob00066b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 11/29/2022]
Abstract
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Collapse
Affiliation(s)
- Emilio Lence
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Marc W. van der Kamp
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
- School of Biochemistry
, University of Bristol
, University Walk
,
BS8 1TD Bristol
, UK
.
; Tel: +44 (0)117 3312147
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
, Departamento de Química Orgánica
, Universidade de Santiago de Compostela
,
Jenaro de la Fuente s/n
, 15782 Santiago de Compostela
, Spain
.
; Tel: +34 881 815726
| | - Adrian J. Mulholland
- Centre for Computational Chemistry
, School of Chemistry
, University of Bristol
,
Cantock's Close
, BS8 1TS Bristol
, UK
.
; Tel: +44 (0)117 9289097
| |
Collapse
|
5
|
Peón A, Robles A, Blanco B, Convertino M, Thompson P, Hawkins AR, Caflisch A, González-Bello C. Reducing the Flexibility of Type II Dehydroquinase for Inhibition: A Fragment-Based Approach and Molecular Dynamics Study. ChemMedChem 2017; 12:1512-1524. [DOI: 10.1002/cmdc.201700396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Peón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Adrián Robles
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Beatriz Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marino Convertino
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
- Current address: Department of Biochemistry and Biophysics; University of North Carolina, School of Medicine; Chapel Hill NC 27599 USA
| | - Paul Thompson
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Institute of Cell and Molecular Biosciences, Medical School; University of Newcastle upon Tyne; Catherine Cookson Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Amedeo Caflisch
- Department of Biochemistry; University of Zurich; 8057 Zurich Switzerland
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, CIQUS, and Departamento de Química Orgánica; Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
6
|
Teruya K, Hattori Y, Shimamoto Y, Kobayashi K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Biopolymers 2016; 106:391-403. [PMID: 26572934 PMCID: PMC7159131 DOI: 10.1002/bip.22773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023]
Abstract
Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2) = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of NeurochemistryTohoku University Graduate School of MedicineAoba‐Ku Sendai980‐8575Japan
| | - Yasunao Hattori
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Yasuhiro Shimamoto
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Kazuya Kobayashi
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | | | - Atsushi Nakagawa
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Kenichi Akaji
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| |
Collapse
|
7
|
González-Bello C, Tizón L, Lence E, Otero JM, van Raaij MJ, Martinez-Guitian M, Beceiro A, Thompson P, Hawkins AR. Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct. J Am Chem Soc 2015; 137:9333-43. [DOI: 10.1021/jacs.5b04080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Mark J. van Raaij
- Departamento
de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Marta Martinez-Guitian
- Servicio
de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Alejandro Beceiro
- Servicio
de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Paul Thompson
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Alastair R. Hawkins
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
8
|
Blanco B, Sedes A, Peón A, Otero JM, van Raaij MJ, Thompson P, Hawkins AR, González-Bello C. Exploring the Water-Binding Pocket of the Type II Dehydroquinase Enzyme in the Structure-Based Design of Inhibitors. J Med Chem 2014; 57:3494-510. [DOI: 10.1021/jm500175z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz Blanco
- Centro
Singular de Investigación en Química Biológica
y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía Sedes
- Centro
Singular de Investigación en Química Biológica
y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Peón
- Centro
Singular de Investigación en Química Biológica
y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Otero
- Departamento
de Bioquímica y Biología Molecular, Centro Singular
de Investigación en Química Biológica y Materiales
Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mark J. van Raaij
- Departamento
de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CSIC), Campus Cantoblanco, 28049 Madrid, Spain
| | - Paul Thompson
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Alastair R. Hawkins
- Institute
of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K
| | - Concepción González-Bello
- Centro
Singular de Investigación en Química Biológica
y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|