1
|
Eskandari A, Malek S, Jabbari A, Javari K, Rahmati N, Nikbakhtian B, Mohebbi B, Parhizgar SE, Alimohammadi M. Enhancing cardiac assessments: accurate and efficient prediction of quantitative fractional flow reserve. Front Bioeng Biotechnol 2025; 13:1438253. [PMID: 39931137 PMCID: PMC11808135 DOI: 10.3389/fbioe.2025.1438253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Background Obstruction within the left anterior descending coronary artery (LAD) is prevalent, serving as a prominent and independent predictor of mortality. Invasive Fractional flow reserve (FFR) is the gold standard for Coronary Artery Disease risk assessment. Despite advances in computational and imaging techniques, no definitive methodology currently assures clinicians of reliable, non-invasive strategies for future planning. Method The present research encompassed a cohort of 150 participants who were admitted to the Rajaie Cardiovascular, Medical, and Research Center. The method includes a three-dimensional geometry reconstruction, computational fluid dynamics simulations, and methodology optimization for the computation time. Four patients are analyzed within this study to showcase the proposed methodology. The invasive FFR results reported by the clinic have validated the optimized model. Results The computational FFR data derived from all methodologies are compared with those reported by the clinic for each case. The chosen methodology has yielded virtual FFR values that exhibit remarkable proximity to the clinically reported patient-specific FFR values, with the MSE of 6.186e-7 and R2 of 0.99 (p = 0.00434). Conclusion This approach has shown reliable results for all 150 patients. The results are both computationally and clinically user-friendly, with the accumulative pre and post-processing time of 15 min on a desktop computer (Intel i7 processor, 16 GB RAM). The proposed methodology has the potential to significantly assist clinicians with diagnosis.
Collapse
Affiliation(s)
- Arshia Eskandari
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Sara Malek
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Alireza Jabbari
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Kian Javari
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Nima Rahmati
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Behrad Nikbakhtian
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Bahram Mohebbi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Parhizgar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Alimohammadi
- Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Hou Q, Wu W, Fang L, Zhang X, Sun C, Ji L, Yang M, Lei Z, Gao F, Wang J, Xie M, Chen S. Patient-specific computational fluid dynamics for hypertrophic obstructive cardiomyopathy. Int J Cardiol 2023; 389:131263. [PMID: 37574025 DOI: 10.1016/j.ijcard.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The heterogeneous morphologic and functional expression of hypertrophic obstructive cardiomyopathy (HOCM) is evidenced by established imaging, multimodality imaging is essential for a comprehensive assessment but may remain uncertain. This study aimed to develop a patient-specific hemodynamics assessment with cardiac computed tomography angiography (CCTA) based computational fluid dynamics (CFD) and prove its usability in cohorts of HOCM patients. METHODS A retrospective study was performed on eight HOCM patients with septal myectomy who had both preoperative and postoperative CCTA as well as transthoracic echocardiography (TTE). The three-dimensional models were reconstructed from CCTA data, following which patient-specific CFD simulations were performed to estimate the blood velocity, pressure gradient, and wall shear stress. The simulation output was compared with TTE. Based on CFD simulations, retrospective and blinded virtual myectomy was also performed, to predict the minimum resected volume for improving obstruction in patients. RESULT The complex HOCM anatomy was successfully reconstructed for all 8 patients. The CFD simulation accurately assessed the pressure gradient, flow velocity. There was a good correlation between the peak pressure gradient measured by CFD and TTE in the pre- and post-operative assessments (r = 0.87 and 0.84, respectively), and the flow velocity (r = 0.87 and 0.90, respectively). The volumes of minimal resection myocardium predicted by CFD and virtual myectomy were consistent with the actual resection volumes. CONCLUSION CCTA-based CFD for HOCM patients may play a unique role in the assessment of patient-specific morphology and hemodynamics. Combination with virtual myectomy might allow for optimizing therapy planning in septal myectomy. CLINICAL PERSPECTIVE CFD based CCTA may emerge as a complement to established imaging strategies, with accurate three-dimensional reconstruction and hemodynamic simulation of the left ventricle in this retrospective study. Combined with virtual myectomy, CFD simulation might allow for predicting the volume of resected myocardium for septal myectomy. Moving forward, this technology may be used by clinicians to better assess the conditions of HOCM patients, and guide the extent and depth of resection during septal myectomy. Therefore, further prospective clinical evaluation is clearly warranted.
Collapse
Affiliation(s)
- Quanfei Hou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Wenqian Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Xin Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Chenchen Sun
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Li Ji
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China
| | - Ming Yang
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqiao Lei
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- Department of Simulation Science and Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd, Hangzhou 310000, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China.
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Shakya K, Ahirwar D, Nabeel PM, Roy Chowdhury S. Carotid hemodynamic response to external pressure and comparison with induced-stenosis progression: a fluid-structure interaction study. Comput Methods Biomech Biomed Engin 2023; 26:1595-1609. [PMID: 36200483 DOI: 10.1080/10255842.2022.2128785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
Non-invasive stenosis detection has always been difficult. A new concept of applying external pressure over the artery was compared with stenosis growth in this computational study. When stenosis develops, the artery constricts, obstructing blood flow in that area. Under external pressure, the constricted artery behaves similarly. The current fluid-structure interaction study compares the hemodynamic parameters of a stenosed artery and an artery subjected to external pressure. Significant similarities were discovered when the velocity profile and arterial displacement for both scenarios were compared. This study can be used to characterise stenosis experimentally while remaining non-invasive.
Collapse
Affiliation(s)
- Kshitij Shakya
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Dalchand Ahirwar
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - P M Nabeel
- Healthcare Technology Innovation Centre, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Shubhajit Roy Chowdhury
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
4
|
Numerical Study of the Unsteady Flow in Simplified and Realistic Iliac Bifurcation Models. FLUIDS 2021. [DOI: 10.3390/fluids6080284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases are a major cause of death and disability worldwide and they are commonly associated with the occurrence of atherosclerotic plaque deposition in the vessel walls, a process denoted as atherosclerosis. This is a chronic and progressive inflammatory disease of large-/medium-sized blood vessels that affects blood flow profiles, with the abdominal aorta and its branches being one of the locations prone to the development of this pathology, due to their curvatures and bifurcations. In this regard, the effect of flow patterns was studied and compared for both a simplified three-dimensional model of aorta bifurcation on the iliac arteries and a realistic model of iliac bifurcation, which was constructed from a computational tomography medical image. The flow patterns were analyzed in terms of velocity and wall shear stress distribution, but a special focus was given to the size and location of the recirculation zone. The simulations were performed using the Computational Fluid Dynamics software, FLUENT, taking into account the cardiac cycle profile at the infrarenal aorta. The shear stress and the velocity distribution observed for both models indicated that higher shear stress occurred along the flow divider wall (inner wall) and low shear stress occurred along the outer walls. In addition, the results demonstrated that the wall shear stress profiles were deeply affected by the transient profile of the cardiac cycle, with the deceleration phase being the most critical phase to the occurrence of backflow.
Collapse
|